线段的垂直平分线、角平分线经典习题及答案
13.1.2 线段的垂直平分线的性质(含答案)

的垂直平分线上.
⺁
,则 ଣ 的长为( )
C. 1
D.
)
.
到三角形三个顶点距离相等的是(
.
如图,已知 ܲ ଣ �ܲ, 댳 ଣ �댳.下列结论正确的是 (
A. 三条中线交点
�ଣ
,若
B. 三条高的交点
C. 三条角平分线的交点
D. 三条中垂线的交点
)
A. � 垂直平分 ܲ댳
B. ܲ댳 垂直平分 �
C. � 与 ܲ댳 互相垂直平分
对折,点 � 落在 ଣ 上
� 的周长为 13,则
三、解答题(本大题共 4 小题,共 32.0 分。解答应写出文字说明,证明过程或演算步骤)
1⺁.
本小题 . 分
如图, � ଣ ଣ, � ଣ
ଣ.直线
是线段 �ଣ 的垂直平分线吗?
3
,则
处,若
恰好为 ଣ
�ଣ 的周长为______.
17. 本小题 . 分
如图,点
13.1.2 线段的垂直平分线的性质
一、选择题(本大题共 11 小题,共 33.0 分。在每小题列出的选项中,选出符合题目的一项)
1.
如图,
�ଣ 中,边 � 的垂直平分线与 ଣ 交于点 ,与 � 交于点 ,已知 ଣ ଣ ⺁,�ଣ ଣ ⺁,则 �ଣ
的周长是 ( )
A.
B.
C.
2.
D. 1
,�ଣ ଣ � ,则有 ( )
分别交 �ଣ、 ଣ 于点 、 .若
B. 3
第1 题
C. ⺁⺁
ଣ⺁
,
2
ଣ 的长为半径作弧,两弧相交于
� 的周长为 2⺁ ,则
D. ⺁
2
1
第 11 题
线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。
中考数学习题精选:线段垂直平分线、角平分线、中位线(含参考答案)

中考数学习题精选: 一、选择题 1.(2018北京市东城区初二期末)如图,在△ABC 中,∠B =∠C =60︒,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为BA .2B C .4D . 解:C2.(2018北京市平谷区初二期末)如图,在Rt △ABC 中,∠C=90︒,点D 为AB 边中点,DE ⊥AB ,并与AC 边交于点E. 如果∠A=15︒,BC=1,那么AC 等于( ). A. 2B. 31+C. 32+D.3答案:C3. (2018北京市顺义区八年级期末)如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △AB C =10,DE =2,AB=4, 则AC 长是A.9B. 8C. 7D. 6答案:D4.(2018北京市西城区八年级期末)如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E .若△ABC 的周长为22,BE =4,则△ABD 的周长为( ). A .14 B .18C .20D .26答案:AEDCBA二、填空题5.(2018北京昌平区初二年级期末)在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于M ,N ,作直线MN ,交BC 于点D ,连接AD . 如果BC =5,CD =2,那么AD = .答案:36.(2018北京市东城区初二期末)如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____ cm .解:4 7.(2018北京市东城区初二期末)阅读下面材料:在数学课上,老师提出如下问题:小俊的作法如下:MNBACD的垂直平分线.老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.解:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线8.(2018北京市丰台区初二期末)阅读下面材料:在数学课上,老师提出如下问题:老师说:“小阳的作法正确.”请回答:小阳的作图依据是_________________________.答案:9.(2018北京市海淀区八年级期末)某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是.答案:“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”10.(2018北京市朝阳区一模)如图,∠AOB =10°,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点P 1(点P 1与点O 不重合),连接PP 1; 再以点P 1为圆心,OP 为半径画弧,交OB 于点P 2(点P 2与点P 不重合),连接P 1 P 2; 再以点P 2为圆心,OP 为半径画弧,交OA 于点P 3(点P 3与点P 1不重合),连接P 2 P 3; … …请按照上面的要求继续操作并探究: ∠P 3 P 2 P 4= º;按照上面的要求一直画下去,得到点P n ,若之后就不能再画出符合要求点P n+1了,则n = . 答案 40 ;8 三、解答题11.(2018北京海淀区第二学期练习)如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠. 证明:∵90ACB ∠=︒,D 为AB 的中点,∴12CD AB BD ==. ∴ABC DCB ∠=∠. ………………2分∵DC EF ∥, ∴CBF DCB∠=∠. ………………3分FE DCB A∴CBF ABC ∠=∠. ∴BC平分ABF ∠. ………………5分 12.(2018北京平谷区中考统一练习)如图,在△ABC 中,AB=AC ,点D 是BC 边上一点,EF 垂直平分CD ,交AC 于点E ,交BC 于点F ,连结DE ,求证:DE ∥AB .证明:∵AB=AC ,∴∠B =∠C . ................................................................................. 1 ∵EF 垂直平分CD , ∴ED=EC . ................................................................................... 2 ∴∠EDC =∠C . ............................................................................. 3 ∴∠EDC =∠B . ............................................................................. 4 ∴DF ∥AB . . (5)13.(2018北京东城区二模)如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC于点D ,交AB 于点E . (1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.证明:(1) ∵DE 垂直平分AB , ∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分(2) ABC Rt △中,8AC =,6BC =, ∴10AB =. ∵DE 平分AB , ∴5AE =. ∵ADE ABC △∽△,∴DE AEBC AC =. ∴568DE = . ∴154DE = . ---------------------------------------------------------------------5分14.(2018北京市怀柔区初二期末)已知:如图,AD 是△ABC 的角平分线,AB=AC=13cm ,AD=12cm.求BC 的长.解:∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC. BD=CD. ………………… 2分∴∠ADB=90Ο. ∵AB=13 AD=12∴BD ………………… 3分=5………………… 4分∴BC=10cm. ………………… 5分15.(2018北京大兴区八年级第一学期期末)已知:如图,在△ABC 中,D 是BA 延长线上一点,AE 是∠DAC 的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB,PC .通过观察,测量,猜想PB+PC 与AB+AC 之间的大小关系,并加以证明.BB16.(2018北京延庆区八年级第一学区期末)如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF(1)依题意画出图形(要求:尺规作图,不写作法,保留作图痕迹) (2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是解:(1)如图 …………2分(2)到线段两个端点距离相等的点在这条线段的垂直平分线上; 两点确定一条直线.……4分或 sss 、全等三角形性质、等腰三角形三线合一,两点确定一条直线答案不唯一.(3)8………………………… 5分B。
线段垂直平分线与角平分线练习题(精.选)

线段的垂直平分线与角的平分线一、选择题 1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒ B .65︒ C .80︒ D .95︒ 2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ; ②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
其中正确的有 ( )A .2个B .3个C .4个D .1个 4.如图4,AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC的大小关系是 ( )A .PD>PCB .PD<PC C .PD=PCD .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有 ( )A 、①②③④B 、①③C 、②④D 、②③④7题图 8题图 9题图F DEC BADE C B A PD CBAEDCB A DCB AE D CBA图3 图4图1图2c b aOCB ADP 8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE⊥AB ,则EB 的长是 ( )A 、3㎝B 、4㎝C 、5㎝D 、不能确定9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。
角平分线与线段垂直平分线的练习题

角平分线与线段垂直平分线的练习题11、在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm2、三角形中到三个顶点距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交3、如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4、如图,在△ABC 中,∠C =90o ,AM 是∠CAB 的平分线,CM =20cm ,那么M 到AB 的距离为 .5、如图,在△ABC 中,AC =23,AB 的垂直平分线交AB 于点D ,交BC 于点E ,△ACE 的周长为50,求BC 边的长.6、如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。
第3题图D A B C F C DA B E 第6题图M C B AA B C D E 7、已知,如图BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于D.求证:PM =PN 。
☆8、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定9、如图,Rt △ABC 中,∠C =90o ,AC =BC,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂足为E ,求证△DBE 的周长等于AB .C NP M DB A DC A E B第8题图。
线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为_________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是_________ cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于_________.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为_________.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=_________.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为18 cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是14cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于9.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为23.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=4.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.BD×13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.,,18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.ADAD=8cm27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.21。
角平分线、垂直平分线(精典例题+跟踪训练+参考答案

角平分线、垂直平分线精典例题+跟踪训练+参考答案知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。
精典例题:【例题】如图,已知在△ABC 中,AB =AC ,∠B =300,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。
分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根据其性质可连结AF ,则BF =AF 。
问题转化为证CF =2AF ,又∠B =∠C =300,这就等价于要证∠CAF =900,则根据含300角的直角三角形的性质可得CF =2AF =2BF 。
分析二:要证明CF =2BF ,联想∠B =300,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC 于G 后,得到含300角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。
例题图1F EC B A例题图2 G F ECB A分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑到∠B =300,不妨设EF =1,再用勾股定理计算便可得证。
以上三种分析的证明略。
例题图3D F ECB A问题图321ED CB A探索与创新:【问题】请阅读下面材料,并回答所提出的问题:三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。
如图,△ABC 中,AD是角平分线。
求证:AC ABDC BD =。
分析:要证ACABDC BD =,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。
我们注意到在比例式ACABDC BD =中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明ACABDC BD =就可以转化为证AE =AC 。
初中数学知识点030线段垂直平分线、角平分线、中位线真题及答案

一、选择题1. ( 2016广东省广州市,7, 3分)如图,已知△ ABC 中,AB=10, AC=8, BC=6, DE 是AC 的垂直平分线, DE 交AB 于点D ,连接CD ,贝U CD =( )A . 3B . 4C . 4.8D . 5【答案】D【逐步提示】 根据已知数据可先判断得出△ ABC 的形状,再进一步探索 DE 与BC 的位置关系,及 AD 与BD 的 数量关系,进而得 CD 即为△ ABC 的中位线,故有 CD 长为AB 长的一半.【详细解答】 解:I 62+82=102,即卩BC 2+AC 2=AB 2,-^ ABC 是直角三角形,/ ACB=90° . •/ DE 是AC 的垂直平 分线,••• DE 丄 AC , AE=CE ,「. DE // BC ,「. AD : BD=AE : CE=1 AD=BDCD 是 Rt △ ABC 斜边的中线,11则 CD=—AB= X 10=5,故选择 D .2 2【解后反思】 勾股定理的逆定理,三角形的中位线定理与“直角三角形斜边的中线等于斜边的一半”的性质,是 判断两条直线位置关系与求解线段长度的重要知识依据,倘若忽视它们,将会出现解决问题时束手无策的局面. 【关键词】 勾股定理的逆定理;线段垂直平分线;平行线分线段成比例定理;直角三角形的性质 2. (2016贵州省毕节市,6, 3分)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点 C.三条中线的交点【答案】DB.三条角平分线的交点 D.三条边的垂直平分线的交点【逐步提示】本题考查线段垂直平分线的定义及性质,解题的关键是牢固掌握线段垂直平分线的性质,并能与其他概念及性质相区别•根据各自的定义及性质,逐项分析是否满足“到三角形三个顶点的距离都相等”【详细解答】解:依题意,知这个点到三角形每边的两个端点的距离相等,所以,它是三条边的垂直平分线的交 点,故选择D.【解后反思】 本题的易错点是记错性质,与角平分线的性质相混淆,而误选B .【关键词】 三角形的高;角平分线的性质;三角形的中线;线段垂直平分线的性质;3. ( 2016河北省,9, 3分)图示为4X 4的网格图,A , B , C , D , O 均在格点上,点 O 是( )A . △ ACD 的外心B . △ ABC 的外心 C . △ ACD 的内心 D . △ ABC 的内心 【答案】B【逐步提示】 本题考查了三角形的外心和内心,根据“外心是三角形三边垂直平分线的交点”和“内心是三角形三条角平分线的交点”进行判断即可 •【详细解答】解: 如图,点O 是厶ABC 的边AC 的垂直平分线和边 BC 的垂直平分线的交点,即点O 是厶ABC 的外心,故答案为选项 B.【解后反思】三角形的外心的位置随三角形的形状不同而不同,锐角三角形的外心在三角形内部;直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部;而三角形的内心一定三角形的内部【关键词】三角形的外心;三角形的内心4. (2016 河南省,6, 3 分)如图,在△ ABC 中,/ ACB=90°, AC=8 , AB=10. DE 垂直平分AC交AB于点E,则DE的长为【】(A) 6 (B) 5 (C) 4 (D)3(第6題)【答案】D【逐步提示】本题是一道考查垂直平分线、三角形的相似(或者三角形的中位线的判定和性质)和勾股定理的综合题型,解题的关键是利用垂直平分线和三角形相似的相关知识在综合问题中的灵活运用•思路:在Rt △ABC中利用勾股定理求出EC长,再由垂直平分线可知三角形相似(或者得DE是三角形的中位线),由相似三角形(或三角形的中位线)的性质求出DE长【详细解答】解:方法一:在Rt△ A BC中,AO = 10「82=6.•/ DE 垂直平分AC,ZACB=9 0 °•••DE//BC,点D是AC的中点•••DE是AABC的中位线1•DE =—BC= 3 ,2方法二:在Rt △ A BC中,AO=102-8? =6.•/ DE 垂直平分AC,ZACB=9 0 °•DE//BC,点D是AC的中点•••△ABC S^A ED•DE AD 1"BC 一AC 一21•- DE= BC=32故选择D.【解后反思】本题的重点是垂直平分线和三角形中位线的性质综合运用,难点是不能发现基本的图形结构以及条件与结论之间的关系,解决问题的一般思维模式综合运用垂直平分线和三角形中位线的相关知识,在直角三角形中利用勾股定理或相似等求解线段长度•【关键词】 垂直平分线;勾股定理;三角形的中位线;相似5. ( 2016湖北省黄石市,4, 3分)如图所示,线段 AC 的垂直平分线交线段 AB 于点D ,/ A = 50 °则/ BDC= ......................................................................... ( ) A . 50 °B . 100 °C . 120 °D . 130 °【答案】B .【逐步提示】 本题考查了线段垂直平分线的性质、等腰三角形的性质,解题的关键是利用线段垂直平分线的 性质、等腰三角形的性质求出/ ACD 的度数,而/ BDC 是厶ACD 的外角,利用三角形的一个外角等于与它 不相邻的两个内角的和可求出/ BDC .【详细解答】 解:因为点D 在线段AB 的垂直平分线上,所以AD = CD ,所以/ ACD =/ A = 50°因为/ BDC 是厶ACD 的外角,所以/ BDC = / A +/ ACD = 50° X 2 = 100°,故选择 B .【解后反思】(1)线段垂直平分线是经过某一条线段的中点,并且垂直于这条线段的直线,它具有性质:① 垂直平分线垂直且平分线段;②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫三角形的外心,这一点到三个顶点的距离相等. (2)等腰三角形是有两条边相等的三角形,它具有性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等(简称:等边对等角) ;③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 【关键词】等腰三角形的性质;线段垂直平分线的性质.6. ( 2016湖北省荆州市,8,3分)如图,在Rt △ ABC 中,/ C = 90°,/ CAB 勺平分线交 BC 于 D, DE 是AB 的垂 直平分线,垂足为 E 若BC= 3,则DE 的长为()【逐步提示】 先应用角的平分线的性质和垂直平分线的性质可得到 AD=BD , / BAD= / CAD= / B=30°,再应用含30 °角的直角三角形性质即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.线段的垂直平分线
4.角平分线
例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =0
40,求∠NMB 的大小
(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小
(3)你发现有什么样的规律性?试证明之.
(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改
例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
例4:如图所示,在△ABC 中,AB=AC ,∠BAC=1200,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,E 、G 在BC 上,BC=15cm ,求EG 的长度。
例5::如图所示,Rt △ABC 中,,D 是AB 上一点,BD=BC ,过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F 。
求证:BE 垂直平分CD 。
例6::在⊿ABC 中,点O 是AC 边上一动点,过点O 作直线M N ∥BC ,与
∠ACB 的角平分线交于点E ,与∠ACB 的外角平分线交于点F ,求证:OE=OF
D ,自D 作D
E AB ⊥于M=20°; AB 的垂直平分线与底边BC
则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.
(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.
例2:解:连接BF ,由线段的垂直平分线的性质可得,FB =FA 又因为AC =AF+CF =6,所以BF+CF =6△BCF 的周长=BC+CF+BF =4+6=10
例3:证明:因为AC=AD
所以A 在线段CD 的垂直平分线上
又因为BC=BD
所以B 在线段CD 的垂直平分线上
所以直线AB 是线段CD 的垂直平分线
例4:解:作AH ⊥BC 于H ,HC=15/2
∵等腰
A B C N
M A
B C N M A B C N M
∴∠ACB=∠ABC=30°
∴AC=2EC/根号3EC=5根号3
∵F为AC中点
∴FC=5/2根号3
∵FG⊥AC
∴CG=5
同理,BE=5
∴EG=5
例5:证明:
∵DE⊥AB,∠ACB=90
∴∠BDE=∠ACB=90
∵BD=BC,BE=BE
∴△BCE≌△BDE (HL)
∴∠CBE=∠DBE
∵BF=BF
∴△BCF≌△BDF (SAS)
∴∠BFC=∠BFD,CF=DF
∵∠BFC+∠BFD=180
∴∠BFC=∠BFD=90
∴BE⊥CD
∴BE垂直平分CD
例6:解:∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
例7:证明:
连接DC,DB
∵点D在BC的垂直平分线上
∴DB=DC
∵D在∠BAC的平分线上
∴DE=DF
∵∠DFC=∠DEB
∴△DCF≌△DEB
∴CF=BE。