资料:向量自回归模型__详解

合集下载

向量自回归

向量自回归

向量自回归模型
向量自回归模型(简称VAR 模型)是一种常用的计量经济模型,由克里斯托弗·西姆斯(Christopher Sims )提出。

它是AR 模型的推广。

[定义]VAR 模型描述在同一样本期间内的n 个变量(内生变量)可以作为它们过去值的线性函数。

一个VAR(p)模型可以写成为:
其中:c 是n × 1常数向量,A i 是n × n 矩阵。

e t 是n × 1误差向量,满足:
1. —误差项的均值为0
2. —误差项的协方差矩阵为Ω(一个n × 'n 正定矩阵)
3.
(对于所有不为0的k 都满足)—误差项不存在自相关
一个有两个变量的VAR(1)模型可以表示为:
或者也可以写为以下的方程组:
[转换VAR(p)为VAR(1)]
VAR(p)模型常常可以被改写为VAR(1)模型。

比如VAR(2)模型:
y t = c + A 1y t − 1 + A 2y t − 2 + e t
可以转换成一个VAR(1)模型:
其中I 是单位矩阵。

[结构与简化形式]
[结构向量自回归]
一个结构向量自回归(Structural VAR )模型可以写成为:
其中:c 0是n × 1常数向量,B i 是n × n 矩阵,εt 是n × 1误差向量。

一个有两个变量的结构VAR(1)可以表示为:
其中:
[简化向量自回归]
把结构向量自回归与B0的逆矩阵相乘:
让:
对于和我们得到p-阶简化向量自回归(Reduced VAR):。

var-向量自回归模型

var-向量自回归模型

预测评估
采用适当的评估方法(如均方误差、平均绝 对误差等)对预测结果进行评估,以确保预 测的准确性和可靠性。
政策建议与展望
政策建议
根据VAR模型的实证分析结果,提出针对性 的政策建议,以促进经济的稳定和可持续发 展。
展望
对VAR模型未来的发展趋势和应用前景进行 展望,为进一步研究提供方向和思路。
05
VAR模型的优缺点与改 进方向
VAR模型的优点
01
描述经济变量之间的ຫໍສະໝຸດ 态关系VAR模型能够描述多个经济变量之间的动态关系,通过分析变量之间的
相互影响,揭示经济系统的内在机制。
02
避免结构化约束
VAR模型不需要对经济变量之间的因果关系进行结构化约束,而是通过
变量自身的历史数据来分析相互影响,减少了主观因素对模型的影响。
模型估计与结果解读
模型估计
采用适当的统计软件(如EViews、Stata等)对VAR模型进行估计,确定模型的最佳滞 后阶数,并检验模型的稳定性。
结果解读
对估计结果进行详细解读,包括各经济指标之间的动态关系、长期均衡关系等,以便更 好地理解经济现象。
模型预测与评估
模型预测
利用估计好的VAR模型对未来经济走势进行 预测,为政策制定提供参考依据。
拓展应用领域
可以将VAR模型拓展应用到其他领域,如金融市 场、环境经济学、健康经济学等,以揭示不同领 域变量之间的动态关系。
THANKS FOR WATCHING
感谢您的观看
金融市场分析
VAR模型可用于分析股票、债券等金 融市场的相关性,以及市场波动对其 他经济指标的影响。
国际经济关系研究
VAR模型可用于分析不同国家之间的 经济关系,例如贸易往来、汇率变动 等。

向量自回归模型讲义

向量自回归模型讲义

第8章V AR模型与协整1980年Sims提出向量自回归模型(vector autoregressive model)。

这种模型采用多方程联立的形式,它不以经济理论为基础,在模型的每一个方程中,内生变量对模型的全部内生变量的滞后值进行回归,从而估计全部内生变量的动态关系。

8.1向量自回归(V AR)模型定义8.1.1 模型定义V AR模型是自回归模型的联立形式,所以称向量自回归模型。

假设y1t,y2t之间存在关系,如果分别建立两个自回归模型y1, t= f (y1, t-1, y1, t-2, …)y2, t= f (y2, t-1, y2, t-2, …)则无法捕捉两个变量之间的关系。

如果采用联立的形式,就可以建立起两个变量之间的关系。

V AR模型的结构与两个参数有关。

一个是所含变量个数N,一个是最大滞后阶数k。

以两个变量y1t,y2t滞后1期的V AR模型为例,y 1, t = c 1 + π11.1 y 1, t -1 + π12.1 y 2, t -1 + u 1 t y 2, t = c 2 + π21.1 y 1, t -1 + π22.1 y 2, t -1 + u 2 t (8.1)其中u 1 t , u 2 t ~ IID (0, σ 2), Cov(u 1 t , u 2 t ) = 0。

写成矩阵形式是,⎥⎦⎤⎢⎣⎡t t y y 21=12c c ⎡⎤⎢⎥⎣⎦+⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ⎥⎦⎤⎢⎣⎡--1,21,1t t y y +⎥⎦⎤⎢⎣⎡t t u u 21 (8.2) 设, Y t =⎥⎦⎤⎢⎣⎡t t y y 21, c =12c c ⎡⎤⎢⎥⎣⎦, ∏1 =⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ, u t =⎥⎦⎤⎢⎣⎡t t u u 21, 则, Y t = c + ∏1 Y t -1 + u t (8.3)那么,含有N 个变量滞后k 期的V AR 模型表示如下:Y t = c + ∏1 Y t -1 + ∏2 Y t -2 + … + ∏k Y t -k + u t ,u t ~ IID (0, Ω) (8.4)其中,Y t = (y 1, t y 2, t … y N , t )'c = (c 1 c 2 … c N )'∏j =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡j NN j N j N j N j jj N j j ..2.1.2.22.21.1.12.11πππππππππ , j = 1, 2, …, ku t = (u 1 t u 2,t … u N t )',Y t为N⨯1阶时间序列列向量。

向量自回归(VAR)模型PPT课件

向量自回归(VAR)模型PPT课件
可以看出,模型(8.46)对应的正是 利用OLS方法,Y j t 对 X t 进行回归得到的系 数估计值。
8.2.2 VAR模型的设定
1).使用平稳变量还是非平稳变量
Sims, Stock, 和 Watson (1990) 提出,非平稳序列仍然可以放在VAR模型 中,通过估计结果分析经济、金融含义。
估计方法
Yt C 1Yt1 2Yt2 L Yp t p t
t : i.i.d.N (0, )
(1)MLE : l () ( nT ) ln(2 ) (T ) ln 1
2
2

1 2
T t 1
(Yt

X t )1(Yt
Xt )
略了y 1 t 和 y 2 t 之间的互动关系,整个VAR模
型是一个互动的动态系统!
另一个例子,

y1t y2t


0.9

0
.1
0.1
0.8


y1,t 1 y2,t 1


1t


2
t

1 0.9 z 0.1z
(z) n 1z 0.2 z
关于VMA ( ) ,以下几点需要注意:
第一,因为矩阵F是由VAR模型中的 系数组成的,所以, ( L ) 是这些系数的非 线性函数。
第二,在VMA模型中,方程右侧只有
向量白噪音过程(和均值 )出现。这可
以理解为,当滞后项Y t j 经过反复迭代之 后都从VAR(p)中被替换掉了。
8.2 VAR模型的估计与相关检验
n p 1 p1 2 p2 L p 0
的根落在单位圆内。

向量自回归模型

向量自回归模型
移而发生突变。
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。

VAR-向量自回归模型

VAR-向量自回归模型

VAR-向量自回归模型简介VAR(Vector Autoregressive Model)是一种常用的多变量时间序列预测模型。

它对每个时间点上的变量都建立回归模型,通过自身过去时间点和其他变量的过去时间点进行预测。

VAR模型考虑了变量之间的相互影响,在经济学、金融学等领域得到广泛应用。

模型原理VAR模型是基于向量的自回归模型,其基本思想是将多个变量组合成一个向量,然后对该向量进行自回归建模。

VAR模型可以表示为以下形式:VAR模型VAR模型其中,X_t是一个n\times1的向量,表示在时间点t上的多个变量的取值;A_1,A_2,…,A_p是一个n\times n的矩阵,表示自回归系数;U_t是误差项,通常假设为服从均值为0且方差为\Sigma的白噪声。

VAR模型需要估计自回归系数矩阵和白噪声方差矩阵。

估计方法可以使用最小二乘法或者极大似然法,具体选择的方法取决于模型中的假设条件。

模型应用VAR模型在经济学、金融学等领域广泛应用,常见的应用场景包括:1.宏观经济预测:VAR模型可以用于预测国民经济指标、通货膨胀率、利率等宏观经济变量。

通过分析过去的数据,可以建立一个VAR模型,然后用于预测未来的经济变量走势。

2.金融市场分析:VAR模型可用于分析金融市场的相关变量,例如股票价格、汇率、利率等。

通过建立VAR模型,可以评估不同变量之间的关系,从而帮助投资者做出更准确的决策。

3.宏观经济政策分析:VAR模型可以用于评估不同的宏观经济政策对经济变量的影响。

通过建立VAR模型,可以模拟在不同政策变化下的经济变量走势,从而指导决策者制定合适的宏观经济政策。

模型评估对于建立好的VAR模型,需要对其进行评估,以验证模型的有效性。

常用的模型评估方法包括:1.残差分析:通过对模型的残差进行分析,可以评估模型是否存在偏差或者哪些变量对模型的解释能力较差。

可以使用残差的自相关图、偏自相关图等图形方法进行分析。

2.模型拟合度评估:通过计算模型的决定系数(R-squared)、均方根误差(RMSE)等指标,可以评估模型的拟合程度。

第四章向量自回归模型介绍

第四章向量自回归模型介绍

第四章向量自回归模型介绍向量自回归模型(Vector Autoregression,VAR)是一种时间序列分析模型,常用于分析多个相关变量之间的动态关系。

VAR模型可以看作是多个单变量自回归模型的组合,它对多个变量的信息进行了同时处理,能够更全面地捕捉变量之间的相互作用和影响。

VAR模型的基本假设是,当前时间点的所有变量值与过去时间点的所有变量值相关。

假设我们有p个变量,那么VAR(p)模型定义了每个变量在当前时间点的取值都是过去p个时间点的线性组合,同时还考虑了随机误差项。

数学表示为:Yt=A1*Yt-1+A2*Yt-2+...+Ap*Yt-p+εt其中Yt是一个p维列向量,包含当前时间点p个变量的取值;Yt-1至Yt-p是过去p个时间点的p维列向量;A1至Ap是p个p×p维矩阵,表示每个变量与过去时间点的线性关系;εt是一个p维列向量,表示随机误差项。

VAR模型的参数估计可以使用最小二乘法进行,通过最小化模型产生的残差平方和来求解参数。

可以使用矩阵形式进行计算,将所有时间点的变量值和延迟值堆叠成矩阵,并将所有误差项堆叠成矩阵,然后通过对应的矩阵运算求解参数矩阵。

VAR模型的参数估计结果可以用于分析变量之间的动态关系和相互影响。

通过观察参数矩阵中的元素值,可以了解到不同变量之间的关系类型(正相关还是负相关)、强度(系数大小)和延迟效应(系数所对应的时间点)。

同时,还可以利用VAR模型进行变量预测和冲击响应分析。

变量预测是VAR模型的一个常用功能,在给定过去时间点的变量值后,使用估计得到的参数矩阵可以预测未来时间点的变量取值。

这对于经济领域的预测和政策制定非常有用,可以根据变量之间的关系和历史数据进行未来变量值的估计。

冲击响应分析是指在VAR模型中引入一个外部冲击,观察该冲击对其他变量的影响。

冲击响应分析能够量化不同变量之间的直接和间接关系,帮助研究人员了解系统中各个变量对于一个特定冲击因素变化的反应情况。

计量学-向量自回归和自回归条件异方差模型

计量学-向量自回归和自回归条件异方差模型
出 Ψ中s 所有元素。
33
第二节 自回归条件异方差模型
许多学者在分析通货膨胀、汇率、股票 价格等金融时间序列时,都发现时间序 列模型扰动方差的稳定性比通常认为的 差,时间序列数据也存在异方差问题。
经济时间序列数据的这种方差变化也称 为波动集聚性(volatility clustering), 对于研究和控制金融风险等非常有用。
似然比检验实际上就是把不同约束,有约束和 无约束的参数估计、最大似然估计分别代入上 述似然函数,根据是否有显著差异说明参数约 束或者所对应的检验假设是否成立。
24
阶H滞0 :后一的组高变斯量向数量据自由回p归0 阶生而成不。是p1 p0 H1 :这组变量数据是由 p1 p0 阶滞后的 高斯向量自回归生成。
f (Y , YT , ,Y1 Y0 , ,Y p1 T , Y1 Y0 , , Y p1 ; θ)
因为 η Φ1Yt1 Φ pYt p 在时期t为常 数,而 εt ~ iidN[0,Ω],因此
Yt Yt1, Yt2,, Y p1 ~ N[η Φ1Yt1 ΦpYt p ,Ω]
17
1
n1 1,t 1
Y (1)
nn n,t 1
Y ( p)
n1 1,t p
Y ( p) nn n,t p
nt
8
这个展开形式上与一般联立方程组模型相似, 但其实有本质差异:
1、VAR模型不强调变量之间关系的理论根据,模 型形式、变量、滞后期数等并不以特定经济理 论为依据,模型变量也不存在内生、外生之分, 每个方程都包含所有的变量;
18
向量自回归模型的(条件)似然函数为:
L(θ)
f YT ,
,Y1 Y0 ,
(Y , ,Y p1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 向量自回归模型本章导读:前一章介绍了时间序列回归,其基本知识为本章的学习奠定了基础。

这一章将要介绍的是时间序列回归中最常用的向量自回归,它独有的建模优势赢得了人们的广泛喜爱。

14.1 VAR 模型的背景及数学表达式VAR 模型主要应用于宏观经济学。

在VAR 模型产生之初,很多研究者(例如Sims ,1980和Litterman ,1976;1986)就认为,VAR 在预测方面要强于结构方程模型。

VAR 模型产生的原因在于20世纪60年代一大堆的结构方程并不能让人得到理想的结果,而VAR 模型的预测却比结构方程更胜一筹,主要原因在于大型结构方程的方法论存在着更根本的问题,并且结构方程受到最具挑战性的批判来自卢卡斯批判,卢卡斯指出,结构方程组中的“决策规则”参数,在经济政策改变时无法保持稳定,即使这些规则本身也是正确的。

因此宏观经济建模的方程组在范式上显然具有根本缺陷。

VAR 模型的研究用微观化基础重新表述宏观经济模型的基本方程,与此同时,对经济变量之间的相互关系要求也并不是很高。

我们知道经济理论往往是不能为经济变量之间的动态关系提供一个严格的定义,这使得在解释变量过程中出现一个问题,那就是内生变量究竟是出现在方程的哪边。

这个问题使得估计和推理变得复杂和晦涩。

为了解决这一问题,向量自回归的方法出现了,它是由sim 于1980年提出来的,自回归模型采用的是多方程联立的形式,它并不以经济理论为基础,在模型的每一个方程中,内生变量对模型的全部内生变量的滞后项进行回归,从而估计全部内生变量的动态关系。

向量自回归通常用来预测相互联系的时间序列系统以及分析随机扰动项对变量系统的动态影响。

向量自回归的原理在于把每个内生变量作为系统中所有内生变量滞后值的函数来构造模型,从而避开了结构建模方法中需要对系统每个内生变量关于所有内生变量滞后值的建模问题。

一般的VAR(P)模型的数学表达式是。

11011{,}t t p t p t t q t q ty v A y A y B x B x B x t μ----=++⋅⋅⋅++++⋅⋅⋅++∈-∞+∞ (14.1)其中1t t Kt y y y =⋅⋅⋅⋅⋅⋅()表示K ×1阶随机向量, 1A 到p A 表示K ×K 阶的参数矩阵, t x 表示M ×1阶外生变量向量, 1B 到q B 是K ×M 阶待估系数矩阵,并且假定t μ是白噪声序列;即,()0,t E μ= '(),t t E μμ=∑并且'()0,t s E μμ=)t s ≠(。

在实际应用过程之中,由于滞后期p 和q 足够大,因此它能够完整的反映所构造模型的全部动态关系信息。

但这有一个严重的缺陷在于,如果滞后期越长,那么所要估计的参数就会变得越多,自由度就会减少。

因此需要在自由度与滞后期之间找出一种均衡状态。

一般的准则就是取许瓦咨准则(SC )和池此信息准则(AIC)两者统计量最小时的滞后期,其统计量见式(14-2)与式(14-3)。

2/2/AIC l n k n =-+ (14.2)2/log /SC l n k n n =-+ (14.3)式(14-2)与(14-3)中()k m qd pm =+表示待估参数个数,n 表示观测样本个数,同时满足:'(1log 2log[det(/)]22t t t nm nl n πεε∧∧=-+-∑) (14.4)14.2 VAR 模型的估计在对VAR 模型进行估计时,首先必须对变量进行单位根检验。

具体操作步骤见本书前面章节,在此不多加阐述了。

14.2.1 VAR 模型输入在Eviews 里面设定VAR 模型之前必须创建VAR 系统,选择quick/Estimate VAR 或者直接在命令窗口内输入var 。

此时会出现var 对话框,你必须在对话框中填入适当的信息,如下图14.1。

(1)选择VAR 估计的类型:Unrestricted VAR (非限制性向量自回归)或者Vector Error Correct (向量误差修正模型),现在所谓的VAR 是指Unrestricted VAR (非限制性向量自回归),Vector Error Correct (向量误差修正模型)将在下一步做进一步介绍。

(2)设定需要估计的样本跨度。

(3)在对话框(Lag Intervals for Endogenous )键入适当的滞后期间隙,滞后期间隙必须是成对键入:每一对数字都定义了滞后期的区间,例如右图中:1 4表示Eviews 使用内生变图14.1 VAR 设定的对话框量滞后第1期至第4期来估计系统中的(gdp cpi m1 r )变量。

你可以键入任何成对滞后数字。

滞后期的设定如下:2 4 6 9 12上面数字意味着使用滞后2-4,6-9和12-12。

(4)在对话框中键入需要估计的内生变量和外生变量名称,此处我们把gdp ,cpi ,m1和r 作为内生变量序列,同时把常数项c 作为一个外生变量键入对话框内。

剩下来的对话标签(Cointegration 和VEC Restrictions )仅仅和我们下一步需要介绍的向量误差修正模型有关。

14.2.2 VAR 模型输出如果设定好var 模型以后,就可以点击ok ,在var 窗口中会显示估计的结果。

如图14.2。

图14.2 VAR 模型估计结果图中每一列代表相应VAR 模型中每一个内生变量的方程。

每一个变量的右端Eviews 汇报了待估系数,标准差(圆括号内)以及t 统计量(中括号内)。

例如在方程GDP 中GDP(-1)的系数为0.848803,标准差为0.13700,t 统计量为6.19545,根据t 统计量分布表,可知在5%的显著水平下,该系数是显著不为0的。

在系数估计表的下端,Eviews 汇报了一些额外的信息,如图14.3。

图14.3 VAR 模型回归统计量在图14.3中,第一部分表示的是每一个方程标准的OLS 统计量。

根据各自的残差分别计算每一个方程的结果,并显示在对应的每一列中。

输出的第二部分表示的是整个VAR 系统的回归统计量。

残差的协方差行列式值(自由度进行调整以后)的计算原理是'1det()t t tT m εε∧∧∧∑=-∑ (14.5) 在式(14-5)中m 表示的是VAR 系统中每一个方程待估参数的个数,非调整的估计可以忽略m 。

通过假定服从多元正态分布(高斯分布)的似然对数值的计算如下:{(1log 2)log }2Tl k π∧=-++∑ (14.6)AIC 和SC 两个信息准则的计算原理如下:2/2/AIC l T n T =-+ (14.7)2/log /SC l T n T T =-+ (14.8)其中()n k d mk =+表示VAR 模型中待估参数的总数,根据这些准则可以决定VAR 模型适当的滞后期长度,这些准则的值越小,那么模型的滞后期就越合适。

14.3 VAR 模型的诊断如果完成了VAR 模型的估计,那么Eviews 会提供各种视窗来反映估计的VAR 模型是否恰当。

在这一节中我们将要讨论VAR 模型的设定,并对VAR 模型进行诊断。

在VAR 系统视窗的View/Lag Structure 和 View/Residual Tests 菜单下提供了一系列帮助我们进行VAR 模型诊断的视图。

14.3.1 VAR 模型滞后期的确定对于VAR(1),11t t t Y c Y μ-=+∏+模型稳定的条件是特征方程10I λ∏-=的根都在单位圆以内,或相反的特征方程10I L -∏=的根都要在单位圆以外。

对于k>1的VAR(k)模型可以通过矩阵变换改写成分块矩阵的VAR(1)模型形式。

1Y C AY t t t μ-=++ (14.9)模型稳定的条件是特征方程0A I λ-=的根都在单位圆以内,或其相反的特征方程 |I-LA|=0的全部根都在单位圆以外。

所以也可以通过估计得到相应()VMA ∞模型的参数。

这一小节主要介绍的是如何给VAR 模型确定去合适的滞后期,在滞后结构中提供许多确定滞后期的方法,见图14.4。

图14.4 VAR滞后结构视窗对话框1)AR根的图表关于AR特征根多项式的倒数可以参考:Lütkepohl (1991)。

如果VAR系统中所有根的模的倒数小于1,即位于单位圆内,那么VAR系统就是稳定的。

如果VAR系统不是稳定的,即部分根的模的倒数位于单位圆外,那么估计的某些结果(例如,脉冲响应的标准误差)就可能无效,估计过程中存在kp个根,其中k表示内生变量的个数,p表示最大滞后期。

如果估计一个带有r个协整关系的向量误差修正模型,那么必须有k-r个根的模等于1。

根据这一原则,我们得到的估计结果如表14.1。

表14-1 AR根表Roots of Characteristic PolynomialEndogenous variables: GDP CPI M1 RExogenous variables: CLag specification: 1 4Root Modulus0.992091 0.9920910.965850 0.965850-0.413574 - 0.711282i 0.822779-0.413574 + 0.711282i 0.8227790.814673 0.8146730.698590 - 0.408019i 0.8090160.698590 + 0.408019i 0.8090160.356653 - 0.683437i 0.7709010.356653 + 0.683437i 0.770901-0.168418 - 0.667357i 0.688281-0.168418 + 0.667357i 0.688281-0.535191 0.5351910.478679 0.478679-0.255845 - 0.372175i 0.451632-0.255845 + 0.372175i 0.4516320.290012 0.290012No root lies outside the unit circle.VAR satisfies the stability condition.从表14.1估计的结果可知,所有根的模的倒数都小于1,所以估计的VAR系统满足稳定性条件,为了更加直观的所有根的模的倒数在单位圆中的位置,我们根据AR根图来判断VAR系统的稳定性。

见图14.5。

图14.5 AR根图根据图14.5可知,所有AR根的模的倒数都位于单位圆内,由此可以判断VAR系统是稳定的。

如果VAR系统是稳定的,那么进一步进行VEC估计的结果就是有效的,否则某些估计的结果可能不是有效的。

相关文档
最新文档