第三章一元一次方程知识点归纳
人教版七年级数学上册—第3章一元一次方程单元总结

第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。
七上数学第三章知识点

在人教版初中数学七年级上册第三章的内容主要是《一元一次方程》,主要知识点包括:
1. 方程的概念:理解方程的定义,即含有未知数的等式;会判断一个式子是否为方程。
2. 解方程的基本步骤:通过移项、合并同类项、系数化为1等方法解简单的有理数系数的一元一次方程。
3. 等式的性质:掌握等式的三个基本性质,即等式的两边同时加上或减去同一个数,结果仍为等式;等式的两边同时乘以或除以同一个不为零的数,结果仍为等式。
4. 列一元一次方程解决实际问题:学习如何根据实际情境列出相应的方程,并求解。
如:年龄问题、行程问题、工程问题、盈亏问题等。
5. 一元一次方程的应用题型:主要包括直接设未知数列方程、找出等量关系列方程、利用图形列方程等多种方法解决问题。
6. 一次方程组的简单应用:初步接触并了解两个一次方程组成的方程组及其解法,能够通过代入消元法或加减消元法解简单的二元一次方程组。
以上是该章的核心知识点,旨在培养学生抽象思维能力和逻辑推理能力,为后续深入学习代数知识打下基础。
一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
人教版八年级数学上第三章一元一次方程知识点总结

人教版八年级数学上第三章一元一次方程知识点总结本文档总结了人教版八年级数学上第三章一元一次方程的知识点。
一元一次方程是初中数学的重要内容之一,它是一种只含有一个未知数的方程,其最简形式为ax+b=0。
下面是一些重要的知识点概述:1. 一元一次方程的定义一元一次方程是指只含有一个未知数的方程,且未知数的最高次数为1。
一元一次方程的一般形式为ax+b=0,其中a和b是已知数,a ≠ 0。
2. 一元一次方程的解法解一元一次方程的主要方法是移项和合并同类项,将方程化简成形如x=c的形式,其中c是已知数。
解方程的过程主要是通过逆运算的方法求得未知数x的值。
3. 一元一次方程的解集表示一元一次方程的解集是指使方程成立的所有解的集合。
解集的形式通常为{x | x = c},表示解集中的元素x满足x=c。
4. 解一元一次方程的步骤解一元一次方程的一般步骤如下:- 将方程的各项按照变量的次数从高到低排列。
- 利用移项和合并同类项的方法,将方程化简。
- 再利用逆运算的方法,求得未知数x的值。
- 最后,确定解集并写出解集的表示形式。
5. 一元一次方程的应用一元一次方程在实际问题中有广泛的应用。
通过建立方程与实际问题进行联系,可以解决许多实际生活中的数学问题。
例如,求某物品的价格、求两车相遇的地点等等。
以上是人教版八年级数学上第三章一元一次方程的知识点总结。
掌握这些知识点,可以帮助我们更好地理解和解决一元一次方程相关的问题。
参考资料:- 人教版八年级数学上第三章教材。
人教版七年级上册数学第三章一元一次方程知识点总结归纳

人教版七年级上册数学第三章一元一次方程知识点总结归纳一元一次方程知识点总结一元一次方程1.方程的概念方程是含有未知数的等式,同时也是一个等式。
等式是由等号连接的两个式子。
2.一元一次方程的概念只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
3.方程的解的概念能使方程中等号左右两边相等的未知数的值叫方程的解,也叫根。
4.主要性质等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
5.解一元一次方程的步骤1) 去分母,去括号去分母:在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
去括号:先去大括号,在去中括号,最后小括号。
括号前负号时,去掉括号时里面各项应变号。
2) 移项方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边。
这个法则叫做移项。
移项的根据是等式的性质。
注意:移项时一定要变号,不变号不能移项。
通过移项,含未知数的项与常数项分别列与方程的左右两边。
3) 合并同类项把两个能合并的式子的系数相加,字母和字母的指数不变。
4) 系数化为1指方程中未知数的系数化为1,他的理论依据是等式的性质。
实际问题与一元一次方程1.列方程解应用题的方法综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
本文介绍了解一元一次方程的分析法,包括列方程解应用题的步骤。
首先要分析题意,确定已知条件和所求问题,然后设定未知数,并利用等量关系列出方程。
接着求解方程,将结果代回原题检验,得出答案。
文章还归纳了实际问题的分类,包括销售中盈亏问题、顺逆流问题、数字问题的应用题、工程效率问题、球赛积分问题和行程问题。
其中,销售中盈亏问题需要计算成本价、标价、打折和售价,利润率可以用利润除以进价乘以100%计算。
数学七年级上册第三章知识点

数学七年级上册第三章知识点经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
下面是我整理的数学七年级上册第三章知识点,仅供参考希望能够帮助到大家。
数学七年级上册第三章知识点一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:⑴它是等式;⑴分母中不含有未知数;⑴未知数最高次项为1; ⑴含未知数的项的系数不为0。
一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母, 等式的两边总是相等, 由数字组成的等式也是恒等式, 如2+4=6, a+b=b+a等都是恒等式;第二类是条件等式, 也就是方程, 这类等式只能取某些数值代替等式中的字母时, 等式才成立, 如x+y=-5, x+4=7等都是条件等式;第三类是矛盾等式, 就是无论用任何值代替等式中的字母, 等式总不成立, 如x2=-2, |a|+5=0等。
一个等式中, 如果等号多于一个, 叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同, 等式中含有等号, 代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式, 所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零, 所得结果仍然是一个等式。
二、什么是方程, 什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7 等。
第三章一元一次方程知识点

第三章知识点总结知识点一:方程和方程的解1.方程:含有未知数的等式叫方程注意:a.必须是等式 b.必须含有未知数。
易错点:①.方程是等式,但等式不一定是方程;②.方程中的未知数可以用x表示,也可以用其他字母表示;:等式两边加(或减)同一个数(或式子)如果,那么;:等式两边乘同一个数,或除以同一个不为如果,那么;如果,那么。
分数的分子、分母同时乘以或除以同一个不为即:(其中(特别是分母中的小数)化为整数.如方程:-=1.6-①a ≠0时,方程有唯一解;例1、y-52221+-=-y y 解:原式等于10y-10×(y-12 )=2×10-10×(y+25 )(等式两边同时乘以最小公倍数10) 10y-5(y-1)=20-2(y+2) 10y-5y+5=20-2y-4 10y-5y+2y=20-4-5 7y=11 y=711例2、已知下列各式: ①2x -5=1;②8-7=1;③x +y ;④x -y =x 2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=例3.例4..已知:(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。
解:根据题意可分为两种情况:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为5.=-1-解:原方程可变形为=2x-5整理,得8x+18-(2+15x)=2x-5去括号,得8x+18-2-15x=2x-5合并同类项,得-9x=-21系数化为1,得x=。
1.一元一次方程:一元指的是只含有一个未知数,一次指的是未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数的次数为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加上同一个数或减去同一个数或同一个整式,等式仍然成立。
七年级数学(上册)各章知识点第三章

七年级数学(上册)各章知识点三第三章一元一次方程1:等式的概念:用等号表示相等关系的式子叫做等式.2:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则 a±c=b±c.(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.说明:①等式两边不可能同时除以为零的数或式子②等式的性质是解方程的重要依据.幻灯片223:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数. 4:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意:a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.幻灯片23一般地,如果不设定a≠0,则关于x的方程ax=b的解有如下讨论:当a≠0时,方程有唯一解 x=b/a;当a=0,b=0时,方程的解为一切数;当a=0,b≠0时,方程无解。
关于绝对值方程|x|=a的解:当a≥0时,x=±a;当a<0时,无解。
幻灯片245:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.6:关于移项:⑴移项实质是等式的基本性质1的运用.⑵移项时,一定记住要改变所移项的符号.幻灯片257:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.(具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.)说明:去分母时,易漏乘方程左、右两边代数式中的某些项.幻灯片268:方程的检验检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程
一、解一元一次方程
【知识概述】
1.方程的概念
(1)含有未知数的等式叫做方程。
方程的特征是:它含有未知数,同时又是—个等式。
(2)方程与等式有什么联系和区别:方程一定是等式,但等式不一定是方程。
用等号连接的两个式子,叫做等式。
2.一元一次方程的概念
只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
3.方程的解的概念
能使方程中等号左右两边相等的未知数的值叫方程的解。
一元方程的解又叫根。
4. 主要性质
(1)等式的性质
等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
5.解一元一次方程的步骤:
1):去分母,去括号。
去分母:在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
去括号:先去大括号,在去中括号,最后小括号。
括号前负号时,去掉括号时里面各项应变号。
1/ 4
2):移项方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这个法则叫做移项。
移项的根据是等式的性质。
注意:移项时一定要变号,不变号不能移项。
通过移项,含未知数的项与常数项分别列与方程的左右两边。
3):合并同类项把两个能合并的式子的系数相加,字母和字母的指数不变。
4):系数化为1 是指方程中未知数的系数化为1,他的理论依据是等式的性质。
二、实际问题与一元一次方程
1、列方程解应用题的方法
(1)综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式,进而列出方程,这是
2/ 4
3 / 4
从整体到部分的一种思维过程,其思考方向是从未知到已知。
2、列方程解应用题的步骤:
(1)分析题意,弄清已知条件和所求问题;
(2)根据分析设定未知数;
(3)利用等量关系列出方程;
(4)求解方程:
(5)将结果代回原题检验,答。
3、实际问题分类
销售中盈亏问题
(1)成本价:有时也称进价,是商家进货时的价格;
(2)标价:商家在出售时,标注的价格;
(3)打折:打折就是以标价为基础,按一定比例降价出售,如:打8折,就是按标价的80℅出售。
(4)售价=进价×(1+利润率)消费者购买时真正花的钱数;
(5)利润=售价-进价,盈利:利润>0亏损:利润<0
(6)利润率=
%100 进价利润; 顺逆流问题:
船在顺水中的速度=船在静水中的速度+水流速度
船在逆水中的速度=船在静水中的速度—水流速度
船顺水的行程=船逆水的行程
数字问题的应用题
①一个两位数,十位数字是a,个位数字是b,那么这个数可表示为10a+b
②一个三位数,百位数字是x, 十位数字是y,个位数字是z,那么这个数可表示为100x+10y+z
工程、效率问题
工程问题中要善于把握什么是总工作量,总工作量可以看成“1”;
工程问题中的等量关系一般是各部分完成的工作量之和等于总工作量“1”。
工作量=工作时间×工作效率
球赛积分问题
比赛总场数=胜场数+负场数+平场数
比赛总积分=胜场积分+负场积分+平场积分
行程问题(路程=速度*时间)
相遇问题:甲路程+乙路程=两地距离
追及问题:快者的行程-慢者的行程=初始距离
4/ 4。