牛顿迭代法

合集下载

牛顿迭代法

牛顿迭代法
建立迭代公式
xn1
xn
xne xn 1 e xn (1 xn )
xn
xn exn 1 xn
取x0=0.5,逐次计算得 x1=0.57102, x2=0.56716, x3=0.56714
1.5 牛顿下山法
通常,牛顿迭代法的收敛性依赖于初始值 x0 的选取,
如果 x0 偏离所求的根 x* 比较远,则牛顿法可能发散。
由定理2.2知,牛顿迭代法在 x* 附近局部收敛。又由 定理2.3知, 迭代公式至少具有二阶收敛速度。
利用泰勒公式
0
f (x*)
f (xk )
f (xk )(x*
xk )
f ( ) (x*
2
xk )2 ,
xk
x*
f f
(xk ) (xk )来自f 2f( )
(xk )
(x*
xk
)2
x*, xk
为了防止迭代发散,我们对牛顿迭代法的迭代过程再附
加一项要求,即具有单调性
f (xk1) f (xk )
满足这项要求的算法称下山法。 将牛顿迭代法与下山法结合起来使用,即在下山
法保证函数值下降的前提下,用牛顿迭代法加快收敛 速度。把这一算法称为牛顿下山法。即
xk 1
xk
f (xk ) f (xk )
xk
f (xk ) f (xk )
x*
f ( ) (x*
2 f (xk )
xk )2
所以
xk 1
x*
f ( )
2 f (xk )
(x*
xk
)2
lim x* xk1 f (x* ) k x* xk 2 2 f (x* )
证毕
1.3 牛顿迭代法的收敛性

研究生数值分析(5)牛顿(Newton)迭代法

研究生数值分析(5)牛顿(Newton)迭代法

z
0.612547 0.641384 0.641186
6 求方程 m重根的Newton法 设 s 是方程 f(x)=0 的 m 重根(m≥2), f(x)
在 s 的某邻域内有m阶连续导数 ,这时
f (s) f (s) f (m1) (s) 0, f (m) (s) 0
由Taylor公式,得
设 f '(x) 0 ,上式解为
x

xk

f (xk ) f ' (xk )
于是方程 f(x)=0的新的近似根xk+1,可由牛顿
迭代公式
xk 1

xk

f (xk ) f ' (xk )
k 0,1, 2,
求出
牛顿迭代公式具有明显的几何意义。 方程 y f (xk ) f '(xk )(x xk ) 是曲线 y=f(x)在点 (xk , f (xk )) 处的切线方程,迭代公式就是切线与x轴 交点的横坐标。因此,牛顿迭代法又称为切线法。
这表明牛顿迭代法用于求单根时至少是二阶收敛的。
(2)若 x* 是方程 f (x) 0 的 m(m 2) 重根,

f (x) (x x*)m q(x)
(q(x*) 0)
此时有
g ' (x*) lim g ' (x) lim
x x*
x x*
f (x) f '' (x) [ f ' (x)]2
k
xk
k
xk
4 0.635498 8 0.640964
5 0.643719 9 0.641285
6 0.640061 10 0.641142

牛顿迭代法

牛顿迭代法
10.4 牛顿迭代法
一 牛顿法及其收敛性
牛顿法是一种线性化方法,其基本思想是将非线性方 程 f ( x) 0逐步归结为某种线性方程来求解. 设已知方程 f ( x) 0 有近似根 xk(假定 f ( xk ) 0), 将函数 f ( x) 在点 xk 展开,有
f ( x) f ( xk ) f ( xk )( x xk ),
x
表7 5 计算结果 k 0 1 2 3 xk 0.5 0.57102 0.56716 0.56714
5
二 牛顿法应用举例 对于给定的正数 C,应用牛顿法解二次方程
x 2 C 0,
可导出求开方值 C 的计算程序
xk 1 1 C ( xk ). 2 xk
(3.5)
这种迭代公式对于任意初值 x0 0 都是收敛的. 事实上,对(3.5)式施行配方手续,易知
10
在(3.7)中取C
1 ,则称为简化牛顿法,这 f ( x0 )
类方法计算量省,但只有线性收敛,其几何意义是用平行 弦与 x 轴交点作为 x *的近似. 如图7-4所示.
图7-4
11
(2)
牛顿下山法.
牛顿法收敛性依赖初值 x0的选取. 如果x0 偏离所求根 x* 较远,则牛顿法可能发散.
xk 1 xk 1 1 C ( xk 2 xk C 1 ( xk 2 xk C )2 ; C )2 .
6
以上两式相除得
xk 1 xk 1 xk C x C k C . C
2
据此反复递推有
xk 1 xk 1 x0 C x C 0 C C .
14
x1 17.9,它不满足条件(3.10).

研究生数值分析(5)牛顿(Newton)迭代法

研究生数值分析(5)牛顿(Newton)迭代法
(k 0,1, 2,)
称为埃特肯算法。
例7 用迭代法求方程
f ( x) x 2 x 0 在[0,1]内根 x *
的近似值,精确到
xk 1 xk 104
解:取初始近似根 x0 0.5 xk 1 2 x 1.用简单迭代法 2.用牛顿迭代法 3.用埃特肯算法
1 1 0 m
这表明直接用牛顿迭代法对方程 只有线性收敛速度。
f ( x) 0
求重根
对 x* 是方程 则 x* 是方程
f ( x) 0
重根的情形,如将方程改写成
(其中 F ( x) f ( x) / f ' ( x) )
F ( x) 0
F ( x) 0
的单根,再对
F ( x) 0
f ' ( x) 0

在 [a, b] 上保号,
则当初值 x0 [a, b] ,且 f ( x0 ) f '' ( x0 ) 0 时, 牛顿迭代公式产生的迭代序列 { xk } 收敛于方程
f ( x) 0 在 [a, b] 上的唯一实根 x* 。
定理5的简要几何说明:
条件(1)保证了曲线 y=f (x)的连续性和光滑性; 条件(2)保证了方程y = f (x) 在[a ,b]内至少有 一实根; 条件(3)说明在[a ,b]上恒有
135.607
使其精确至7位有效数字。 解:作函数 f ( x) x2 c , 则f (x)=0的正根 x* 就是 c
f ( x) 0 的牛顿迭代公式为
2 f ( xk ) xk c 1 c xk 1 xk ' xk ( xk ) f ( xk ) 2 xk 2 xk

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。

考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。

函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。

牛顿法利用极小点的必要条件:这就是牛顿迭代法。

迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。

因此使用牛顿法是有问题的。

如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。

这种情况可以通过正则化Hessian矩阵来避免。

常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。

正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。

第二节_牛顿迭代法

第二节_牛顿迭代法

2 3 xk
2 f ( x) 3 x
k 0,1, 2,

4、牛顿迭代法的局部收敛性定理 设 x* 为方程 f (x) = 0的根,在包含x*的某个开区间内 f ( x) 连 B ( x *) [ x , x ], f ( x ) 0 续,且 ,则存在 x* 的邻域 使得任取初值 x0 B ( x*),由牛顿迭代法产生的序列xk 以不 低于二阶的收敛速度收敛于x*.
标即为 xk 1 。 y
( x0 , f ( x0 ))
x* x2 x x0 1
x
例2.5:写出求 a (a 0) 的牛顿迭代格式;写出求 a (a 0) 的牛顿迭代格式,要求公式中既无开方运算,又无除法运算。
2 f ( x ) x a 0 (a 0) 的正根 f ( x) 2x 解: 等价于求方程
f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( ) ( x x 0 ) 2 , 2!
在 x0 和 x 之间
* 取 x x ,可将 (x* x0)2 看成高阶小量,则有:
0 f ( x*) f ( x0 ) f ( x0 )( x * x0 )
lim x n 注意到ξn 在xn 及x*之间,及 n
x n1 x* x n x*
2
x*
,故
f" ( n ) f " ( x* ) * 2 f ' ( xn ) 2 f' ( x )
0(二阶收敛)若 f "( x* ) 0 0(大于二阶收敛)若 f "( x* ) 0
Newton迭代公式是一种特殊的不动点迭代,其 迭代函数为: f ( x) ( x) x f '( x )

牛顿迭代法

牛顿迭代法

有一种迭代方法叫牛顿迭代法,是用于求方程或方程组近似根的一种常用的算法设计方法。

设方程为f(x)=0,用某种数学方法导出等价的形式x(n+1) = g(x(n)) = x (n)–f(x(n))/f‘(x(n)).然后按以下步骤执行:(1) 选一个方程的近似根,赋给变量x1;(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。

例1:已知f(x) = cos(x) - x。

x的初值为3.14159/4,用牛顿法求解方程f(x) =0的近似值,要求精确到10E-6。

算法分析:f(x)的Newton代法构造方程为:x(n+1) = xn - (cos(xn)-xn) / (-sin(xn)-1)。

#include<stdio.h>double F1(double x); //要求解的函数double F2(double x); //要求解的函数的一阶导数函数double Newton(double x0, double e);//通用Newton迭代子程序int main(){double x0 = 3.14159/4;double e = 10E-6;printf("x = %f\n", Newton(x0, e));getchar();return 0;}double F1(double x) //要求解的函数{return cos(x) - x;}double F2(double x) //要求解的函数的一阶导数函数{return -sin(x) - 1;}double Newton(double x0, double e)//通用Newton迭代子程序{double x1;do{x1 = x0;x0 = x1 - F1(x1) / F2(x1);} while (fabs(x0 - x1) > e);return x0; //若返回x0和x1的平均值则更佳}例2:用牛顿迭代法求方程x^2 - 5x + 6 = 0,要求精确到10E-6。

牛顿迭代法

牛顿迭代法

一后逐步向某个位置逼近的方法称为迭代法。 迭代法也称辗转法,是一种不断用变量的旧值递 推新值的过程,跟迭代法相对应的就是直接法(或 称为一次解法) ,即一次性解决问题。迭代算法是用 计算机解决问题的一种基本方法。它利用计算机运 算速度快、适合做重复性操作的特点,让计算机对 一组指令(或一定步骤)重复执行,在每次执行这 组指令(或这些步骤)时,都从变量的原值推出他 的一个新值。 利用迭代法解决问题,需要做好以下三个方面的 工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,至少存在一个 可直接或间接的不断由旧值递推出新值的变量, 这个变量就是迭代变量; 二、建立迭代关系式 所谓的迭代关系式,指如何从变量的前一个值递 推出其下一个值得公式(或关系) 。迭代关系式的 建立是解决迭代问题的关键,通常可以使用递推 或倒推的方法来完成。 三、对迭代过程进行控制 在什么时候结束迭代过程?这时编写迭代程序必
欧几里德算法(辗转相除法)
最经典的迭代算法是欧几里德算法,用于计算两 个整数 a,b 的最大公约数。 其计算原理依赖于下面 的定理: 定理:gcd(a,b)=gcd(b,a mod b) 证明:a 可以表示成 a=kb+r,则 r=a mod b. 假设 d 是 a,b 的一个公约数, 则有 a%d==0,b%d==0, 而 r=a-kb,因此 r%d==0,因此 d 是(b,a mod b)的公约 数 同理,假设 d 是(b,a mod b)的公约数,则 b%d==0, r%d==0, 但是 a=kb+r, 因此 d 也是(a,b)的公约数; 因此(a,b)和(b, a mod b)的公约数是一样的, 其最大 公约数也必然相等,得证。
牛顿迭代法
牛顿迭代法是求方程根的重要方法之一,其最大优 点是在方程 f(x)=0 的单根附近具有平方收敛, 而且该 法还可以用来求方程的重根、 复根, 此时线性收敛, 但是可通过一些方法变成超线性收敛。另外该方法 广泛用于计算机编程中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿迭代法一、 牛顿迭代法牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。

二、 迭代公式,...2,1,0,)()(1='-=+k x f x f x x k k k k用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式(主要是第一种):1、设],[)(2b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(20000x x f x x x f x f x f -+-+=ξ略去二次项,得到)(x f 的线性近似式:))((')()(000x x x f x f x f -+≈。

由此得到方程=)(x f 0的近似根(假定≠)('0x f 0),)(')(000x f x f x x -=即可构造出迭代格式(假定≠)('k x f 0):)(')(1k k k k x f x f x x -=+ 公式(1)这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。

2、 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线性化近似函数)(x l =))((')(000x x x f x f -+是曲线y =)(x f 过点))(,(00x f x 的切线而得名的,求)(x f 的零点代之以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图所示,这就是牛顿切线法的几何解释。

实际上,牛顿迭代法也可以从几何意义上推出。

利用牛顿迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有1)()('+-=k k k k x x x f x f ,整理后也能得出牛顿迭代公式:)(')(1k k k k x f x f x x -=+。

3、 要保证迭代法收敛,不管非线性方程=)(x f 0的形式如何,总可以构造:)()()(x f x k x x x -==ϕ )0)((≠x k作为方程求解的迭代函数。

因为:)(')()()('1)('x f x k x f x k x --=ϕ 而且)('x ϕ在根α附近越小,其局部收敛速度越快,故可令:0)('=αϕ 若≠)('αf 0(即根α不是=)(x f 0的重根),则由0)('=αϕ得:)('1)(ααf k =,因此可令)('1)(x f x k =,则也可以得出迭代公式:)(')(1k k k k x f x f x x -=+。

4、 迭代法的基本思想是将方程0)(=x f改写成等价的迭代形式)(x x ϕ=,但随之而来的问题却是迭代公式不一定收敛,或者收敛的速度较慢。

运用前述加速技巧,对于简单迭代过程)(1n n n x f x x +=+,其加速公式具有形式:θθϕ--=+1)(1nn n x x x )(111n n n x x x --+=++θθ,其中)(1n n x x ϕ=+记1-=θL ,上面两式可以合并写成:L x f x x n n n )(1-=+这种迭代公式称作简单的牛顿公式,其相应的迭代函数是:L x f x x )()(-=ϕ。

需要注意的是,由于L 是)('x ϕ的估计值,若取)()(x f x x +=ϕ,则)('x ϕ实际上便是)('x f 的估计值。

假设0)('≠x f ,则可以用)('x f 代替上式中的L ,就可得到牛顿法的迭代公式:)(')(1n n n n x f x f x x -=+。

牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程逐步归结为某种线性方程来求解。

三、算法描述用Newton 法求方程f (x )=0的一个解输入 初始值x0;误差容限TOL ;最大迭代次数m 输出 近似解p 或失败信息 Step1 00x p ←Step2 对i=1,2,...,m 做setp3~4Setp3)()(000p f p f p p '-←Setp4若TOL p p <-0,则输出(p ),停机,否则p p ←0Setp5输出失败信息;停机注:在第4步中的迭代终止准则可用:TOLp f TOL pp p TOLpp p <<-<-)(0且或者四、C 语言代码求一元四次方程045.13234=-+-x x x 的解 double func(double x) //函数{ return x*x*x*x-3*x*x*x+1.5*x*x-4.0; } double func1(double x) //导函数 { return 4*x*x*x-9*x*x+3*x; } int Newton(double *x,double precision,int maxcyc)//初始值, 精度, 迭代次数{double x1,x0; int k; x0=*x;for(k=0;k<maxcyc;k++) {if(func1(x0)==0.0)//若通过初值,函数返回值为0{printf("迭代过程中导数为0!\n");return 0;}x1=x0-func(x0)/func1(x0);//进行牛顿迭代计算if(fabs(x1-x0)<precision || fabs(func(x1))<precision) //达到结束条件{ *x=x1; //返回结果return 1; }else //未达到结束条件x0=x1; //准备下一次迭代}printf("迭代次数超过预期!\n"); //达到迭代次数,仍没有达到精度return 0;}int main(){double x,precision;int maxcyc;printf("输入初始迭代值x0:");scanf("%lf",&x);printf("输入最大迭代次数:");scanf("%d",&maxcyc);printf("迭代要求的精度:"); scanf("%lf",&precision); if(Newton(&x,precision,maxcyc)==1) //若函数返回值为1printf("该值附近的根为:%lf\n",x);else //若函数返回值为0 printf("迭代失败!\n"); getch(); return 0;}五、二元函数的牛顿迭代法设z=f (x ,y )在点(x0,y0)的某一邻域内连续且有直到2阶的连续偏导数,(x0+h ,y0+k )为此邻域内任意一点,则有⎥⎦⎤⎢⎣⎡∂∂+∂∂+≈++==00),(),(),(),(0000y y x x y x f y k y x f xh y x f k y h x f 其中00,y y k x x h -=-=于是方程f (x ,y)=0可近似表示为0),(),(),(=⎥⎦⎤⎢⎣⎡∂∂+∂∂+==k k y y x x k k y x f y k y x f x h y x f 即0),()(),()(),(=-+-+k k y k k k x k k k y x f y y y x f x x y x f同理,设z=g (x ,y )在点(x0,y0)的某一邻域内连续且有直到2阶的连续偏导数,(x0+h ,y0+k )为此邻域内任意一点,则同样有⎥⎦⎤⎢⎣⎡∂∂+∂∂+≈++==00),(),(),(),(0000y y x x y x g y k y x g xh y x g k y h x g其中00,y y k x x h -=-=于是方程g (x ,y)=0可近似表示为0),(),(),(=⎥⎦⎤⎢⎣⎡∂∂+∂∂+==k k y y x x k k y x g y k y x g x h y x g 即0),()(),()(),(=-+-+k k y k k k x k k k y x g y y y x g x x y x g 于是得到方程组:⎪⎩⎪⎨⎧=-+-+=-+-+0),()(),()(),(0),()(),()(),(k k y k k k x k k k k k y k k k x k k k y x g y y y x g x x y x g y x f y y y x f x x y x f 求解这个方程组:当0),(),(),(),(≠-k k y k k x k k y k k x y x g y x f y x f y x g 时⎪⎪⎩⎪⎪⎨⎧--+=--+=),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(k k y k k x k k y k k x k k x k k k k x k k kk k y k k x k k y k k x k k y k k k k y k k k y x g y x f y x f y x g y x f y x f y x f y x g y y y x g y x f y x f y x g y x f y x g y x g y x f x x 雅可比行列式:),(),(),(),(1),(),(),(),(1),(),(),(),(k k x k k k k x k k y k k k k y k k k k y x k k y k k x k k y k k x y x g y x g y x f y x f J J y x g y x g y x f y x f J J y x g y x g y x f y x f J ===所以,解可改写为:⎩⎨⎧+=+=y k x k J y y J x x迭代公式为:⎩⎨⎧+=+=++y k k x k k J y y J x x 11Welcome To Download !!!欢迎您的下载,资料仅供参考!。

相关文档
最新文档