江苏省高二下学期数学期末考试试卷

合集下载

江苏省淮安市2022-2023学年高二下学期期末数学试题(原卷版)

江苏省淮安市2022-2023学年高二下学期期末数学试题(原卷版)

淮安市2022~2023学年度第二学期高二年级期末调研测试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}12M x x =+<,{}1N x a x =<<,若M N ⊆,则实数a 的取值范围是( )A. (],3−∞−B. (),3−∞−C. [)3,1−D. ()3,1−2. 已知直线l 的方向向量()1,1,2e −− ,平面α的法向量1,,12n λ=−,若l α⊥,则λ=( )A. 52−B. 12−C.12D.523. 从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是( ) A.15B.25C.35D.454. 若0x >,0y >,称a =是x ,y 的几何平均数,211b x y=+是x ,y 的调和平均数,则“3a >”是“3b >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有2个阳爻且2个阳爻不相邻的概率是( )A.172B.532C.516D.236. 已知四棱锥P ABCD −的底面为正方形,PA ⊥平面ABCD ,1==PA AB ,点E 是BC 的中点,则点E 到直线PD 的距离是( )A.B.C.D.7. 某中学举行夏季运动会,共有3类比赛9个项目:集体赛2项,田赛3项,径赛4项.要求参赛者每人至多报3项,且集体赛至少报1项,则每人有( )种报名方式 A. 49B. 64C. 66D. 738. 设A ,B 是一个随机试验中两个事件,且()13P B =,()56P B A =,()12P B A =,则( )A. ()13P A =B. ()16P AB =C. ()34P A B +=D. ()14P A B =二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若0a b c <<<,则下列不等式中正确的有( ) A. 0a b +>B.c c a b> C.b b ca a c+>+ D. 11a b b a+<+ 10. 如图是某小卖部5天卖出热茶的杯数(单位:杯)与当天气温(单位:℃)的散点图,若去掉()7,35B 后,下列说法正确的有( )A. 决定系数2R 变大B. 变量x 与y 的相关性变弱C. 相关系数r 的绝对值变大D. 当气温为11℃时,卖出热茶的杯数估计为35杯11. 有甲、乙、丙等5名同学聚会,下列说法正确的有( ) A. 5名同学每两人握手1次,共握手20次 B. 5名同学相互赠送祝福卡片,共需要卡片20张 C. 5名同学围成一圈做游戏,有120种排法D. 5名同学站成一排拍照,甲、乙相邻,且丙不站正中间,有40种排法12. 在正四棱锥P ABCD −中,AB =,PA =,点Q 满足PQ PA x AB y AD =++,其中[]0,1x ∈,[]0,1y ∈,则下列结论正确的有( )的A. PQB. 当1x =时,三棱锥P ADQ −的体积为定值C. 当x y =时,PB 与PQ 所成角可能为π6D. 当1x y +=时,AB 与平面PAQ三、填空题:本题共4小题,每小题5分,共20分.13. 随机变量()25,X N σ∼,()138P X <=,则()37P X ≤<=______. 14. 在三棱柱111ABC A B C 中,点M 在线段1CB 上,且12CM MB =,若以{}1,,AB AC AA为基底表示AM ,则AM =______.15. 已知1x ≠−,且0x ≠,则()()()()2391111x x x x ++++++++ 的展开式中2x 项的系数是______.(用数字作答)16. 已知随机变量ξ的概率分布列如下表所示,当()34E ξ=时,()21D ξ+=______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()2nx y −展开式中仅有第4项的二项式系数最大.(1)求展开式的第2项;(2)求展开式的奇数项系数之和.18. 某乡政府为提高当地农民收入,指导农民种植药材,取得较好的效果.以下是某农户近5年种植药材的平均收入的统计数据: 年份 2018 2019 2020 2021 2022 年份代码x1 2 3 4 5 平均收入y (千元) 5961646873的(1)根据表中数据,现有y a bx =+与2y c dx =+两种模型可以拟合y 与x 之间的关系,请分别求出两种模型的回归方程;(结果保留一位小数)(2)统计学中常通过比较残差的平方和来比较两个模型的拟合效果,请根据残差平方和说明上述两个方程哪一个拟合效果更好,并据此预测2023年该农户种植药材的平均收入.参考数据及公式:()()1217n iii t t y y =−−=∑,()21374nii t t =−=∑,其中2i i t x=.()()()121nii i nii xx y yb xx==−−=−∑∑ ,a y bx =− .19. 淮安西游乐园推出的西游主题毛绒公仔,具有造型逼真可爱、触感柔软等特点,深受学生喜爱.某调查机构在参观西游乐园的游客中随机抽取了200名学生,对是否有购买西游主题毛绒公仔的意愿进行调查,得到以下的22×列联表: 有购买意愿 没有购买意愿 合计 男 40 女 60 合计50(1)完成上述22×列联表,根据以上数据,判断是否有99%的把握认为购买西游主题毛绒公仔与学生的性别有关?(2)某文创商店为了宣传推广西游主题毛绒公仔产品,设计了一个游戏:在三个外观大小都一样袋子中,分别放大小相同的1个红球和3个蓝球,2个红球和2个蓝球,以及3个红球和1个蓝球.游客可以从三个袋子中任选一个,再从中任取2个球,若取出2个红球,则可以获赠一套西游主题毛绒公仔.现有3名同学参加该游戏,ξ表示3名同学中获赠一套毛绒公仔的人数,求随机变量ξ的概率分布及数学期望.附:()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.的()2P K k ≥00500.010 0.001 k3.8416.63510.82820. 如图,正方体1111ABCD A B C D −的棱长为1,点P 是对角线1BD 上异于B ,1D 的点,记1BPBD λ=.(1)当APC ∠为锐角时,求实数λ的取值范围; (2)当二面角P AC B −−的大小为4π时,求点1B 到平面PAC 的距离.21. 已知函数()22,24,22x mx x f x m x x x −+≤= −+> −,m ∈R . (1)当2x ≤时,求()0f x >的解集;(2)若()f x 的最大值为3,求的值.22. 投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏.晋代在广泛开展投壶活动中,对投壶的壶也有所改进,即在壶口两旁增添两耳,因此在投壶的花式上就多了许多名目,如“贯耳(投入壶耳)”等.现有甲、乙两人进行投壶游戏,规定投入壶口一次得1分,投入壶耳一次得2分,其余情况不得分.已知甲投入壶口的概率为13,投入壶耳的概率为16;乙投入壶口的概率为23,投入壶耳的概率为13.假设甲乙两人每次投壶是否投中相互独立.(1)求甲投壶3次得分为3分的概率; (2)求乙投壶多少次,得分为8分概率最大..的。

江苏省苏州市数学高二下学期理数期末考试试卷

江苏省苏州市数学高二下学期理数期末考试试卷

江苏省苏州市数学高二下学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)满足{﹣1,0,1}⊊M⊆{﹣1,0,1,2,3,4}的集合M的个数是()A . 4个B . 6个C . 7个D . 8个2. (2分)(2019高三上·新疆月考) 已知随机变量服从正态分布N(100,4),若,则等于()[附: ]A .B . 101C .D .3. (2分)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是()A . 0B . 1C . 2D . 34. (2分)(2017·自贡模拟) 已知函数f(x)的定义域为R,M为常数.若p:对∀x∈R,都有f(x)≥M;q:M是函数f(x)的最小值,则p是q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)复数的共轭复数是()A . 1+iB . ﹣1+iC . 1﹣iD . ﹣1﹣i6. (2分)的展开式中,的系数为()A . -40B . 10C . 40D . 457. (2分)在同一直角坐标系中,圆锥曲线C通过伸缩变换φ:变成曲线x2+y2=1,则曲线C的离心率为()A .B .C .D .8. (2分)(2016·赤峰模拟) 若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为()A . (﹣, ]B . (﹣1, ]C . (﹣,﹣ ]D . (﹣,﹣)9. (2分)直线x+2y﹣2=0与直线3x+ay+b=0之间的距离为,则实数b=()A . 9B . ﹣21C . 9或﹣21D . 3或710. (2分)从1,2,3,4中任取两个数,记作a,b,则两数之和a+b小于5的概率为()A .B .C .D .11. (2分)从1、2、3、4、5、6这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A . 300B . 216C . 180D . 16212. (2分) (2016高三上·湖北期中) 已知函数f(x)= ,若函数y=f(x)﹣4有3个零点,则a的值为()A . 3B . 4C . 5D . 6二、填空题 (共4题;共4分)13. (1分) i为虚数单位,z= 对应的点在第二象限,则θ是第________象限的角.14. (1分)从二项式(1+x)11的展开式中取一项,系数为奇数的概率是________.15. (1分)已知,求f′(1)=________.16. (1分)在“心连心”活动中,5名党员被分配到甲、乙、丙三个村子进行入户走访,每个村子至少安排1名党员参加,且A,B两名党员必须在同一个村子的不同分配方法的总数为________.三、解答题 (共6题;共61分)17. (5分) (2016高二上·长春期中) 已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q 的必要非充分条件,求实数m的取值范围.18. (15分) (2019高三上·东湖期中) 2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段记作区间,记作,记作,记作,例如:10点04分,记作时刻64.参考数据:若 ,则;;.(1)估计这600辆车在时间段内通过该收费点的时刻的平均值同一组中的数据用该组区间的中点值代表;(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在之间通过的车辆数为,求的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布,其中可用这600辆车在之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替同一组中的数据用该组区间的中点值代表,已知大年初五全天共有1000辆车通过该收费点,估计在之间通过的车辆数结果保留到整数.19. (11分) (2017高二下·桂林期末) 医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将列联表补充完整;患三高疾病不患三高疾病合计男________630女________________________合计36________________(2)能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?下列的临界值表供参考:P(K2≥k)0.150.10 0.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:K2= .20. (5分) (2018高三上·信阳期中) 已知函数f(x)= ﹣ +cx+d有极值.(Ⅰ)求实数c的取值范围;(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)< +2d恒成立,求实数d的取值范围.21. (10分) (2018高二下·盘锦期末) 已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)写出直线l的普通方程与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.22. (15分) (2016高三上·邯郸期中) 设函数f(x)=lnx+ ,m∈R (1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6、答案:略7-1、8、答案:略9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共61分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、。

江苏省苏州市2023-2024学年高二下学期6月期末考试 数学含答案

江苏省苏州市2023-2024学年高二下学期6月期末考试 数学含答案

苏州市2023~2024学年第二学期学业质量阳光指标调研卷高二数学(答案在最后)2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第1l 题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟,答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数2()1f x x =-+在[1,1.1]上的平均变化率为()A.0.21 B.2.1C.-0.21D.-2.12.设全集{}3,1,0,1,3U =--,集合{}1,0,1A =-,{}3,B y y x x A ==∈,则U A B =I ð()A.{3,0,3}- B.{1,0,1}- C.{1,1}- D.{0}3.对于满足4n ≥的任意正整数n ,45n ⨯⨯⋅⋅⋅⨯=()A.3A nB.4A nC.4A n n - D.3A n n-4.已知a ,b ∈R ,则“0a b >>”是“11a b +>+”的什么条件A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知幂函数()221()1m f x m m x -+=+-在(0,)+∞上单调递减,则实数m 的值为()A .2-或1B.1-或2C.1D.2-6.在一个口袋中装有大小和质地均相同的5个白球和3个黄球,第一次从中随机摸出一个球,观察其颜色后放回,同时在袋中加入两个与所取球完全相同的球,第二次再从中随机摸出一个球,则此次摸出的是黄球的概率为()A.316B.38C.45D.127.设34a =,3log 2b =,11sin 44c =+,则()A.a b c>> B.c b a>> C.a c b>> D.b a c>>8.已知5名同学排成一排合影留念,若甲不站在两端,乙不站在正中间,则不同的排法共有()A.48种B.60种C.66种D.72种二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的有()A.若随机变量x ,y 满足经验回归方程ˆ0.0249.76yx =-+,则x ,y 的取值呈现正相关B.若随机变量~(3,)X N σ,且(6)0.15P X >=,则(0)0.15P X <=C.若事件,A B 相互独立,则(|)()P A B P A =D.若5件产品中有2件次品,采取无放回的方式随机抽取3件,则抽取的3件产品中次品数为1的概率是3510.拐点(Inflection Point )又称反曲点,是一条连续曲线由凸转凹或由凹转凸的点,直观地说,是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点).拐点在统计学、物理学、经济学等领域都有重要应用.设函数()f x 对于区间(,)a b 内任一点都可导,且函数()()g x f x '=对于区间(,)a b 内任一点都可导,若0(,)x a b ∃∈,使得()00g x '=,且在0x x =的两侧()g x '的符号相反,则称点()()00,x f x 为曲线()y f x =的拐点.以下函数具有唯一拐点的有()A.32()f x x x =+ B.311()3f x x x=+,0x >C.2()x f x a x =-(0a >,且1a ≠)D.()ln sin f x x x=+11.已知定义域为R 的连续函数()f x 满足e ()e ()()x x y f x y f x f y +-=+-,2(1)e f -=-,则()A.(0)0f = B.e ()x f x 为奇函数C.()f x 在(,0)-∞上单调递减D.()f x 在(0,)+∞上的最大值为1三、填空题:本题共3小题,每小题5分,共15分.12.98被6除所得的余数为______.13.已知随机变量x ,y 的五组观测数据如下表:x12345y1.1e - 1.6e a6.5e 9e 由表中数据通过模型e mx n y +=得到经验回归方程为 2.6 3.8ˆe x y-=,则实数a 的值为______.14.已知函数32()(,,)f x x ax bx c a b c =+++∈R ,若关于x 的不等式()0f x <的解集为{|3x x t <+且}x t ≠,则()f x 的极小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知(13)nx -(其中x ∈R *n ∈N )的展开式中第2项的二项式系数与第3项的二项式系数之和为36.(1)求n ;(2)记2012(13)nnn x a a x a x a x -=+++⋅⋅⋅+,求31223(1)3333n n n a a a a -+-+⋅⋅⋅+-的值.16.已知某射击运动员每次射击命中10环的概率为45,每次射击的结果相互独立,共进行4次射击.(1)求恰有3次命中10环的概率;(2)求至多有3次命中10环的概率;(3)设命中10环的次数为X ,求随机变量X 的数学期望()E X 和方差()D X .17.已知函数12()(R)22x x tf x t +-=∈--为奇函数.(1)设函数1()2g x f x t ⎛⎫=-+ ⎪⎝⎭,求122023202420242024g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值;(2)若关于x 的方程()()4320xxf f a a ++-⋅-=有实数根,求实数a 的取值范围.18.某学校组织100名学生去高校参加社会实践.为了了解学生性别与颜色喜好的关系,准备了足量的红、蓝颜色的两种帽子,它们除颜色外完全相同.每位学生根据个人喜好领取1顶帽子,学校统计学生所领帽子的颜色,得到了如下22⨯列联表.红色蓝色合计男202545女401555合计6040100(1)是否有99%的把握认为“喜好红色或蓝色与性别有关”;(2)在进入高校某实验室前,需要将帽子临时存放,为此学校准备了标号为1号到7号的7个箱子,现从中随机选取4个箱子,①求所选的4个箱子的标号数之和为奇数的概率;②记所选的箱子中有X 对相邻序号(如:所选箱子的标号为1,2,3,5,则1,2和2,3为2对相邻序号,所以2X =),求随机变量X 的分布列和数学期望()E X .附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.10.050.01ax 2.7063.8416.63519.已知函数()()1ln f x x x =+.(1)求曲线()y f x =在1x =处的切线方程;(2)若关于x 的不等式()(1)f x m x >-在(1,)+∞上恒成立,求实数m 的最大值;(3)若关于x 的方程2()(1)10()f x ax a x a ++++=∈R 有两个实根1x ,()212x x x ≠,求证:121123a a x x -<+<+.苏州市2023~2024学年第二学期学业质量阳光指标调研卷高二数学2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第1l 题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟,答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数2()1f x x =-+在[1,1.1]上的平均变化率为()A.0.21 B.2.1C.-0.21D.-2.1【答案】D 【解析】【分析】根据平均变化率的公式计算即可.【详解】函数2()1f x x =-+在[1,1.1]上的平均变化率()()1.110.2102.11.110.1f f ---===--.故选:D2.设全集{}3,1,0,1,3U =--,集合{}1,0,1A =-,{}3,B y y x x A ==∈,则U A B =I ð()A.{3,0,3}-B.{1,0,1}- C.{1,1}- D.{0}【答案】C 【解析】【分析】先求出集合B ,再根据补集和交集的定义即可得解.【详解】{}{}3,3,0,3B y y x x A ==∈=-,则{}1,1U B =-ð,所以{1,1}U A B =- ð.故选:C.3.对于满足4n ≥的任意正整数n ,45n ⨯⨯⋅⋅⋅⨯=()A.3A n B.4A nC.4A n n - D.3A n n-【答案】D 【解析】【分析】根据排列数公式即可判断.【详解】易得45A n-3n n ⨯⨯⋅⋅⋅⨯=,故选:D.4.已知a ,b ∈R ,则“0a b >>”是“11a b +>+”的什么条件A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A 【解析】【分析】分别从充分性和必要性入手进行分析即可.【详解】充分性:0a b >>⇒11a b +>+,充分性成立;必要性:当2,1a b =-=-时,11a b +>+成立,但0a b <<,故必要性不成立;所以“0a b >>”是“11a b +>+”的充分不必要条件.故选:A.【点睛】本题考查充分条件和必要条件的判断,考查推理能力,属于常考题.5.已知幂函数()221()1m f x m m x -+=+-在(0,)+∞上单调递减,则实数m 的值为()A.2-或1B.1-或2C.1D.2-【答案】C 【解析】【分析】根据幂函数的定义和性质求解即可.【详解】因为幂函数()221()1m f x m m x-+=+-在(0,)+∞上单调递减,所以211210m m m ⎧+-=⎨-+<⎩,解得1m =.故选:C .6.在一个口袋中装有大小和质地均相同的5个白球和3个黄球,第一次从中随机摸出一个球,观察其颜色后放回,同时在袋中加入两个与所取球完全相同的球,第二次再从中随机摸出一个球,则此次摸出的是黄球的概率为()A.316B.38C.45D.12【答案】B 【解析】【分析】借助全概率公式计算即可得.【详解】设事件A 为第一次从中随机摸出一个球的颜色为白色,事件B 为第二次再从中随机摸出一个球是黄球,则()()()()()+P B P A P B A P A P B A=⋅⋅53313338108216168=⨯+⨯=+=.故选:B .7.设34a =,3log 2b =,11sin 44c =+,则()A.a b c >>B.c b a>> C.a c b>> D.b a c>>【答案】A 【解析】【分析】根据指数函数与对数函数的单调性即可比较,a b ,构造函数()sin x x x f -=,利用导数判断函数的单调性,即可比较11,sin 44的大小,进而可比较,b c 的大小,即可得解.【详解】因为31111444223333333log 3log 27log 25log 5log 4log 24a ===>=>=,所以a b >,令()sin x x x f -=,则()1cos 0f x x '=-≥,所以()f x 在R 上为增函数,所以()1004f f ⎛⎫>=⎪⎝⎭,即11sin 044->,所以11sin 44>,则3311111log 2log sin 24444b =>==+>+,即bc >,综上所述,a b c >>.故选:A.8.已知5名同学排成一排合影留念,若甲不站在两端,乙不站在正中间,则不同的排法共有()A.48种B.60种C.66种D.72种【答案】B 【解析】【分析】分甲站在正中间与甲不站在正中间讨论即可得.【详解】若甲站在正中间,则共有1414A A 种排法,若甲不站在正中间,先排甲有12C 种,再排乙有13C 种,最后三人任意排有33A 种,则共有113233C C A 种排法,综上,共有1411314233A A C C A 24+3660+==种不同排法.故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的有()A.若随机变量x ,y 满足经验回归方程ˆ0.0249.76yx =-+,则x ,y 的取值呈现正相关B.若随机变量~(3,)X N σ,且(6)0.15P X >=,则(0)0.15P X <=C.若事件,A B 相互独立,则(|)()P A B P A =D.若5件产品中有2件次品,采取无放回的方式随机抽取3件,则抽取的3件产品中次品数为1的概率是35【答案】BCD 【解析】【分析】根据回归方程即可判断A ;根据正态分布的对称性即可判断B ;根据相互独立事件的概率公式及条件概率公式即可判断C ;根据古典概型的概率公式即可判断D.【详解】对于A ,因为随机变量x ,y 满足经验回归方程ˆ0.0249.76yx =-+,所以x ,y 的取值呈现负相关,故A 错误;对于B ,因为随机变量~(3,)X N σ,且(6)0.15P X >=,所以()()060.15P X P x <=>=,故B 正确;对于C ,若事件,A B 相互独立,则()()()P AB P A P B =,所以()()()()|==P AB P A B P A P B ,故C 正确;对于D ,由题意抽取的3件产品中次品数为1的概率122335C C 3C 5P ==,故D 正确.故选:BCD .10.拐点(Inflection Point )又称反曲点,是一条连续曲线由凸转凹或由凹转凸的点,直观地说,是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点).拐点在统计学、物理学、经济学等领域都有重要应用.设函数()f x 对于区间(,)a b 内任一点都可导,且函数()()g x f x '=对于区间(,)a b 内任一点都可导,若0(,)x a b ∃∈,使得()00g x '=,且在0x x =的两侧()g x '的符号相反,则称点()()00,x f x 为曲线()y f x =的拐点.以下函数具有唯一拐点的有()A.32()f x x x =+ B.311()3f x x x=+,0x >C.2()x f x a x =-(0a >,且1a ≠) D.()ln sin f x x x=+【答案】AC 【解析】【分析】拐点即二阶导数的变号零点,求出二阶导数以后逐一分析即可,其中D 需要找到两个拐点即可排除D.【详解】对于A :()()232g x f x x x ==+',()62g x x '=+,令()0g x '=得13x =-,当13x >-时,()0g x '>,当13x <-时,()0g x '<,12327f⎛⎫-= ⎪⎝⎭所以12,327⎛⎫- ⎪⎝⎭是函数()f x 的拐点,故A 正确;对于B :()()221g x f x x x ==-',()322g x x x+'=,0x >,令()0g x '=,方程无解,所以()f x 无拐点,故B 错误;对于C :()()ln 2xg x f x a a x ='=-,()2ln 2xg x a a ='-,令()0g x '=得22log ln ax a=,当1a >且22log ln ax a >时,()0g x '>,当1a >且当22log ln a x a <时,()0g x '<,当01a <<且22log ln a x a >时,()0g x '<,当01a <<且22log ln a x a<时,()0g x '>,2222222log log ln ln ln a a f a a a ⎛⎫=- ⎪⎝⎭,所以2222222log ,log ln ln ln a a a a a ⎛⎫- ⎪⎝⎭是函数()f x 唯一拐点,故C 正确;对于D :()()1cos g x f x x x ==+',()21sin g x x x -'=-,因为()3ππ0,02g g ⎛⎫⎝'⎪⎭',所以()0g x '=在3ππ,2⎛⎫⎪⎝⎭至少有一个零点1x 且为变号零点,又因为()π0,π02g g ⎛⎫->-< ⎪''⎝⎭,所以()0g x '=在ππ,2⎛⎫-- ⎪⎝⎭至少有一个零点2x 且为变号零点所以()f x 有拐点但不唯一,故D 错误.故选:AC11.已知定义域为R 的连续函数()f x 满足e ()e ()()x x y f x y f x f y +-=+-,2(1)e f -=-,则()A.(0)0f = B.e ()x f x 为奇函数C.()f x 在(,0)-∞上单调递减D.()f x 在(0,)+∞上的最大值为1【答案】ABD 【解析】【分析】令0x y ==,即可判断A ;由e ()e ()()x x y f x y f x f y +-=+-,得e ()e ()e ()x y x yf x y f x f y ---=+-,令()e ()xg x f x =,则()()()g x y g x g y -=+-,令0x y ==,即可判断B ;关于x 求导得,()()g x y g x -'=',从而可求出()g x d 的解析式,进而可求出()f x 的解析式,再利用导数即可判断CD .【详解】对于A ,令0x y ==,则()()()000f f f =+,所以()00f =,故A 正确;对于B ,由e ()e ()()x x y f x y f x f y +-=+-,得e ()e ()e ()x y x y f x y f x f y ---=+-,令()e ()xg x f x =,则()()()g x y g x g y -=+-,令0x y ==,则()()()000g g g =+,所以()00g =,令y x =,则()()()00g g x g x =+-=,所以()g x 为奇函数,即e ()x f x 为奇函数,故B 正确;由()()()g x y g x g y -=+-,关于x 求导得,()()g x y g x -'=',令()()Δ,y x h x g x -==',则()()()()()Δ0Δ0ΔΔlimlim0ΔΔx x h x x h x g x x g x h x xx→→+-+-==''=',所以()h x C =(C 为常数),即()g x C '=,所以()g x Cx t =+(,C t 为常数),因为()()()1200,1e ee g g -=-=⨯-=-,所以()e g x x =,所以()e ex xf x =,则()()e 1exx f x ='-,当1x <时,()0f x '>,当1x >时,()0f x '<,所以()f x 在(),1∞-上单调递增,在()1,∞+上单调递减,所以()()max 11f x f ==,故C 错误;D 正确.故选:ABD .【点睛】关键点点睛:由e ()e ()()x x y f x y f x f y +-=+-,得出e ()e ()e ()x y x y f x y f x f y ---=+-,是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12.98被6除所得的余数为______.【答案】2【解析】【分析】把98用二项式定理展开,把问题转化为92被6的余数.【详解】()990918272889999999862C 6C 62C 62C 62C 2=+=+⨯+⨯+⨯+ ,展开式的前9项都能被6整除,只有最后一项不能被6整除,所以问题转化为92被6的余数,而92512=,被6除的余数为2,所以98被6除的余数为2.故答案为:213.已知随机变量x ,y 的五组观测数据如下表:x12345y1.1e - 1.6e a6.5e 9e 由表中数据通过模型e mx n y +=得到经验回归方程为 2.6 3.8ˆe x y-=,则实数a 的值为______.【答案】4e 【解析】【分析】令ln z y =,则 2.6 3.8zx =- ,求出,x z ,再根据线性回归方程必过样本中心点即可得解.【详解】令ln z y =,则 1.1 1.6 6.5912345ln e ln e ln ln e ln e 16ln 3,555a ax z -+++++++++===,因为 2.6 3.8ˆe x y-=,所以 2.6 3.8z x =- ,所以16ln 2.63 3.85a+⨯-=,解得4e a =.故答案为:4e .14.已知函数32()(,,)f x x ax bx c a b c =+++∈R ,若关于x 的不等式()0f x <的解集为{|3x x t <+且}x t ≠,则()f x 的极小值为______.【答案】4-【解析】【分析】结合三次函数的性质可得函数解析式,借助导数可得其单调性即可得其极小值.【详解】由题意可得()()232()3f x x ax bx c x t x t =+++=---,即()()()()()()22332f x x t x t x t x t x t =-+---=---',当()(),2,x t t ∞∞∈-⋃++时,()0f x '>,当(),2x t t ∈+时,()0f x '<,故()f x 在(),t ∞-、()2,t ∞++上单调递增,在(),2t t +上单调递减,共有()f x 的极小值为()()()222232124f t t t t t +=+--+-=-⨯=-.故答案为:4-.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知(13)nx -(其中x ∈R *n ∈N )的展开式中第2项的二项式系数与第3项的二项式系数之和为36.(1)求n ;(2)记2012(13)n nn x a a x a x a x -=+++⋅⋅⋅+,求31223(1)3333n n n a a a a -+-+⋅⋅⋅+-的值.【答案】(1)8(2)255【解析】【分析】(1)根据第2项的二项式系数与第3项的二项式系数之和为36得12C C 36n n +=,即可求n ;(2)先令0x =,则01a =,再令13x =-,则83812023823333a a a a a =-+-++ 即可求解.【小问1详解】由题意,二项式(13)n x -的通项公式为1C (3)rrr n T x +=-,根据第2项的二项式系数与第3项的二项式系数之和为36得12C C 36n n +=,即2720n n +-=,*Nn ∈解得8n =.【小问2详解】由(1)可知8280128(13)x a a x a x a x -=++++ ,令0x =,则01a =,令13x =-,则83812023823333a a a a a =-+-++ ,则38122382553333a a a a -+-++= .16.已知某射击运动员每次射击命中10环的概率为45,每次射击的结果相互独立,共进行4次射击.(1)求恰有3次命中10环的概率;(2)求至多有3次命中10环的概率;(3)设命中10环的次数为X ,求随机变量X 的数学期望()E X 和方差()D X .【答案】(1)256625(2)369625(3)165EX =;1625DX =【解析】【分析】(1)直接根据二项分布的概率公式计算即可;(2)用对立事件法求概率;(3)直接代入二项分布的期望和方差公式即可.【小问1详解】设运动员每次射击命中10环为随机变量ξ,则由题意可知44,5B ξ⎛⎫~ ⎪⎝⎭,则恰有3次命中10环的概率即()3134412563C 55625P ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭;【小问2详解】至多有3次命中10环的概率即()()44443693141C 5625P P ξξ⎛⎫≤=-==-= ⎪⎝⎭;【小问3详解】416455EX np ==⨯=,()4116145525DX np p =-=⨯⨯=.17.已知函数12()(R)22x x tf x t +-=∈--为奇函数.(1)设函数1()2g x f x t ⎛⎫=-+ ⎪⎝⎭,求122023202420242024g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值;(2)若关于x 的方程()()4320xxf f a a ++-⋅-=有实数根,求实数a 的取值范围.【答案】(1)2023(2)2a ≥【解析】【分析】(1)由函数()f x 为奇函数可得()00f =,即可求出a ,再求出()()1g x g x +-的值即可得解;(2)先判断函数()f x 的单调性,根据函数()f x 为奇函数可得()()()4322x x x f f a a f a a +=--⋅-⋅+=,则问题转化为关于x 的方程432x x a a ⋅+=+,分离参数,再结合基本不等式即可得解.【小问1详解】函数的定义域为R ,因为函数12()(R)22x x tf x t +-=∈--为奇函数,所以()00f =,即1022t-=--,所以1t =,经检验,符合题意,所以121()22x x f x +-=--,则1()12g x f x ⎛⎫=-+ ⎪⎝⎭,因为()f x 为奇函数,所以()()0f x f x -+=,则()()1112222g x g x f x f x ⎛⎫⎛⎫+-=-+-+= ⎪ ⎪⎝⎭⎝⎭,所以122023202420242024g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1202322022202312024202420242024202420242g g g g g g ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=2023220232⨯==;【小问2详解】121121211()22221221x x x x xf x +-+-==-⋅=-+--++,因为21x y =+是R 上的增函数,且恒大于零,所以()f x 在R 上单调递减,由()()4320xxf f a a ++-⋅-=,得()()()4322xxxf f a a f a a +=--⋅-⋅+=,所以432x x a a ⋅+=+,即()()2212214434212212121x x xx x x xa +-+++===++-+++,因为关于x 的方程()()4320xxf f a a ++-⋅-=有实数根,所以关于x 的方程421221xx a =++-+有实数根,而42122221x x ++-≥=+,当且仅当42121xx +=+,即0x =时取等号,所以2a ≥.18.某学校组织100名学生去高校参加社会实践.为了了解学生性别与颜色喜好的关系,准备了足量的红、蓝颜色的两种帽子,它们除颜色外完全相同.每位学生根据个人喜好领取1顶帽子,学校统计学生所领帽子的颜色,得到了如下22⨯列联表.红色蓝色合计男202545女401555合计6040100(1)是否有99%的把握认为“喜好红色或蓝色与性别有关”;(2)在进入高校某实验室前,需要将帽子临时存放,为此学校准备了标号为1号到7号的7个箱子,现从中随机选取4个箱子,①求所选的4个箱子的标号数之和为奇数的概率;②记所选的箱子中有X 对相邻序号(如:所选箱子的标号为1,2,3,5,则1,2和2,3为2对相邻序号,所以2X =),求随机变量X 的分布列和数学期望()E X .附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.10.050.01ax 2.7063.8416.635【答案】(1)有99%的把握认为“喜好红色或蓝色与性别有关”.(2)分布列见解析,12()7E X =【解析】【分析】(1)根据独立性检验计算判断结论;(2)根据古典概型计算概率;根据题意求离散型随机变量的可能取值及相应概率,列出分布列,根据数学期望公式计算出结果;【小问1详解】零假设0H :喜好红色或蓝色与性别无关,因为22100(20152540)24508.249 6.63560404555297⨯-⨯χ==≈>⨯⨯⨯,所以,根据独立性检验,没有充分证据推断0H 成立,因此有99%的把握认为“喜好红色或蓝色与性别有关”.【小问2详解】①根据题意可知箱子的标号有4个奇数3个偶数,标号为1号到7号的7个箱子,现从中随机选取4个箱子,设事件A 记为所选的4个箱子的标号数之和为奇数,则3113343447C C C C 16()C 35P A +==;②标号为1号到7号的7个箱子,现从中随机选取4个箱子,则选取4个箱子的所有情况有1234,1235,1236,1237,1245,1246,1247,1256,1257,1267,1345,1346,1347,1356,1357,1367,1456,1457,1467,1567,2345,2346,2347,2356,2357,2367,2456,2457,2467,2567,3456,3457,3467,3567,4567⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭记所选的箱子中有X 对相邻序号,可得0,1,2,3,X =则44471(0),C C 35P X ===47,C 1212(1)35P X ===47,C 1818(2)35P X ===47,C 44(3)35P X ===所以随机变量X 的分布列为X0123P13512351835435因此数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=.19.已知函数()()1ln f x x x =+.(1)求曲线()y f x =在1x =处的切线方程;(2)若关于x 的不等式()(1)f x m x >-在(1,)+∞上恒成立,求实数m 的最大值;(3)若关于x 的方程2()(1)10()f x ax a x a ++++=∈R 有两个实根1x ,()212x x x ≠,求证:121123a a x x -<+<+.【答案】(1)22y x =-(2)2(3)证明见解析【解析】【分析】(1)借助导数的几何意义计算即可得;(2)由题意可得()()1ln 10x x m x +-->在(1,)+∞上恒成立,则可构造函数()()()1ln 1g x x x m x =+--,求导后分2m ≤及m>2讨论其单调性,在m>2时结合零点的存在性定理研究,即可得m 的具体范围,即可得其最大值;(3)借助因式分解可将原问题转化为ln 10x ax ++=有两个实根,借助导数研究其单调性可得两根范围,借助换元法,令111t x =,221t x =,可得11221ln 11ln 1a t t a t t -⎧+=⎪⎪⎨-⎪+=⎪⎩,两式作差可得112221ln t t t t a t t ⋅=-,从而将证明12112a x x -<+转化为证明21211221ln 02t t t t t t ⎛⎫- ⎪⎝⎭+>⋅,借助换元法令121t n t =>,即证21ln 02n n n -+>,构造相应函数,借助导数即可证明;再借助(2)中所得,结合两实根的范围,可得()()1111222221ln 1121ln 11t at t t t a t t t ⎧-=+>⎪+⎪⎨-⎪=+<⎪+⎩,即可得()()()()1112221313a t t t a t t t ⎧+>-⎪⎨-+>--⎪⎩,两式作差即可得证12113a x x +<+.【小问1详解】()11ln ln 1x f x x x x x ='+=+++,()11ln1121f =++=',又()()111ln10f =+=,则有()021y x -=-,即曲线()y f x =在1x =处的切线方程为22y x =-;【小问2详解】由题意可得()()1ln 10x x m x +-->在(1,)+∞上恒成立,令()()()1ln 1g x x x m x =+--,则()1ln 1g x x m x=++-',令()()1ln 1x g x x m x α==++-',则()22111x x x x xα'-=-=,则当(1,)x ∈+∞时,()0x α'>,故()g x '在(1,)+∞上单调递增,则当(1,)x ∈+∞时,()()11ln1121g x g m m >=++-='-',当2m ≤时,()20g x m >'-≥,故()g x 在(1,)+∞上单调递增,有()()()12ln1110g x g m >=--=,符合要求,当m>2时,由()120g m ='-<,()11e ln e 110e emm m m g m =++-=+>',则存在()01,emx ∈,使()00g x '=,即当()01,x x ∈时,()0g x '<,当()0,x x ∞∈+,()0g x '>,故()g x 在()01,x 上单调递减,在()0,x ∞+上单调递增,则()()010g x g <=,不符合要求,故舍去,综上所述,2m ≤,故实数m 的最大值为2;【小问3详解】()()()()()()()2111ln 111ln 10f x ax a x x x ax x x x ax ++++=++++=+++=,由0x >,即有ln 10x ax ++=有两个实根1x ,()212x x x ≠,令()ln 1x x ax μ=++,()1x a xμ'=+,当0a ≥时,()10x a xμ'=+>恒成立,()0x μ=不可能有两个实根,故舍去;当0a <,则10,x a ⎛⎫∈-⎪⎝⎭时,()0x μ'>,当1,x a ∞⎛⎫∈-+ ⎪⎝⎭时,()0x μ'<,故()x μ在10,a ⎛⎫-⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减,则有()11ln 11ln 0a a a μ⎛⎫⎛⎫-=--+=--> ⎪ ⎪⎝⎭⎝⎭,即()1,0a ∈-,又()1ln1110a a μ=++=+>,不妨令12x x <,则有12101x x a<<<-<,有1122ln 1ln 1x ax x ax +=-⎧⎨+=-⎩,令111t x =,221t x =,即有11221ln 11ln 1a t t a t t -⎧+=⎪⎪⎨-⎪+=⎪⎩,则有121211ln1ln 1a at t t t --+--=-,即()211212ln ln a t t t t t t --=,即112221lnt t t t a t t ⋅=-,则要证12112a x x -<+,只需证112212212ln tt t t t t t t ⋅-<+-,即证21211221ln 02t t t t t t ⎛⎫- ⎪⎝⎭+>⋅,令121t n t =>,即证21ln 02n n n -+>,令()21ln 2x h x x x-=+,1x >,则()()()2222222421112420442x x x x x h x x x x x-----+-=+=-'=<恒成立,故()h x 在()1,∞+上单调递减,故()()111ln102h x h -<=+=,即有21ln 02n n n-+>在1n >时恒成立,故12112a x x -<+得证;由(2)可知,当2m =时,()(1)f x m x >-在()1,∞+上恒成立,即()21ln 01x x x -->+在()1,x ∞∈+上恒成立,则当()0,1x ∈时,()121211ln ln 0111x x x x x x⎛⎫- ⎪-⎝⎭-=-->++,即()21ln 01x x x --<+,由12101x x a<<<-<,则11t >、201t <<,故()11121ln 01t t t -->+,()22221ln 01t t t --<+,则()11121ln 1t t t ->+,()22221ln 1t t t -<+,又11221ln 11ln 1a t t a t t -⎧+=⎪⎪⎨-⎪+=⎪⎩,即()()1111222221ln 1121ln 11t a t t t t a t t t ⎧-=+>⎪+⎪⎨-⎪=+<⎪+⎩,即()()()()1112221313a t t t a t t t ⎧+>-⎪⎨+<-⎪⎩,即()()()()1112221313a t t t a t t t ⎧+>-⎪⎨-+>--⎪⎩,则有()()()()1211221133a t a t t t t t +-+>---,整理得()()221212123a t t t t t t ->---,即123a t t >+-,即123t t a +<+,即12113a x x +<+;综上,121123a a x x -<+<+得证.【点睛】关键点点睛:最后一问关键点在于借助换元法,令111t x =,221t x =,从而将证明121123a a x x -<+<+转换为证明1223a t t a -<+<+.。

徐州高二下学期期末数学考试(详细答案)

徐州高二下学期期末数学考试(详细答案)

江苏省徐州市高二(下)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题纸相应位置上。

1.已知复数z满足=i(i为虚数单位),若z=a+bi(a,b∈R),则a+b= .2.用1,2,3,4,5可以组成没有重复数字的三位数共有个.(用数字作答)3.已知i为虚数单位,若复数z=+2i(a≥0)的模等于3,则a的值为.4.在(1+2x)5的展开式中,x3的系数为.(用数字作答)5.给出下列演绎推理:“自然数是整数,,所以,2是整数”,如果这个推理是正确的,则其中横线部分应填写.6.已知f(x)=x5﹣5x4+10x3﹣10x2+5x﹣1,则f(1+)的值为.7.从3个女生5个男生中选4个人参加义务劳动,其中男生女生都有且男生不少于女生的概率是.8.4个不同的小球全部放入3个不同的盒子,则每个盒子至少有一个小球的放法共有种.(用数字作答)1 2 3 4 5的方差为.10.已知随机变量X的概率分布如表所示,其中a,b,c成等比数列,当b取最大值时,E(X)11.A、B、C、D、E、F共6各同学排成一排,其中A、B之间必须排两个同学的排法种数共有种.(用数字作答)12.在极坐标系中,若点A、B的极坐标分别为(3,),(﹣4,),则△AOB(O为极点)的面积等于.13.(5分)(2010•南京三模)正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…记第n组中各数之和为A n;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…记第n组中后一个数与前一个数的差为B n,则A n+B n= .14.已知函数f(x)=|x﹣1|,设f1(x)=f(x),f n(x)=f n﹣1(f(x))(n>1,n∈N*),令函数F(x)=f n(x)﹣m,若m∈(0,1)时,函数F(x)有且只有8各不同的零点,这8个零点按从小到大的顺序分别记为x1、x2、x3、x4、x5、x6、x7、x8,则x1x2x5x6+x3x4x7x8的取值范围是.二、解答题:本大题共6小题,共计90分,请在答题纸指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤。

江苏省宿迁市数学高二(普通班)下学期理数期末考试试卷

江苏省宿迁市数学高二(普通班)下学期理数期末考试试卷

江苏省宿迁市数学高二(普通班)下学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)将角α的终边顺时针旋转,则它与单位圆的交点坐标是()A . (cosα,sinα)B . (cosα,-sinα)C . (sinα,-cosα)D . (sinα,cosα)2. (2分) (2019高二下·泉州期末) 已知直线的参数方程为(为参数),则的倾斜角是()A .B .C .D .3. (2分)(2017·黑龙江模拟) 六位同学站成一排照毕业相,甲同学和乙同学要求相邻,并且都不和丙丁相邻,则一共有多种排法()A . 72B . 144C . 180D . 2884. (2分) (2018高三上·沈阳期末) 高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有()A . 16种B . 18种C . 37种D . 48种5. (2分) (2018高二下·保山期末) 玲玲到保山旅游,打电话给大学同学姗姗,忘记了电话号码的后两位,只记得最后一位是6,8,9中的一个数字,则玲玲输入一次号码能够成功拨对的概率是()A .B .C .D .6. (2分) (2018高二下·遂溪月考) 已知的取值如下表01342.2 4.3 4.8 6.7从散点图可以看出与线性相关,且回归方程为,则()A .B . 2.6C . 2.2D . 07. (2分) (2016高二下·宜春期中) 通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2= 得,K2= ≈7.8P(K2≥k)0.0500.0100.001k 3.841 6.63510.828参照附表,得到的正确结论是()A . 在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”B . 有99%以上的把握认为“爱好运动与性别有关”C . 在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”D . 有99%以上的把握认为“爱好运动与性别无关”8. (2分) (2016高二下·龙海期中) 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A . 70种B . 80种C . 100种D . 140种9. (2分) ABCD为长方形,AB=4,BC=2,O为AB的中点。

高中数学:2022-2023学年江苏省苏州市高二(下)期末数学试卷(含参考答案)

高中数学:2022-2023学年江苏省苏州市高二(下)期末数学试卷(含参考答案)

2022-2023学年江苏省苏州市高二(下)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知M,N是全集U的非空子集,且N⊆∁U M,则()A.N⊆M B.M⊆∁U N C.∁U M=∁U N D.M⊆N2.(5分)已知a,b∈R,则“log2a>log2b”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.13B.23C.1D.24.(5分)为全面贯彻党的教育方针,落实立德树人的根本任务,着力造就拔尖创新人才,某校为数学兴趣小组购买了一些数学特色专著:《数学的意义》《现代世界中的数学》《数学问题》,其数量分别为x,y,z(单位:本).现了解到:①x>y>z>0;②4z>x+y,则这些数学专著至少有()A.9本B.10本C.11本D.12本5.(5分)已知定义在(0,+∞)上的函数f(x)从x到x+Δx的平均变化率为f(x+Δx)−f(x)Δx=√x+Δx+√x−1x2+x⋅Δx,则f(x)的单调增区间是()A.(0,+∞)B.(0,1)C.(1,+∞)D.(2,+∞)6.(5分)云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.已知某科技公司2018年至2022年云计算市场规模y(单位:千万元)与年份代码x的关系可以用模型y=ae bx(其中e =2.71828⋯)拟合,设z=lny,得到数据统计如下表:已知回归方程z=0.52x+1.44,则m的值约为()A.1.96B.2C.6.9D.7.47.(5分)已知A,B为某随机试验的两个事件,A为事件A的对立事件.若P(A)=23,P(B)=58,P(AB)=12,则P(B|A)=()A.38B.58C.14D.348.(5分)已知实数a,b,c满足a=1.110,5b=3a+4a,c=e a﹣a,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、选择题:本题共4小题,每小题5分,共20分。

江苏省镇江市扬中市第二高级中学2022-2023学年高二下学期期末检测数学试题

江苏省镇江市扬中市第二高级中学2022-2023学年高二下学期期末检测数学试题

江苏省镇江市扬中市第二高级中学2022-2023学年高二下学期期末检测数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.数列{}n a 为等比数列,公比q>1,其前n 项和为Sn ,若a 5a ﹣1=15,2416a a ×=,则下列说法正确的是( )A .Sn +1=2Sn +1B .an =2nC .数列{log 3(Sn +1)}是等比数列D .对任意的正整数k (k 为常数),数列{log 2(Sn +k ﹣Sn )}是公差为1的等差数列(Ⅰ)证明:DM ⊥平面SAB ; (Ⅱ)求二面角A SB C --的大小;(Ⅲ)线段SC 上是否存在一点E ,使得直线//SA 平面BDE . 若存在,确定E 点的位置;若不存在,说明理由.20.网上购物就是通过互联网检索商品信息,并通过电子订购单发出购物请求,厂商通过邮购的方式发货或通过快递公司送货上门,货到后通过银行转账微信或支付宝支、付等方式在线汇款,根据2019年中国消费者信息研究,超过40%的消费者更加频繁地使用网上购物,使得网上购物和送货上门的需求量激增,越来越多的消费者也首次通过第三方APP 品牌官方网站和微信社群等平台进行购物,某天猫专营店统计了、2020年8月5日至9日这5天到该专营店购物的人数i y 和时间第i x 天间的数据,列表如下:是否存在定点M.使得2Ð=Ð?若存在,求出点M的坐标;若不存在,请QFM QMF说明理由.则有PO¢^平面ABCD,PAO¢Ð为侧棱由于0a >,而点,0b a æö-ç÷èø是直线y ax b =+与x 轴的交点,因为 然虚线不符合题意,实线中直线y ax b =+与函数()f x 相切时,在当直线y ax b =+与函数()f x 相切且切点为函数()f x 与x 轴的交点()ln 10x x x +==,所有函数()f x 与x 轴的交点为1,0e æöç÷èø,故-min1b a e ö=-÷ø.由题意得()()()()()()0,0,0,2,0,0,2,1,0,0,2,0,0,0,2,1,0,1D A B C S M 所以()1,0,1DM =uuuu v ,()2,0,2SA uu v =-,()0,1,0AB =uuu v .所以0DM SA ×=uuuu v uu v ,0DM AB ×=uuuu v uuu v ,所以DM SA ^,DM AB ^,所以DM ^平面SAB .(Ⅱ)设平面SBC 的法向量为()1,,n x y z =ur ,因为()()0,2,2,2,1,0SC BC =-=-uuu v uuu v .所以1100SC n BC n ì×=ïí×=ïîur uuu v ur uuu v ,即22020y z x y -=ìí-+=î,令1x =,则2,2y z ==.于是()11,2,2n =uu r . 因为DM ⊥平面SAB ,所以DM uuuu v 为平面SAB 的法向量,又=(1,0,1)DM uuuu v .所以2422,43,t t t t +=-ìí-=+î解得1t =-. 即(1,0)M -.综上,满足条件的点M 存在,其坐标()1,0-.【点睛】方法点睛:(1)解答直线与双曲线的题目时,时常把两个曲线方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系;(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.。

江苏省 高二数学下学期期末考试试题 文(含解析)苏教版

江苏省 高二数学下学期期末考试试题 文(含解析)苏教版

高二下学期期末考试文科数学试卷一、填空题1.函数()cos 2f x x =的最小正周期是 . 210y ++=的倾斜角是 .3.复数2ii -的虚部是 .4.ABC ∆中,“6A π=”是“1sin 2A =”的 条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选出符合题意的一个填空). 5.幂函数()()f x xR αα=∈过点(,则()4f = .6.)2lg 2lg 2lg5lg51++-= .7.如果复数z 满足2z i -=,那么1+z 的最大值是 .8.函数()ln xf x x =的单调递增区间是 .9.圆()()22:112C x y -++=,过点()2,3的直线l 与圆相交于,A B 两点,90ACB ∠=,则直线l 的方程是 .10.已知:q 不等式240x mx -+≥对x R ∈恒成立,若q ⌝为假,则实数m 的范围是 . 11.E ,F 是等腰直角△ABC 斜边BC 上的四等分点,则tan EAF ∠= .C12.函数()sin()f x A x ωϕ=+(0A >,0ω>,02)ϕ<π≤在R 上的部分图象如图所示,则()f x = .13.已知函数y=f(x)(x∈(0,2))的图象是如图所示的圆C 的一段圆弧.现给出如下命题:①(1)0f '=;②()0f x '≥;③()f x '为减函数;④若()()0f a f b ''+=,则a+b=2. 其中所有正确命题的序号为 .14.有n 个小球,将它们任意分成两堆,求出这两堆小球球数的乘积,再将其中一堆小球任意分成两堆,求出这两堆小球球数的乘积,如此下去,每次都任选一堆,将这堆小球任意分成两堆,求出这两堆小球球数的乘积,直到不能再分为止,则所有乘积的和为 . 二、解答题15.已知集合{}2|230A x x x =--≥,{}|||1B x x a =-<,U R =.(1)当3a =时,求A B ; (2)若U A C B ⊆,求实数a 的取值范围.16.已知,αβ均为锐角,且4cos 5α=,1tan()3αβ-=-. (1)求cos()αβ-的值; (2)求sin β的值.17.已知函数1()21xf x m =++,R m ∈. (1)若12m =-,求证:函数()f x 是R 上的奇函数;(2)若函数()f x 在区间(1,2)上没有零点,求实数m 的取值范围.18.已知ABC ∆中,M 是BC的中点,AM ,设内角A ,B ,C 所对边的长分别为a ,b ,c,且cos cos A C =(1)求角A 的大小; (2)若角,6B π=求ABC ∆的面积; (3)求ABC ∆面积的最大值.19.在矩形ABCD 中,以DA 所在直线为x 轴,以DA 中点O 为坐标原点,建立如图所示的平面直角坐标系.已知点B 的坐标为(3,2),E 、F 为AD 的两个三等分点,AC 和BF 交于点G ,BEG ∆的外接圆为⊙H .(1)求证:EG BF ⊥; (2)求⊙H 的方程;(3)设点(0,)P b ,过点P 作直线与⊙H 交于M ,N 两点,若点M 恰好是线段PN 的中点,求实数b 的取值范围.20.已知函数),0,(ln )1(2)(2>∈∈--=*a R a N k x a x x f k 且(1)讨论函数)(x f 的单调性;(2)若2014=k 时,关于x 的方程ax x f 2)(=有唯一解,求a 的值;(3)当2013=k 时,证明: 对一切),0(+∞∈x ,都有)21(2)(2ex e a x x f x ->-成立.参考答案一、填空题1.π解:函数()cos 2f x x =的最小正周期是2||T πω==π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省高二下学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2020高一上·包头月考) 已知,,,则集合的子集个数为()
A . 2个
B . 3个
C . 4个
D . 5个
2. (2分)已知是等比数列,,则()
A .
B .
C .
D .
3. (2分)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有多少种()
A . 1440
B . 960
C . 720
D . 480
4. (2分)(2019·茂名模拟) 已知函数为偶函数,则a=()
A . 1
B . 2
C .
D . 3
5. (2分) (2019高一上·永嘉月考) 已知,则()
A .
B .
C .
D .
6. (2分) (2018高一下·濮阳期末) 已知是定义在上的偶函数,且在区间上单调递增.
若实数满足,则的取值范围是
A .
B .
C .
D .
7. (2分)定义设实数满足约束条件则的取值范围是()
A .
B .
C .
D .
8. (2分) (2016高二下·珠海期末) 5名学生4名老师站成一排合影,5名学生站一起的排法种数为()
A .
B .
C .
D .
9. (2分)若函数在上单调递增,那么实数a的取值范围是()
A .
B .
C .
D .
10. (2分)(2019·浙江模拟) 已知函数f(x)= ,函数g(x)=|2f(x)-m|-1,且m∈Z,若函数g(x)存在5个零点,则m的值为()
A . 5
B . 3
C . 2
D . 1
二、双空题 (共4题;共4分)
11. (1分)若复数z满足iz=-i(i为虚数单位),则|z|________
12. (1分)在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=________.
13. (1分) (2016高一下·雅安期末) 设等差数列{an}的前n项和为Sn ,若﹣S1=2015,则数列{an}的公差为________.
14. (1分)(2017·蚌埠模拟) 赌博有陷阱.某种赌博游戏每局的规则是:参与者现在从标有5、6、7、8、9的相同小球中随机摸取一个,将小球上的数字作为其赌金(单位:元);随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其资金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与资金,则Eξ﹣Eη=________(元).
三、填空题 (共3题;共3分)
15. (1分) (2019高三上·杭州期中) 若a为实数,对任意,当时,不等式
恒成立,则a的最大值是________.
16. (1分) (2019高二下·上海期末) 某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为________.
17. (1分)(2018·张家口期中) 已知| |=1,,则向量在方向上的投影是
________.
四、解答题 (共5题;共50分)
18. (10分) (2015高二下·河南期中) 已知的展开式中,第5项的系数与第3项的系数之比是56:3,求展开式中的常数项.
19. (10分) (2016高二下·钦州期末) 函数f(x)= +lnx,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围.
20. (10分) (2019高一下·泰州月考) 已知四棱锥的底面是菱形.
(1)若,求证:平面;
(2) E,F分别是,上的点,若平面,,求的值;
(3)若,平面平面,,判断是否为等腰三角形?并说明理由.
21. (10分)(2020·嘉兴模拟) 设点为抛物线上的动点,F是抛物线的焦点,当时,.
(1)求抛物线C的方程;
(2)过点P作圆M:的切线,,分别交抛物线C于点.当时,求
面积的最小值.
22. (10分) (2015高二下·张掖期中) 已知函数f(x)=x3+ax2+bx+c在x=﹣与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)若对x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范围.
参考答案一、单选题 (共10题;共20分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、
考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
二、双空题 (共4题;共4分)答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
三、填空题 (共3题;共3分)答案:15-1、
考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、
考点:
解析:
四、解答题 (共5题;共50分)
答案:18-1、
考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、答案:20-2、
答案:20-3、考点:
解析:
答案:21-1、
考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:。

相关文档
最新文档