运筹学习题集(第五章)
运筹学习题集(第五章)

判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。
2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。
3.不平衡运输问题不一定有最优解。
4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。
5.运输问题中的位势就是其对偶变量。
6.含有孤立点的变量组不包含有闭回路。
7.不包含任何闭回路的变量组必有孤立点。
8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。
9.运输问题的检验数就是对偶问题的松弛变量的值。
10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。
11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。
12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。
13.若运输问题中的产量或销量为整数则其最优解也一定为整数。
14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。
15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。
16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第五章运输与指派问题1.下列变量组是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。
运筹学习题集

第一章线性计划1.1将下述线性计划问题化成标准形式1)min z=-3x1+ 4x2- 2x3+ 5 x44x1- x2+ 2x3-x4 =-2st. x1+ x2- x3+ 2 x4 ≤ 14-2x1+ 3x2+ x3- x4 ≥ 2x1,x2,x3≥ 0,x4 无约束2)min z = 2x1-2x2+3x3- x1+ x2+ x3= 4st. -2x1+ x2- x3≤ 6x1≤0 ,x2≥ 0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解仍是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确信最优解(1)min z=5x1-2x2+3x3+2x4x 1+2x 2+3x 3+4x 4=7 st 2x 1+2x 2+x 3 +2x 4=3 x 1,x 2,x 3,x 4≥01.4 别离用图解法与单纯形法求解以下LP 问题,并对照指出最优解所对应的极点。
1) maxz =10x 1+5x 2 3x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 别离用大M 法与两时期法求解以下LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.6求下表中a ~l 的值。
运筹学基础课后习题答案

运筹学基础课后习题答案[2002年版新教材]第一章导论P51.、区别决策中的定性分析和定量分析,试举例。
定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。
举例:免了吧。
2、.构成运筹学的科学方法论的六个步骤是哪些?.观察待决策问题所处的环境;.分析和定义待决策的问题;.拟定模型;.选择输入资料;.提出解并验证它的合理性(注意敏感度试验);.实施最优解;3、.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据第二章作业预测P251、.为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分?答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。
但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。
调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。
(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。
2.、某地区积累了5个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α=0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤)年度12345大米销售量实际值(千公斤)52025079393744533979。
答:F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F16=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9F6=3581.1+400.77+35.433+4.5711+0.3764F6=4022.33、某地区积累了11个年度纺织品销售额与职工工资总额的数据,列入下列表中(表略),计算:(1)回归参数a,b(2)写出一元线性回归方程。
《运筹学研究生辅导课件》第五章存储论习题解答.docx

第五章习题解答1.某商品单位成本为5元,每天存贮费为成本的0. 1%,每次订货费为10 元。
已知对该商品的需求是100件/天,不允许缺货。
假设该商品的进货可以随时实现。
问应怎样组织进货,才能最经济。
解根据题意,其屈于“不允许缺货,补充时间极短”的经济订货批量存贮模型,可知K二5 元/件,C[=5X0. 1%二0. 005 元/件•天,Cg^lO 元,R二100 件/天。
因此有=/?/*=100X6. 32=632 (件)C= 72x0.005x10x100 =3. 16 (元/天)所以,应该每隔6. 32天进货一次,每次进货该商品632件,能使总费用(存贮费和订货费Z和)为最少,平均约3.16元/天。
若按年计划,则每年大约进货365/6. 32^58 (次),每次进货630件。
2.某仪表厂今年拟生产某种仪表30000个。
该仪表屮有个元件需要向仪表元件厂订购。
每次订购费用50元,该元件单价为每只0.5元,全年保管费用为购价的20%o (1)试求仪表厂今年对该元件的最佳存贮策略及费用。
(2)如明年拟将这种仪表产量提高一倍,则所需元件的订购批量应比今年增加多少?订购次数又为多少?解:(1)根据题意,其属于“不允许缺货,补充时间极短”的经济订货批量存贮模型。
确定以1年为时间单位,且R二30000只/年,C3二50元/次,K二0. 5 元/只;C| 二0. 2K=0. 1 元/只•年。
因此有最佳经济批量为最佳订货周期为心余號^83(年)最小平均总费用为C' = = 72x0.1x50x30000 =548 (元)(2)明年仪表产量提高一倍,则R 二60000只/年,其他己知条件不变,可得:因此所需元件订购批量比今年增加:7746-5477=2269 (只)全年订购次数:R n =—— :=6需=7. 75(次)比较n 二7和n 二8时的全年运营费用:n 二7时,订购周期t=l/7,年运营费用:⑴心厂疇出心79(元)n 二8时,订购周期t 二1/&年运营费用:C =60000x0,1+50x8=775 (元) 2x8比较两者的年运营费用,取"8,即全年订购8次,毎次订购批量60000/8 =7500 只。
运筹学基础课后习题答案

运筹学基础课后习题答案[2002年版新教材]第一章导论P51.、区别决策中的定性分析和定量分析,试举例。
定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。
举例:免了吧。
2、.构成运筹学的科学方法论的六个步骤是哪些?.观察待决策问题所处的环境;.分析和定义待决策的问题;.拟定模型;.选择输入资料;.提出解并验证它的合理性(注意敏感度试验);.实施最优解;3、.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据第二章作业预测P251、.为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分?答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。
但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。
调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。
(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。
2.、某地区积累了5个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α=0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤)年度12345大米销售量实际值(千公斤)52025079393744533979。
答:F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F16=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9F6=3581.1+400.77+35.433+4.5711+0.3764F6=4022.33、某地区积累了11个年度纺织品销售额与职工工资总额的数据,列入下列表中(表略),计算:(1)回归参数a,b(2)写出一元线性回归方程。
(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
(完整版)运筹学习题集

销地
产地
1
2
3
产量
1
5
1
8
12
2
2
4
1
14
3
3
6
7
4
销量
9
10
11
表3-4
销地
产地
1
2
3
4
5
产量
1
10
2
3
15
9
25
2
5
20
15
2
4
30
3
15
5
14
7
15
20
4
20
15
13
M
8
30
销量
20
20
30
10
25
解:
(1)在表3-3中分别计算出各行和各列的次最小运费和最小运费的差额,填入该表的最右列和最下列。得到:
+ = + +
+ =
建立数学模型:
Max z=(1.25-0.25)*( + )+(2-0.35)*( + )+(2.8-0.5) -(5 +10 )300/6000-(7 +9 +12 )321/10000-(6 +8 )250/4000-(4 +11 )783/7000-7 *200/4000
s.t
2.确定 的范围,使最优解不变;取 ,求最优解;
3.确定 的范围,使最优基不变,取 求最优解;
4.引入 求最优解;
解1.由单纯形方法得
即,原问题的最优解为
例求下面运输问题的最小值解:
1
运筹学5、7章作业题参考答案

运筹学第五章作业题参考答案5.1 解:设在A j 处建Xj 幢住宅. 则数学模型为 Max z =∑=ni jx1⎪⎩⎪⎨⎧且为整数01≥≤≤∑=j jj ni jj x a x Ddx5.2 解:设每种毛坯截取Xj 根 则数学模型为 Max z =∑=ni jx1⎪⎩⎪⎨⎧≥≤∑=且为整数01jj j ni x l x a 5.4 解:设X i =⎩⎨⎧名队员不上场第名队员上场第i 0i 1数学模型为:Max Z =( 1.92X 1+1.92X 2+…+1.78X 8)/5⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≤+≤++≥++=+∑=5051211818264187621或i i i X X X X X X X X X X X X5.6 用割平面法解下列整数规划 (1) Max Z = X 1 + X 2 s.t⎪⎩⎪⎨⎧≥≤+≤+且为整数、0X 205462212121X X X X X 解:将其化为标准型为 Max Z = X 1 + X 2 s.t ⎪⎩⎪⎨⎧≥=++=++且为整数0,20546221421321X X X X X X X X从表中第二行产生割平面的约束条件: -1/3 X 3 - 1/3 X 43/2-≤ 引入松弛变量X 5为: -1/3 X 3 – 1/3 X 4 + X 5=-2/3∴X *=(0, 4)T 或 ( 2, 2)T , Z *=4(2) MinZ=51X +X 2⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+且为整数0,8859321212121X X X X X X X X 解: 化为标准型为 max z ‘=-51X -X 2⎪⎪⎩⎪⎪⎨⎧≥-=+---=+---=+--0,,,,8859354321521421321X X X X X X X X X X X X X X因此,原问题的最优解为X=( 0, 9 ) T ,最优值Z * = 9 5.7用分支定界法解下列整数规划 (1) Max Z=2X 1+X 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+-≤+且为整数0,21260521212121X X X X X X X X解:用图解法求得该整数规划的松弛问题的最优解为 X 1=X 2=21/8 选择X 1=21/8进行分支B1: B2: Max Z =2X 1+X 2 Max Z =2X 1+X 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤+≤+-≤+0,2212605211212121X X X X X X X X X ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+-≤+0,3212605211212121X X X X X X X X X 最优解为X 1=2 X 2=3 Z *=7; 最优解X 1=3 X 2= 3/2 Z *=15/2 > 7 选择X 2= 3/2进行分支B3 B4Max Z =2X 1+X 2 Max Z =2X 1+X 2⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≥≤+≤+-≤+0,132126052121212121X X X X X X X X X X ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥≤+≤+-≤+0,223212605211212121X X X X X X X X X X 最优解为X 1=19/6 X 2=1 Z *=22/3 > 7; 无可行解 选择X 1=19/6 进行分支B5 B6 Max Z =2X 1+X 2⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤≥≤+≤+-≤+0,31321260521121212121X X X X X X X X X X X ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≤≥≤+≤+-≤+0,41321260521121212121X X X X X X X X X X X 最优解为X 1=3 X 2=1 Z *= 7; B6无可行解综上:原整数规划最优解为 X *= ( 2 , 3)或 ( 3 , 1) Z *=7 5.8 解下列0~1型 整数规划: (2) Max Z =2X 1+X 2- X 3⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥-+≤-+≤+≤++10,44225423,3,2132132132321或X X X X X X X X X X X X X X 解:最优解为X *=(1 , 0 , 0 )T Z *= 25.11(1) 解:引入一个虚拟人A 5,使之成为标准的指派问题,则系数矩阵为C = ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000071011151314129651214101178241110将各行元素减去本行的最小元素得C →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0000003486974105734060298 = C ˊ由于只有4个独立零元素,小于系数矩阵阶数n=5,所以将第二行,第三行,第四行都减去1,第一列和第五列加上1得C ˊ→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---00012375863014623160298→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛1000102376963005623070299= C 〞C 〞中有5个独立零元素,则可确定指派问题的最优指派方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断题
判断正误,如果错误请更正
第五章运输与指派问题
1.运输问题中用位势法求得的检验数不唯一。
2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作
为一组基变量。
3.不平衡运输问题不一定有最优解。
4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。
5.运输问题中的位势就是其对偶变量。
6.含有孤立点的变量组不包含有闭回路。
7.不包含任何闭回路的变量组必有孤立点。
8.产地个数为m销地个数为n的平衡运输问题的对偶问题有m+n个约束。
9.运输问题的检验数就是对偶问题的松弛变量的值。
10.产地个数为m销地个数为n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。
11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。
12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。
13.若运输问题中的产量或销量为整数则其最优解也一定为整数。
14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。
15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回
路。
16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。
选择题
在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第五章运输与指派问题
1.下列变量组是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B {x11,x12,x23,x34,x41,x13}
C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}
2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B
有M+N个变量MN个约束 C 有MN个变量M+N-1个约束 D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-1
3.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,
其最优调运方案不变。
B 运输问题的运价表的所有cij同时乘以一个非0常数k,其最优调运方案不变。
C运输问题的运价表第p列的每个cij同时乘以一个非0常数k,其最优调运方案不变。
D 输问题的运价表的所有cij同时乘以一个非0常数k,其最优调运方案变化。
E 不平衡运输问题不一定存在最优解。
4.下列结论正确的有A 任意一个运输问题不一定存在最优解。
B 任何运输问题都存在
可行解。
C 产量和销量均为整数的运输问题必存在整数最优解。
D m+n-1个变量组构成基变量的充要条件是它不包括任何闭回路。
E 运输单纯形法(表上作业法)的条件是产量等于销量的平衡问题。
5.下列说法错误的是 A 若变量B组包含有闭回路,则B中的变量对应的列向量线性无
关。
B 运输问题的对偶问题不一定存在最优解。
C 平衡运输问题的对偶问题的变量非负。
D 运输问题的对偶问题的约束条件为大于等于约束。
E 第i行的位势u i是第i
个对偶变量。
6.有6个产地7个销地的饿平衡运输问题模型的对偶模型具有特征A 有42个变量B
有42个约束 C 有13个约束 D 是线性规划模型 E 有13个变量
7.运输问题的数学模型属于 A 线性规划模型B 整数规划模型C 0-1整数规划模型D
网络模型 E 不属于以上任何一个模型
计算题
1、求出使总的运费最小的最优运输方案以及最小运输费用;
2、从A1到B1的运价C11=9 在什么范围内变化,以上最优解保持不变?
3、从A2到B3的运价C23=6 在什么范围内变化,以上最优解保持不变?
最优解为:X13=80 X14=160 X22=30 X23=50 X31=90 X32=90 minz=4210
2、从A1到B1的运价C11≥3范围内变化,以上最优解保持不变;
3、从A2到B3的运价5≤C23≤9范围内变化,以上最优解保持不变。
1、求出使总的运费最小的最优运输方案以及最小运输费用;
2、从A2到B4的运价C24=9 在什么范围内变化,以上最优解保持不变?
最优运输方案为A1 至B2为5吨、A1至B4为30吨、A2至B1为15吨、A2至B3为10吨、A3至B2为15吨、A3至B3为25吨。
最小运费为695元。
2、从A2到B4的运价C24=9 在什么范围内变化,以上最优解保持不变?
解:设C24* = C24+q,相应的检验数为-1-q ≤0,则有C24*≥8时,以上最优解保持不变。
1、求出使总的运费最小的最优运输方案以及最小运输费用;
2、从A1到B1的运价C11=2 在什么范围内变化,以上最优解保持不变?
解答: 1、第一种解(写出一种即可);
2、从A1到B1的运价C11 9范围内变化,以上最优解保持不变。