一氧化氮与人体功能

合集下载

人体内一氧化氮的作用

人体内一氧化氮的作用

人体内一氧化氮的作用你知道吗,咱们身体里头,藏着个特别神奇的小分子,它就像是个低调的超级英雄,默默无闻地守护着咱们的健康,这家伙就是一氧化氮。

别听名字挺高冷,其实它啊,简直就是咱们身体里的“和气大使”。

想象一下,你每天匆匆忙忙地工作、学习,身体里的各个部件也是忙个不停。

心脏得咚咚咚地跳,给全身供血;血管呢,得弯弯曲曲地铺遍全身,把养分和氧气送到每个角落。

这时候,一氧化氮就登场了,它就像是身体里的润滑剂,让一切都能顺畅运行。

首先说说心脏吧,这家伙可是个大力士,但它也得休息啊。

一氧化氮就像是心脏的私人按摩师,轻轻柔柔地告诉心脏:“嘿,哥们儿,别太累了,放松一下。

”这样一来,心脏就能更好地调节自己的节奏,不会一下子跳得太快,也不会跳得太慢,稳稳当当地工作着。

再来说说血管,它们可是咱们身体里的高速公路,但有时候也会堵车。

比如,血管壁上的肌肉一紧张,血管就变窄了,血液流过去就费劲了。

这时候,一氧化氮就像是个交通警察,它跑到血管壁上,跟那些紧张的肌肉说:“喂,兄弟,放松点,别那么紧绷绷的。

”肌肉一听,嘿,有道理,就放松了,血管也就变宽了,血液就能畅通无阻地流过去了。

而且啊,一氧化氮还是个“环保小卫士”。

咱们身体里的细胞有时候会释放出一些有害物质,比如自由基啥的,它们就像是小捣蛋鬼,到处搞破坏。

但一氧化氮可不怕它们,它冲上去就跟它们干架,把它们都消灭掉,保护咱们的细胞不受伤害。

更神奇的是,一氧化氮还是个“沟通大师”。

它能在细胞之间传递信息,告诉它们该干啥不该干啥。

比如,当你受伤的时候,一氧化氮就会告诉免疫系统:“嘿,哥们儿,这边有人受伤了,快来帮忙!”然后免疫系统就会派出一大堆白细胞来消灭病菌,让你的伤口快点好起来。

所以啊,别看一氧化氮这家伙不起眼,它可是咱们身体里的重要角色。

没有它,咱们的身体可能就会乱套。

所以咱们得好好保护它,多吃点富含维生素C和E的食物,它们能帮助身体产生更多的一氧化氮。

还有啊,别老是熬夜、抽烟啥的,这些都会让一氧化氮的数量减少,影响咱们的健康。

一氧化氮的医学性质

一氧化氮的医学性质

一氧化氮(NO) 是人体内的一种生物调节因子, 生理条件下在体内发挥宿主防御、调节纤毛运动、抗炎、舒张气道和血管平滑肌、信使分子等作用。

气道内NO主要包括上气道和下气道产生的NO, 上气道NO主要由鼻窦和鼻黏膜产生(以鼻窦为主) , 可检测鼻腔NO ( nNO) ;下气道NO主要由支气管及肺泡产生(以支气管为主) , 可检测口呼出气NO (FeNO) , 正常人上气道NO浓度远远高于下气道NO[1]。

正常人的气道NO具有微弱的舒张平滑肌作用, 可以抑制气道高反应, 但过高浓度NO会引起组织损伤,作为炎症介质使个体容易发生气道高反应, 因此在过敏性鼻炎慢性炎症阶段及哮喘等炎症性疾病中, NO主要促进疾病的进展[2,3]。

气道NO主要反映嗜酸细胞性炎症, 当气道炎症反应使嗜酸性粒细胞活化时可诱导iNOS合成增多, 从而使NO产生增多, 因此FeNO已被广泛应用于哮喘的诊断及治疗效果的评估中。

ICAM-1对变应性炎症中嗜酸细胞的聚集有重要的作用, 嗜酸粒细胞表面的LFA-1受到刺激后迅速上调, 与内皮细胞表达的ICAM-1相互作用, 有助于嗜酸粒细胞黏附, 在嗜酸粒细胞通过内皮细胞间隙时起关键作用。

在嗜酸粒细胞通过内皮细胞间隙时起关键作用。

在上皮细胞层, 嗜酸粒细胞的黏附与转移亦受LFA-1与ICAM-1的调节。

ES是黏附分子选择素家族重要成员之一,只表达于损伤部位的内皮细胞上,参与白细胞的黏附和聚集,在炎症、免疫损伤中发挥着重要作用[12]。

小剂量抑制细胞免疫,大剂量抑制b细胞转变为浆细胞的过程。

组胺、五羟色胺、缓激肽等物质。

一氧化氮的作用

一氧化氮的作用

标准状况下为无色气体,液态、固态呈蓝色少见,必须是由海洋生物尖海龙、牡蛎、鱼精蛋白等海洋珍贵物种才能提取产生出来。

酶生性一氧化氮的合成公式是 L-精氨酸 + NOS + O2 = NO + L-瓜氨酸,瓜氨酸又可以通过一些列的化学反应生成精氨酸。

具体可以看下图分析:一氧化氮合成机制[1]精氨酸转化机制在血管内皮细胞里产生的一氧化氮气体,由于它是脂溶性的,所以很快渗透出细胞膜向下扩散进入平滑肌细胞,从而作用于平滑肌细胞,使其松弛,扩张血管,最终导致血压的下降!同时也会很快渗透出细胞膜向上扩散进入血液,进入血小板细胞,使血小板活性降低,抑制其凝集和向血管内皮的粘附,从而防止血栓的形成,防止动脉粥样硬化的发生。

从生化角度来讲,一氧化氮是一自由基气体,携带一个未配对电子,在体内极不稳定,这一特性恰好和其它游离自由基一样。

这样两者就非常容易结合产生反应。

从而使体内自由基数量大大减少。

由于一氧化氮本身的合成需要一氧化氮合酶(NOS)的参与,但是正常情况下NOS的活性很低,需要硝基类药物或者皂甙类活性物质的激活。

因此一氧化氮最佳的产生效果是和人参皂甙类物质一起协同作用。

编辑本段一氧化氮与核酸的研究20世纪80年代,世界生命科学领域建立了“传递生命信息3个信使”的学说,即生命体的各种活动都是在3个信使体系的控制和调节下进行的。

我们都知道蛋白质与核酸等生物大分子是生命的主要体现者,但不是生命本身。

生命的本质是这些生物大分子之间,以及它们之间复杂而有序的相互联系和相互作用,这是信息传递研究的基本任务。

生命信息传递的真谛,就是细胞间通讯的细胞外第一信使以及外界环境因子作用与细胞表面或胞内受体后,通过跨膜传递形成胞内第二信使的级联传递,以及其后的核内第三信使诱导基因表达和引起生理反应的过程。

生命信息传递在应答环境刺激和调节基因表达、生理反应的同时,不仅维持着细胞正常代谢,而且最终决定细胞增殖、生长、分化、衰老和死亡等生命的基本现象。

一氧化氮新资料

一氧化氮新资料

一氧化氮:健康的指挥官21世纪以来,越来越多的医学研究证实,一氧化氮不仅对心脑血管疾病,更对机体的整体健康都起着不可替代的决定性功能。

在一氧化氮的诸多作用中,以血管舒张作用最为重要,这有助于调整血流至全身的每一个部位。

一氧化氮可舒张和扩张血管以确保心脏的足够血液供应。

一氧化氮也可阻止血栓形成,血栓可诱发卒中和心脏病发作,同时一氧化氮可调节血压。

犹如战场的总指挥,一氧化氮对人体具有非常重要的平衡、防御、指导作用: 1、一氧化氮对心脑血管系统和呼吸系统具有平衡作用。

一氧化氮,作为一种信号分子,可使血管舒张,有助于保护血管弹性,缓解血压、清理血液,逆转动脉粥样硬化,有效预防并使心脑血管疾病康复。

其作用机理在于,在生理状态下,当血管受到血流冲击、灌注压突然升高时,一氧化氮作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。

能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。

一氧化氮的另一个重要作用就是减慢动脉粥样硬化斑块在血管壁的沉积。

在冠状动脉内,胆固醇和脂肪逐渐增多并形成动脉硬化斑块,结果使动脉变窄、甚至阻塞动脉,从而使心脏血液供应减少,一氧化氮可以消除这种斑块。

这说明利用一氧化氮的这种作用可有效也只能并消除动脉粥样硬化斑块的形成。

2、一氧化氮在免疫系统中起主动防御作用。

一氧化氮是一种强抗氧化剂,可以抵御传染性细菌、病毒和寄生虫的侵袭,甚至以此抑制某种癌细胞的增殖。

对于中、重度糖尿病患者,一氧化氮能预防多种常见而严重的并发症,特别是那些与血供减少相关的并发症。

一氧化氮作为一种抗炎物质,可以明显减轻关节炎的关节肿胀和疼痛。

一氧化氮作为体内一种强抗氧化剂,可有效消除体内的氧自由基,从而大大减少由于氧自由基的损害而导致的四种主要致死性疾病,即癌、糖尿病、心脏病和卒中的发生。

3、对神经系统和内分泌系统,一氧化氮可指导身体器官的正常运作。

一氧化氮可以通过细胞膜传递生物信号,调整细胞活动,并指导每一个器官完成机体功能,包括肺、肝、肾脏、胃、心脏、大脑、性器官等。

【高中化学】一氧化氮与人体生物功能

【高中化学】一氧化氮与人体生物功能

【高中化学】一氧化氮与人体生物功能近来发现一氧化氮(nitricoxide,no)广泛分布于生物体内各组织中,特别是神经组织中。

它是一种新型生物信使分子,1992年被美国science杂志评选为明星分子。

no 是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitricoxidesynthase,nos)并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。

因此,受到人们的普遍重视。

1.未发现任何生物活性医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。

去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。

对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。

1980年,美国科学家弗肖特在一项研究中发现了一种小分子物质,可以放松血管平滑肌。

后来,它被命名为血管内皮细胞舒张因子(EDRF)。

它是一种不稳定的生物自由基。

EDRF被确认为No。

多年来,硝酸甘油治疗心痛的分子机制已广为人知。

最近的研究发现硝酸甘油和其他有机硝酸盐没有活性。

它们首先在体内转化为no。

No刺激血管平滑肌中cGMP的形成并扩张血管。

这种效果与EDRF非常相似。

1987年,Moncada等人在观察EDRF 对血管平滑肌的舒张作用时,用化学方法测量了内皮细胞释放的no物质,并根据其含量解释了血管平滑肌的舒张程度。

1988年,polmer等人证明L-精氨酸(L-Arg)是血管内皮细胞合成NO的前体,从而确立了哺乳动物可以合成NO的概念。

2.no的生物学作用(1) no在心血管系统中的作用no在维持恒定的血管张力和调节血压稳定方面起着重要作用。

在生理状态下,当血管受到血流冲击、灌注压突然升高时,no作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。

一氧化氮报告单

一氧化氮报告单

一氧化氮报告单一、概述一氧化氮(NO)是一种无色、无味、无臭的气体,是一种重要的生物信使分子,在生物体内具有多种重要生理功能。

一氧化氮也是大气污染物的一种,对人体健康和环境造成危害。

本报告将就一氧化氮的生理功能、来源、危害及监测方法等方面进行详细介绍。

二、生理功能1. 血管舒张作用:一氧化氮可以通过促进血管松弛,增加血管内皮细胞通透性,促进血管扩张,提高血流量。

2. 神经递质作用:一氧化氮在神经系统中起着重要的调节作用,对于神经信号的传递和调控有重要的影响。

3. 免疫调节作用:一氧化氮可以调节免疫系统的功能,对于抗菌、抗病毒、抗肿瘤等具有重要作用。

4. 炎症调节作用:一氧化氮能够调节炎症反应,参与控制机体的炎症过程。

5. 细胞信号传导作用:一氧化氮可以通过活化细胞内的信号通路,对细胞的活性、增殖、凋亡等进行调节。

三、来源1. 自然源:自然界中,一氧化氮主要来自于雷电过程以及土壤微生物的代谢活动。

2. 人为源:一氧化氮也是工业生产中的常见污染物,主要来自于汽车尾气、燃煤、工厂排放等。

四、危害1. 对人体健康的影响:一氧化氮过量会造成呼吸系统疾病、心血管系统疾病等,并且长期暴露会增加患上肺癌的风险。

2. 对环境的影响:一氧化氮对环境的主要影响包括臭氧层破坏、酸雨的形成、水体污染等。

五、监测方法1. 大气中一氧化氮的监测:通过设置一氧化氮监测站点,采用化学分析法、光学法或电化学法等对空气中的一氧化氮浓度进行监测。

2. 生物体内一氧化氮的监测:采用血液、尿液、呼气中的一氧化氮浓度进行监测,如通过高效液相色谱法、气相色谱法等进行检测。

六、结论一氧化氮是一种重要的生物信使分子,具有多种生理功能,但过量的一氧化氮对人体健康和环境都会造成危害。

我们应该妥善监测和控制一氧化氮的浓度,避免其对人体和环境造成不良影响。

一氧化氮的作用和功能主治

一氧化氮的作用和功能主治

一氧化氮的作用和功能主治一、作用1.血管扩张:一氧化氮作为一种重要的信号分子,可以通过调节血管的舒缩来影响血管的扩张和收缩,从而调节血压和血流。

它可以通过激活血管内皮细胞中的鸟苷酸环化酶,产生cGMP,进而导致血管平滑肌细胞松弛,血管扩张。

2.抗炎作用:一氧化氮可以抑制炎症反应的发生。

它能够抑制炎症因子的生成和释放,如肿瘤坏死因子α、白细胞介素等,从而减少炎症反应的程度。

3.神经传递调节:一氧化氮在神经系统中扮演着重要的角色。

它可以作为一种神经递质,参与神经元之间的信息传递。

此外,一氧化氮还可以改变神经元的兴奋性和突触可塑性。

4.抗菌作用:一氧化氮可以直接杀死多种细菌和病毒,对于一些感染性疾病具有辅助治疗的作用。

二、功能主治1.降低高血压:一氧化氮通过促进血管扩张,可以降低血管阻力,从而降低血压。

这对于患有高血压的患者具有重要的治疗意义。

2.预防动脉粥样硬化:一氧化氮可以抑制炎症反应的发生,减少血管内皮的损伤,从而减少动脉粥样硬化的发生。

3.改善勃起功能:一氧化氮在勃起过程中扮演着重要的角色。

它可以通过促进血管扩张,增加海绵体的血流,从而改善勃起功能。

4.促进运动性能:一氧化氮可以增加肌肉的血流量,提供更多氧气和营养物质,从而提高运动性能。

5.辅助治疗呼吸系统疾病:一氧化氮可以通过抑制炎症反应、杀菌作用等,对呼吸系统疾病如支气管炎、哮喘等具有一定的辅助治疗作用。

6.改善认知功能:一氧化氮可以改变神经元的兴奋性和突触可塑性,从而对认知功能具有一定的改善作用。

7.辅助治疗肿瘤:一氧化氮可以通过抑制肿瘤细胞的增殖和促进肿瘤细胞的凋亡,对肿瘤具有辅助治疗作用。

总之,一氧化氮作为一种重要的信号分子,在人体内具有多种作用和功能。

它不仅能够调节血管的舒缩,降低血压,预防动脉粥样硬化,改善勃起功能,促进运动性能,还可以抑制炎症反应、杀菌作用等,具有一定的辅助治疗作用。

但需要注意的是,一氧化氮的浓度和平衡十分重要,过高或过低的浓度都可能对身体造成不良影响,因此在使用相关药物或治疗时,应在医生的指导下进行。

一氧化氮的功能

一氧化氮的功能

一氧化氮的功能
一氧化氮是一种气体分子,在许多生物系统中扮演着重要的角色。

它是一种自由基,具有多种功能,包括血管舒缩、神经传递、免疫调节和抗氧化等。

以下是对一氧化氮功能的更详细介绍。

1.血管舒缩:一氧化氮在血管平滑肌细胞中合成,作为一种内皮依赖性的血管舒张因子,它能够激活鸟苷酸环化酶,使环鸟苷酸(cGMP)水平升高,进而导致平滑肌细胞钙离子浓度下降,引起血管舒张。

此外,一氧化氮还可以抑制血小板聚集和降低血压。

2.神经传递:在中枢神经系统中,一氧化氮是一种神经元之间的信息传递介质。

它能够传递信息,参与学习和记忆过程,并调节睡眠和觉醒等生理过程。

此外,一氧化氮还可以作为一种神经保护剂,对抗脑缺血和神经元损伤。

3.免疫调节:一氧化氮具有免疫调节作用,可以杀灭细菌、病毒和寄生虫等病原微生物,并参与炎症反应的调控。

在感染或炎症情况下,一氧化氮的合成和释放会增加,以增强机体的防御能力。

4.抗氧化:一氧化氮具有抗氧化作用,可以清除氧自由基和其他活性氧物种,保护细胞免受氧化损伤。

在某些情况下,一氧化氮的合成和释放会增加,以对抗氧化应激和细胞损伤。

总之,一氧化氮在生物系统中具有多种功能,包括血管舒缩、神经传递、免疫调节和抗氧化等。

这些功能使一氧化氮在维持人体正常生理功能方面发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一氧化氮与人体功能
NO的生物学作用
⑴在心血管系统中的作用
NO在维持血管张力的恒定和调节血压的稳定性中起着重要作用。

在生理状态下,当血管受到血流冲击、灌注压突然升高时,NO作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。

能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。

NO在心血管系统中发挥作用的可能机制是通过提高细胞中鸟苷酸环化酶(guanylate cyclase,GC)的活性,促进磷酸鸟苷环化产生环一磷酸鸟苷(guanosine 3′,5′–cyclic monophosphate cGMP),使细胞内cGMP水平增高,继而激活依赖cGMP的蛋白激酶对心肌肌钙蛋白Ⅰ的磷酸化作用加强,肌钙蛋白c对Ca的亲合性下降,肌细胞膜上K+通道活性也下降,cGMP的蛋白激酶增强,从而导致血管舒张。

药物硝酸甘油作为血管扩张药的原理,方程式如下:
⑵在免疫系统中的作用
研究结果表明,NO可以产生于人体内多种细胞。

如当体内内毒素或T细胞激活巨噬细胞和多形核白细胞时,能产生大量的诱导型NOS 和超氧化物阴离子自由基,从而合成大量的NO和H2O2,这在杀伤入侵的细菌、真菌等微生物和肿瘤细胞、有机异物及在炎症损伤方面起着十分重要的作用。

当前认为,经激活的巨噬细胞释放的NO可以通过抑制靶细胞线粒体中三羧酸循环、电子传递细胞DNA合成等途径,发挥杀伤靶细胞的效应。

免疫反应所产生的NO对邻近组织和能够产生NOS 的细胞也有毒性作用。

某些与免疫系统有关的局部或系统组织损伤,血管和淋巴管的异常扩张及通透性等,可能都与NO在局部的含量有着密切的关系。

⑶在神经系统中的作用
有关L-Arg → NO途径在中枢神经系统(CNS)方面的研究认为,
NO通过扩散,作用于相邻的周围神经元如突出前神经末梢和星状胶质细胞,再激活GC从而提高水平cGMP水平而产生生理效应。

如NO 可诱导与学习、记忆有关的长时程增强效应(Long-term potentiation,LTP),并在其LTP中起逆信使作用。

连续刺激小脑的上行纤维和平行纤维可引起平行纤维细胞的神经传导产生长时程抑制(Long-term depression,LTD),被认为是小脑运动学习体系中的一种机制,NO参与了该机制。

在外周神经系统也存在L-Arg → NO途径。

NO被认为是非胆碱能、非肾上腺素能神经的递质或介质,参与痛觉传入与感觉传递过程。

另据报道,NO在胃肠神经介导胃肠平滑肌松弛中起着重要的中介作用,在胃肠间神经丛中,NOS和血管活性肠肽共存并能引起非肾上腺素能非胆碱能(nonadrenergic-non-cholinerrgic,NANC)舒张,但血管活性肠肽的抗体只能部分消除NANC的舒张,其余的舒张反应则能被N-甲基精氨酸消除。

⑷在泌尿及生殖系统中的作用
一氧化氮作为NANC 神经元递质,在泌尿生殖系统中起着重要作用,成为排尿节制等生理功能的调节物质,这为药物治疗泌尿生殖系统疾病提供了理论依据。

现已证明在人体内广泛存在着以NO为递质的神经系统,它与肾上腺素能、胆碱能神经和肽类神经一样重要。

若其功能异常就可能引起一系列疾病。

如何增加体内一氧化氮含量
对男性来讲,除了常规磨炼上述肌肉群外,最好的方法就是以每小时10千米的速度跑13分钟,这能提高体内一氧化氮的水平快速跑的提升作用能延续24小时。

对体能不济的人来说,则可以吃一把南瓜籽(2克摆布),能使一氧化氮含量增加15%。

一氧化氮直接由
L
-精氨酸产生,一种存在于所有食物蛋白质(肉、鸡、黄豆、鱼、牛奶、坚果、谷
物)中的基本氨基酸。

富含蛋白质与
L
-精氨酸的食物将增加机体内一氧化氮产量。

由于一氧化氮可被氧化剂(饱和脂肪、炎症、氧化应激相关的氧自由基)快速破坏,摄入富含抗氧化
剂的食物对于预防一氧化氮缺失是重要的。

健康食物所致的一氧化氮产量增加可进一步通过经常、充足的锻炼而增强。

增加锻炼而使一氧化氮产
量增加的原因是动脉内血流量的增加刺激心血管系统内的
L-
精氨酸转化为一氧化氮。

因此,
健康饮食配以
持续锻炼可以增加体内一氧化氮的合成。

一氧化氮直接由
L
-精氨酸产生,一种存在于所有食物蛋白质(肉、鸡、黄豆、鱼、牛奶、坚果、谷
物)中的基本氨基酸。

富含蛋白质与
L
-精氨酸的食物将增加机体内一氧化氮产量。

由于一氧化氮可被氧化剂(饱和脂肪、炎症、氧化应激相关的氧自由基)快速破坏,摄入富含抗氧化
剂的食物对于预防一氧化氮缺失是重要的。

健康食物所致的一氧化氮产量增加可进一步通过经常、充足的锻炼而增强。

增加锻炼而使一氧化氮产
量增加的原因是动脉内血流量的增加刺激心血管系统内的
L-
精氨酸转化为一氧化氮。

因此,
健康饮食配以
持续锻炼可以增加体内一氧化氮的合成。

一氧化氮直接由
L
-精氨酸产生,一种存在于所有食物蛋白质(肉、鸡、黄豆、鱼、牛奶、坚果、谷
物)中的基本氨基酸。

富含蛋白质与
L
-精氨酸的食物将增加机体内一氧化氮产量。

由于一氧化氮可被氧化剂(饱和脂肪、炎症、氧化应激相关的氧自由基)快速破坏,摄入富含抗氧化
剂的食物对于预防一氧化氮缺失是重要的。

健康食物所致的一氧化氮产量增加可进一步通过经常、充足的锻炼而增强。

增加锻炼而使一氧化氮产
量增加的原因是动脉内血流量的增加刺激心血管系统内的
L-
精氨酸转化为一氧化氮。

因此,
健康饮食配以
持续锻炼可以增加体内一氧化氮的合成。

一氧化氮直接由
L
-精氨酸产生,一种存在于所有食物蛋白质(肉、鸡、黄豆、鱼、牛奶、坚果、谷
物)中的基本氨基酸。

富含蛋白质与
L
-精氨酸的食物将增加机体内一氧化氮产量。

由于一氧化氮可被氧化剂(饱和脂肪、炎症、氧化应激相关的氧自由基)快速破坏,摄入富含抗氧化
剂的食物对于预防一氧化氮缺失是重要的。

健康食物所致的一氧化氮产量增加可进一步通过经常、充足的锻炼而增强。

增加锻炼而使一氧化氮产
量增加的原因是动脉内血流量的增加刺激心血管系统内的
L-
精氨酸转化为一氧化氮。

因此,
健康饮食配以
持续锻炼可以增加体内一氧化氮的合成。

相关文档
最新文档