数学符号读法大全

合集下载

各种数学符号及读法大全

各种数学符号及读法大全

各种数学符号及读法大全常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷± +-× ÷ /∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴⊥‖ ∠⌒≌∽√ ()【】{}ⅠⅡ⊕⊙∥α β γ δ ε ζ η θ Δ 大写小写英文注音国际音标注音中文注音Ααalphaalfa阿耳法Ββbetabeta贝塔Γγgammagamma伽马Δδdetadelta德耳塔Εεepsilonepsilon艾普西隆Ζζzetazeta截塔Ηηetaeta艾塔Θθthetaθita西塔Ιιiotaiota约塔Κκkappakappa卡帕∧λlambdalambda兰姆达Μμmumiu缪Ννnuniu纽Ξξxiksi可塞Οοomicronomikron 奥密可戎∏πpipai派Ρρrhorou柔∑σsigmasigma西格马Ττtautau套Υυupsilonjupsilon衣普西隆Φφphifai斐Χχchikhai喜Ψψpsipsai普西Ωωomegaomiga欧米龙格罗伊公式输入符号≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√ 数学符号(理科符号)——运算符号 1.基本符号:+-× ÷(/)2.分数号:/3.正负号:±4.相似全等:∽ ≌5.因为所以:∵ ∴6.判断类:=≠ <≮(不小于)>≯(不大于)7.集合类:∈(属于)∪(并集)∩(交集)8.求和符号:∑9.n次方符号:¹(一次方)²(平方)³(立方)⁴(4次方)ⁿ(n次方) 10.下角标:₁₂₃₄ (如:A₁B₂C₃D₄) 11.或与非的"非":¬ 12.导数符号(备注符号):′ 〃 13.度:° ℃ 14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫ ∬ 19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔↕ ↑ ↓ → ← 20.绝对值:| 21.弧:⌒ 22.圆:⊙ 23.平均数-,ba拔数学符号不好打,复制一下吧 1 几何符号⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △2 代数符号∝ ∧ ∨ ~∫ ≠ ≤ ≥ ≈ ∞ ∶3运算符号× ÷ √ ± 4集合符号∪ ∩ ∈ 5特殊符号∑ π(圆周率) 6推理符号|a| ⊥ ∽ △∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ←∈ ↑ →↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨ &; § ① ② ③④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ Γ Δ Θ Λ Ξ Ο Π ΣΦ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λμ ν ξ ο π ρ σ τ υ φ χ ψ ω Ⅰ ⅡⅢ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕√ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪∫∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮≯ ?⊙ ⊥ ⊿ ⌒ ℃ 指数0123:º¹²³ 符号意义∞ 无穷大 PI 圆周率 |x| 函数的绝对值∪ 集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余 ln(x) 自然对数 lg(x) 以2为底的对数 log(x) 常用对数 floor(x) 上取整函数ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 x - floor(x) ∫f(x)δx 不定积分∫[a:b]f(x)δxa到b的定积分 [P] P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限f(z)f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数 m|n m整除n m⊥nm与n互质 a ∈ A a属于集合A #A 集合A中的元素个数。

数学符号及读法大全

数学符号及读法大全

数学符号及读法大全一、基本符号及读法1. 加号(+):读作“加”或“正”。

例如,2 + 3 读作“二加三”或“二正三”。

2. 减号():读作“减”或“负”。

例如,5 2 读作“五减二”或“五负二”。

3. 乘号(×):读作“乘”。

例如,4 × 6 读作“四乘六”。

4. 除号(÷):读作“除以”。

例如,8 ÷ 2 读作“八除以二”。

5. 等号(=):读作“等于”。

例如,3 + 4 = 7 读作“三加四等于七”。

6. 不等号(≠):读作“不等于”。

例如,5 ≠ 6 读作“五不等于六”。

7. 大于号(>):读作“大于”。

例如,7 > 5 读作“七大于五”。

8. 小于号(<):读作“小于”。

例如,3 < 8 读作“三小于八”。

9. 大于等于号(≥):读作“大于等于”。

例如,x ≥ 5 读作“x大于等于五”。

10. 小于等于号(≤):读作“小于等于”。

例如,y ≤ 10 读作“y小于等于十”。

二、指数与对数符号及读法1. 指数符号(^):读作“的幂”。

例如,2^3 读作“二的三次幂”。

2. 对数符号(log):读作“以为底的对数”。

例如,log₂8 读作“以二为底八的对数”。

三、集合符号及读法1. 属于符号(∈):读作“属于”。

例如,3 ∈ {1, 2, 3} 读作“三属于集合{一、二、三}”。

2. 不属于符号(∉):读作“不属于”。

例如,4 ∉ {1, 2, 3} 读作“四不属于集合{一、二、三}”。

3. 空集符号(∅):读作“空集”。

例如,∅表示一个不包含任何元素的集合。

四、几何符号及读法1. 直线符号(→):读作“直线”。

例如,AB → 表示直线AB。

2. 射线符号(⇀):读作“射线”。

例如,AC ⇀表示射线AC。

3. 线段符号(|):读作“线段”。

例如,BC | 表示线段BC。

4. 角符号(∠):读作“角”。

例如,∠ABC 表示角ABC。

数学符号的读法

数学符号的读法

数学符号的读法α( 阿而法)β( 贝塔)γ(伽马)δ(德尔塔)ε(艾普西龙)ζ(截塔)η(艾塔)θ(西塔)ι约塔)κ(卡帕)λ(兰姆达)μ(米尤)ν(纽)ξ(可系)ο(奥密克戎)π (派)ρ (若)σ (西格马)τ (套)υ (英文或拉丁字母)φ(斐)χ(喜)ψ(普西))ω(欧米伽)α Α alpha 【'ælfə】β Β beta 【'bi:tə, 'beitə】γ Γ gamma 【'gæmə】δ Δ delta 【'deltə】ε Ε epsil on 【ep'sailən, 'epsilən】ζ Ζ zeta 【'zi:tə】η Η eta 【'i:tə】θ Θ theta 【'θi:tə】ι Ι iota 【ai'əutə】κ Κ kappa 【'kæpə】λ ∧lambda 【'læmdə】μ Μ mu 【mju:】ν Ν nu 【nju:】ξ Ξ xi 【ksai, ksi:】ο Ο omicron 【əu'maikrən】π ∏ pi 【pai】ρ Ρ rho 【rəu】σ ∑ sigma 【'sigmə】τ Τ tau 【tau】υ Υ upsilon 【ju:p'sailən】φ Φ phi 【fai】χ Χ chi 【kai, ki:】ψ Ψ psi 【psai】ω Ω omega 【'əumigə】更全面:1 Α α alpha a:lf 阿尔法角度;系数2 Β β beta bet 贝塔磁通系数;角度;系数3 Γ γ gamma ga:m 伽马电导系数(小写)4 Δ δ delta delt 德尔塔变动;密度;屈光度5 Ε ε epsilon ep`silon 伊普西龙对数之基数6 Ζ ζ zeta zat 截塔系数;方位角;阻抗;相对粘度;原子序数7 Η η eta eit 艾塔磁滞系数;效率(小写)8 Θ θ thet θit 西塔温度;相位角9 Ι ι iot aiot 约塔微小,一点儿10 Κ κ kappa kap 卡帕介质常数11 ∧λ lambda lambd 兰布达波长(小写);体积12 Μ μ mu mju 缪磁导系数;微(千分之一);放大因数(小写)13 Ν ν nu nju 纽磁阻系数14 Ξ ξ xi ksi 克西15 Ο ο omicron omik`ron 奥密克戎16 ∏ π pi pai 派圆周率=圆周÷直径=3.141617 Ρ ρ rho rou 肉电阻系数(小写)18 ∑ σ sigma `sigma 西格马总和(大写),表面密度;跨导(小写)19 Τ τ tau tau 套时间常数20 Υ υ upsilon jup`silon 宇普西龙位移21 Φ φ phi fai 佛爱磁通;角22 Χ χ chi phai 西23 Ψ ψ psi psai 普西角速;介质电通量(静电力线);角24 Ω ω omega o`miga 欧米伽欧姆(大写);角速(小写);角希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΔδ:德尔塔DelteΕε:艾普西龙Epsilonζ :捷塔ZetaΖη:依塔EtaΘθ:西塔ThetaΙι:艾欧塔IotaΚκ:喀帕Kappa∧λ:拉姆达LambdaΜμ:缪MuΝν:拗NuΞξ:克西XiΟο:欧麦克轮Omicron∏π:派PiΡρ:柔Rho∑σ:西格玛SigmaΤτ:套TauΥυ:宇普西龙UpsilonΦφ:fai PhiΧχ:器ChiΨψ:普赛PsiΩω:欧米伽Omega希腊字母怎么打打开Office文档之后,在你需要输入希腊字母的时候,先将输入法切换为英文状态,然后同时按下三个键Ctrl+Shift+Q ,工具栏上的“字体”就会发生变化此刻,你再对照下表输入a,b,c……即可得到您想要的希腊字母。

(完整版)数学符号及读法大全

(完整版)数学符号及读法大全

数学符号大全数学符号及读法大全常用数学输入符号:≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ公式输入符号≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√+:plus(positive正的)-:minus(negative负的)*:multiplied by÷:divided by=:be equal to≈:be approximately equal to():round brackets(parenthess)[]:square brackets{}:braces∵:because∴:therefore≤:less than or equal to≥:greater than or equal to∞:infinityLOGnX:logx to the base nxn:the nth power of xf(x):the function of xdx:diffrencial of xx+y:x plus y(a+b):bracket a plus b bracket closeda=b: a equals ba≠b: a isn't equal to ba>b : a is greater than ba>>b: a is much greater than ba≥b: a is greater than or equal to bx→∞:approches infinityx2:x squarex3:x cube√ ̄x:the square root of x3√ ̄x:the cube root of x3‰:three peimilln∑i=1xi:the summation of x where x goes from 1to nn∏i=1xi:the product of x sub i where igoes from 1to n ∫ab:integral betweens a and b数学符号(理科符号)——运算符号1.基本符号:+- × ÷(/)2.分数号:/3.正负号:±4.相似全等:∽≌5.因为所以:∵∴6.判断类:=≠<≮(不小于)>≯(不大于)7.集合类:∈(属于)∪(并集)∩(交集)8.求和符号:∑9.n次方符号:¹(一次方) ²(平方) ³(立方)⁴(4次方)ⁿ(n次方)10.下角标:₁₂₃₄(如:A₁B₂C₃D₄效果如何?)11.或与非的"非":¬12.导数符号(备注符号):′〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙11.或与非的"非":¬12.导数符号(备注符号):′〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙αβγδεζηθικλμνξοπρστυφχψωΑΒΓΔΕΖΗΘΙΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΧΨΩабвгдеёжзийклмнопрстуфхцчшщъыьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯΔ。

数学符号读法大全(免费)

数学符号读法大全(免费)

N的阶级大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Γδdeta delta 德耳塔Δεepsilon epsilon 艾普西隆Εδzeta zeta 截塔Ζεeta eta 艾塔Θζtheta ζita西塔Ηηiota iota 约塔Κθkappa kappa 卡帕∧ιlambda lambda 兰姆达Μκmu miu 缪Νλnu niu 纽Ξμxi ksi 可塞Ονomicron omikron 奥密可戎∏πpi pai 派Ρξrho rou 柔∑ζsigma sigma 西格马Τηtau tau 套Υυupsilon jupsilon 衣普西隆Φθphi fai 斐Φχchi khai 喜Χψpsi psai 普西Ψωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z 用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

数学符号读法大全

数学符号读法大全

2009-08-14 22:20学符号读法大全写小写英文注音国际音标注音中文注音α alpha alfa 阿耳法β beta beta 贝塔γ gamma gamma 伽马δ deta delta 德耳塔ε epsilon epsilon 艾普西隆δ zeta zeta 截塔ε eta eta 艾塔ζ theta ζita 西塔η iota iota 约塔θ kappa kappa 卡帕ι lambda lambda 兰姆达κ mu miu 缪λ nu niu 纽μ xi ksi 可塞ν omicron omikron 奥密可戎π pi pai 派ξ rho rou 柔ζ sigma sigma 西格马η tau tau 套υ upsilon jupsilon 衣普西隆θ phi fai 斐χ chi khai 喜ψ psi psai 普西ω omega omiga 欧米伽符号表符号含义-1的平方根(x) 函数f在自变量x处的值in(x) 在自变量x处的正弦函数值xp(x) 在自变量x处的指数函数值,常被写作e x^x a的x次方;有理数x由反函数定义n x exp x 的反函数同 a^xogb a 以b为底a的对数; b logba = aos x 在自变量x处余弦函数的值an x 其值等于 sin x/cos xot x 余切函数的值或 cos x/sin xec x 正割含数的值,其值等于 1/cos xsc x 余割函数的值,其值等于 1/sin xsin x y,正弦函数反函数在x处的值,即 x = sin y cos x y,余弦函数反函数在x处的值,即 x = cos y tan x y,正切函数反函数在x处的值,即 x = tan y cot x y,余切函数反函数在x处的值,即 x = cot y sec x y,正割函数反函数在x处的值,即 x = sec ycsc x y,余割函数反函数在x处的值,即 x = csc y角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时, j, k 分别表示x、y、z方向上的单位向量a, b, c) 以a、b、c为元素的向量a, b) 以a、b为元素的向量a, b) a、b向量的点积•b a、b向量的点积a•b)a、b向量的点积v| 向量v的模x| 数x的绝对值表示求和,通常是某项指数。

常用数学符号读法大全

常用数学符号读法大全

常用数学符号读法大全以下是常见的数学符号以及它们的读法:1. 加号 (+):读作 "加" 或 "加上"。

2. 减号 (-):读作 "减" 或 "减去"。

3. 乘号 (×):读作 "乘" 或 "乘以"。

4. 除号 (÷):读作 "除" 或 "除以"。

5. 等号 (=):读作 "等于" 或 "是"。

6. 大于号 (>):读作 "大于"。

7. 小于号 (<):读作 "小于"。

8. 大于等于号(≥):读作 "大于等于" 或 "不小于"。

9. 小于等于号(≤):读作 "小于等于" 或 "不大于"。

10. 不等号(≠):读作 "不等于" 或 "不是"。

11. 平方根(√):读作 "根号" 或 "平方根"。

12. 指数(ⁿ):读作 "的n次幂" 或 "的n次方"。

13. 求和符号(Σ):读作 "求和"。

14. 差集符号 (∖):读作 "差集"。

15. 交集符号(∩):读作 "交集"。

16. 并集符号 (∪):读作 "并集"。

17. 逻辑与符号 (∧):读作 "逻辑与"。

18. 逻辑或符号 (∨):读作 "逻辑或"。

19. 逻辑非符号 (¬):读作 "逻辑非"。

20. 有限集合符号(∑):读作 "有限集合"。

数学符号读法大全

数学符号读法大全

数学符号读法大全.txt我不奢望什么,只希望你以后的女人一个不如一个。

真怀念小时候啊,天热的时候我也可以像男人一样光膀子!数学符号读法大全教育教学 2009-08-22 15:31 阅读222 评论0 字号:大大中中小小大写小写英文注音国际音标注音中文注音Αα alpha alfa 阿耳法Ββ beta beta 贝塔Γγ gamma gamma 伽马Γδ deta delta 德耳塔Δε epsilon epsilon 艾普西隆Εδ zeta zeta 截塔Ζε eta eta 艾塔Θζ theta ζita 西塔Ηη iota iota 约塔Κθ kappa kappa 卡帕∧ι lambda lambda 兰姆达Μκ mu miu 缪Νλ nu niu 纽Ξμ xi ksi 可塞Ον omicron omikron 奥密可戎∏π pi pai 派Ρξ rho rou 柔∑ζ sigma sigma 西格马Τη tau tau 套Υυ upsilon jupsilon 衣普西隆Φθ phi fai 斐Φχ chi khai 喜Χψ psi psai 普西Ψω omega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学符号读法大全
大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法
Ββbeta beta 贝塔
Γγgamma gamma 伽马
Δδdeta delta 德耳塔
Εεepsilon epsilon 艾普西隆
Ζζzeta zeta 截塔
Ηηeta eta 艾塔
Θθtheta θita 西塔
Ιιiota iota 约塔
Κκkappa kappa 卡帕
∧λlambda lambda 兰姆达
Μμmu miu 缪
Ννnu niu 纽
Ξξxi ksi 可塞
Οο omicron omikron 奥密可戎
∏πpi pai 派
Ρρrho rou 柔
∑σsigma sigma 西格马
Ττtau tau 套
Υυupsilon jupsilon 衣普西隆
Φφphi fai 斐
Χχchi khai 喜
Ψψpsi psai 普西
Ωωomega omiga 欧米伽
符号表
符号含义
i -1的平方根
f(x) 函数f在自变量x处的值
sin(x) 在自变量x处的正弦函数值
exp(x) 在自变量x处的指数函数值,常被写作ex
a^x a的x次方;有理数x由反函数定义
ln x exp x 的反函数
ax 同 a^x
logba 以b为底a的对数; blogba = a
cos x 在自变量x处余弦函数的值
tan x 其值等于 sin x/cos x
cot x 余切函数的值或 cos x/sin x
sec x 正割含数的值,其值等于 1/cos x
csc x 余割函数的值,其值等于 1/sin x
asin x y,正弦函数反函数在x处的值,即 x = sin y
acos x y,余弦函数反函数在x处的值,即 x = cos y
atan x y,正切函数反函数在x处的值,即 x = tan y
acot x y,余切函数反函数在x处的值,即 x = cot y
asec x y,正割函数反函数在x处的值,即 x = sec y
acsc x y,余割函数反函数在x处的值,即 x = csc y
角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间θ
中的点时
i, j, k 分别表示x、y、z方向上的单位向量
(a, b, c) 以a、b、c为元素的向量
(a, b) 以a、b为元素的向量
(a, b) a、b向量的点积
a?b a、b向量的点积
(a?b) a、b向量的点积
|v| 向量v的模
|x| 数x的绝对值
表示求和,通常是某项指数。

下边界值写在其下部,上边界值写在其上部。

如j从1到100Σ
的和可以表示成:。

这表示 1 + 2 + … + n
M 表示一个矩阵或数列或其它
|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量
<v| 被写成行或可被看成从1×k阶矩阵的向量
dx 变量x的一个无穷小变化,dy, dz, dr等类似
ds 长度的微小变化
ρ变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离
r 变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离
|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积
||M|| 矩阵M的行列式的值,为一个面积、体积或超体积
det M M的行列式
M-1 矩阵M的逆矩阵
v×w 向量v和w的向量积或叉积
θvw 向量v和w之间的夹角
A?B×C 标量三重积,以A、B、C为列的矩阵的行列式
uw 在向量w方向上的单位向量,即 w/|w|
df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似
df/dx f关于x的导数,同时也是f的线性近似斜率
f ' 函数f关于相应自变量的导数,自变量通常为x
y、z固定时f关于x的偏导数。

通常f关于某变量q的偏导数为当其它几个变量固定时df ?f/?x
与dq的比值。

任何可能导致变量混淆的地方都应明确地表述
(?f/?x)|r,z 保持r和z不变时,f关于x的偏导数
元素分别为f关于x、y、z偏导数 [(?f/?x), (?f/?y), (?f/?z)] 或 (?f/?x)i + (?f/?y)j grad f
+ (?f/?z)k; 的向量场,称为f的梯度
? 向量算子(?/?x)i + (?/?x)j + (?/?x)k, 读作 "del"
?f f的梯度;它和 uw 的点积为f在w方向上的方向导数
??w 向量场w的散度,为向量算子? 同向量 w的点积, 或 (?wx /?x) + (?wy /?y) + (?wz /?z) curl w 向量算子 ? 同向量 w 的叉积
w的旋度,其元素为[(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx ?×w
/?y)]
??? 拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2)
f "(x) f关于x的二阶导数,f '(x)的导数
d2f/dx2 f关于x的二阶导数
f(2)(x) 同样也是f关于x的二阶导数
f(k)(x) f关于x的第k阶导数,f(k-1) (x)的导数
T 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|
ds 沿曲线方向距离的导数
κ曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|
N dT/ds投影方向单位向量,垂直于T
B 平面T和N的单位法向量,即曲率的平面
τ曲线的扭率: |dB/ds|
g 重力常数
F 力学中力的标准符号
k 弹簧的弹簧常数
pi 第i个物体的动量
H 物理系统的哈密尔敦函数,即位置和动量表示的能量
{Q, H} Q, H的泊松括号
以一个关于x的函数的形式表达的f(x)的积分
函数f 从a到b的定积分。

当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在
这些直线之间的函数曲线所围起来图形的面积
L(d) 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和R(d) 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和M(d) 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和m(d) 相等子区间大小为d,每个子区间上的最小值为 f的黎曼和+:plus(positive正的)
-:minus(negative负的)
*:multiplied by
÷:divided by
=:be equal to
≈:be approximately equal to
():round brackets(parenthess)
[]:square brackets
{}:braces
∵:because
∴:therefore
≤:less than or equal to
≥:greater than or equal to
∞:infinity
LOGnX:logx to the base n
xn:the nth power of x
f(x):the function of x
dx:diffrencial of x
x+y:x plus y
(a+b):bracket a plus b bracket closed
a=b:a equals b
a≠b:a isn't equal to b
a>b:a is greater than b
a>>b:a is much greater than b
a≥b: a is greater than or equal to b
x→∞:x approches infinity
x2:x square
x3:x cube
√ ̄x:the square root of x
3√ ̄x:the cube root of x
3‰:three peimill
n∑i=1xi:the summation of x where x goes from 1to n n∏i=1xi:the product of x sub i where igoes from 1to n。

相关文档
最新文档