雷达原理3-雷达接收机新
雷达原理及测试方法

雷达原理及测试方案1雷达组成和测量原理雷达(Radar)是RadioDetectionandRanging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。
现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。
1.1雷达组成1.2雷达测量原理1)目标斜距的测量图3雷达接收时域波形在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×tr式(2)式中c=3×108m/s,tr为来回传播时间2)目标角位置的测量目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。
雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。
回波的角位置还可以用测量两个分离接收天线收到信号的相位差来决定。
3)4)max t e min式中Pt 为发射机功率,G为天线增益,Ae为天线有效接收面积,σ为雷达回波功率截面积,Smin为雷达最小可探测信号。
雷达方程可以正确反映雷达各参数对其检测能力影响的程度,不能充分反映实际雷达的性能。
因为许多影响作用距离的环境和实际因素在方程中没有包括。
1.4雷达分类军用雷达主要分类:不能满足复杂雷达信号测试需求。
更为重要的是,雷达在实际工作过程中接收到的信号并不是纯净的发射回波,它包含各种杂波和多普勒效应,特别是在地形复杂或海面各种时,接收机接收到的杂波比需要探测的物体回波大的多,而这一切目前没有通用测量设备来生成雷达接收机所接收到的实际波形。
因此各个雷达研制单位投入大量人力、物力研制各种雷达模拟器,但这些模拟器往往受各种设计因素影响,只是实际雷达波形的简化,并只考虑到典型的应用,对复杂的应用环境无法模拟。
这样无法及时发现雷达研制和使用过程中问题和隐患。
雷达原理3-雷达接收机新ppt课件.ppt

S i
m in
k T0 Bn F0
So No
m in
(3.2.36)
通常,我们把(So/No)min称为“识别系数”, 并用M表示, 所以灵敏 度又可以写成
S i
m in
kT0Bn F0M
(3.2.37)
第3章雷达接收机
为了提高接收机的灵敏度, 即减少最小可检测信号功率Si min, 应做到:
F 1 N
k T0 BnGa
ΔN2=(F2-1)kT0BnG2
于是式(3.2.24)可进一步写成
(3.2.25)
No=kT0BnG1G2F0=kT0BnG1G2F1+(F2-1)kT0BnG2
化简后可得两级级联电路的总噪声系数
F0
F1
F2 1 G1
(3.2.26)
第3章雷达接收机 三级级联推导
之比, 叫做动态范围。
第3章雷达接收机 4. 中频的选择和滤波特性
接收机中频的选择和滤波特性是接收机的重要质量指标之 一。
在中频的选择可以从30 MHz到4GHz之间。 如何选择接收机的中频? 短波接收机为什么选在465KHz?
在白噪声(即接收机热噪声)背景下应该选择何种滤波方式?
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
雷达接收机的任务是通过适当的滤波将天线上收到的微弱高频信号从伴随的 噪声和干扰中选择出来,同时处理后送到终端设备。 主要组成部分是:
雷达的工作原理简述及应用

雷达的工作原理简述及应用简介雷达(Radar)是一种利用电磁波进行探测和测距的无线电设备。
它通过发射无线电波并接收其反射信号来探测、跟踪和识别目标。
雷达技术广泛应用于航空航天、军事、气象、海洋、地质勘探等领域。
本文将简要介绍雷达的工作原理及其应用。
工作原理雷达的工作原理可以概括为以下几个步骤:1.发射:雷达首先发射一束无线电波(通常是微波),这个无线电波称为“脉冲”。
脉冲一般由雷达发射器产生并通过天线发射出去。
2.接收:当脉冲遇到目标物时,它会被目标物表面反射,并返回到雷达的接收器。
3.处理:雷达接收器会对接收到的信号进行处理,通过测量信号的时间延迟和频率变化等信息,确定目标物的距离、速度和方向。
4.显示:最后,雷达系统将处理后的数据显示在显示屏上,提供给操作人员做进一步的分析和决策。
雷达的应用军事应用雷达技术在军事领域有着广泛的应用。
它可以用于敌我识别、目标追踪、导航和导弹防御等方面。
以下是雷达在军事应用中的几个常见的应用领域:•空中监视:雷达可以通过监视空中目标来提供空中情报,从而实现空中监视和控制。
这对于防空系统以及军事航空活动非常重要。
•海上监视:雷达可以用于监测海上目标,包括敌方舰艇、潜艇和航空器等。
通过监视海上目标,雷达可以帮助军方实现海上安全和边界防御。
•地面监视:雷达可以监视地面目标,包括敌方部队和车辆等。
通过对地面目标的有效监视,雷达可以提供战场态势和战场感知。
气象应用气象雷达是一种非常重要的天气监测设备,它可以探测到大气中的降水、风暴和其他天气情况。
以下是雷达在气象应用中的几个常见的应用领域:•降水监测:雷达可以检测到大气中的降水情况,包括雨水、雪和冰雹等。
通过对降水的监测,气象雷达可以帮助气象部门及时预警和预测降水情况,提供准确的降水信息。
•风暴监测:雷达可以探测到风暴的形成和演变,包括雷暴、龙卷风和风暴前沿等。
通过对风暴的监测,气象雷达可以提供风暴的路径和强度信息,有助于预警和预测。
雷达工作原理及相控阵雷达工作原理

雷达的工作原理雷达(radar)原是“无线电探测与定位”的英文缩写。
雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。
雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。
电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。
天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。
由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。
接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。
根据电磁波的传播速度,可以确定目标的距离公式为:S=CT/2 其中S为目标距离,T为电磁波从雷达发射出去到接收到目标回波的时间,C为光速雷达测定目标的方向是利用天线的方向性来实现的。
通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。
两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。
测定目标的运动速度是雷达的一个重要功能,雷达测速利用了物理学中的多普勒原理:当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。
雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。
其中,作用距离是指雷达刚好能够可靠发现目标的距离。
雷达原理3- 雷达接收机

第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机 3.1.2
1. 灵敏度 灵敏度表示接收机接收微弱信号的能力。 超外差式雷达接收机的灵敏度一般约为(10-12~10-14)W.
接收机的工作频带宽度主要决定于高频部件(馈线系统、高频放大器和 本机振荡器)的性能。 带宽是不是越宽越好?
第3章雷达接收机
3. 动态范围 动态范围表示接收机能够正常工作所容许的输入信号
强度变化的范围。 最小输入信号强度通常取为最小可检测信号功率Si min,
允许最大的输入信号强度则根据正常工作的要求而定。 使接收机开始出现过载时的输入功率与最小可检测功率
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
3.1 雷达接收机的组成和主要质量指标
3.1.1 超外差式雷达接收机的组成 l接收机的任务
发 射脉 冲 噪声
被 噪声 淹 没 的信 号
图3.3 显示器上所见到的信号与噪声
第3章雷达接收机 2. 接收机的工作频带宽度
接收机的工作频带宽度种类?
接收机的顺时带宽是指,该部件在特定的增益(有时是相位)容差内能 同时放大两个或两个以上信号的频带。
调谐带宽是指该部件在调整适当的电气或机械旋钮时可以工作,而不降 低指定性能的频带。
雷达技术原理

雷达技术原理本文将介绍雷达技术的工作原理。
雷达是一种主动式无线电测距测速系统,可以探测和跟踪远距离目标,并提供其位置、速度、大小等基本信息。
雷达技术在天文学、气象学、军事、民用航空等领域都有广泛的应用。
雷达的基本原理是利用电磁波在目标与雷达之间的传输、散射或反射,从而实现距离、方位和速度测量的目的。
雷达技术的工作原理雷达技术的工作原理涉及到电磁波的产生、传输、接收和处理等多个环节。
下面将分别介绍雷达系统中各部分的工作原理。
电磁波的产生雷达系统需要产生电磁波,以便进行测量。
为了产生电磁波,可以使用不同类型的电源,例如发电机、电池或光纤。
一般情况下,雷达系统会使用一台特殊的能够产生高频电磁波的设备,称为雷达发射机。
雷达发射机可以接收电源的电能,并将其转换成高频电磁波,然后将其输出到天线。
电磁波的传输电磁波在传输过程中会受到各种环境因素的干扰,例如气候、大气层、障碍物等。
电磁波的传播距离也会受到其频率和波长的影响。
雷达系统中常用的电磁波频率范围是从1 GHz到100 GHz,对应波长从30厘米到3毫米。
雷达系统一般会使用天线将产生的电磁波传输到目标,并接收其反射或散射回来的信号。
天线可以将电磁波转换为电流信号,并将其发送到雷达接收器进行处理。
电磁波的接收雷达系统的接收器需要能够接收反射或散射回来的电磁波信号,并将其转换为电流信号。
一般情况下,雷达系统会使用一台特殊的接收器,称为雷达接收机。
雷达接收机可以将接收到的电流信号转换为数字信号,并通过信号处理算法来提取目标的距离、方位和速度等信息。
电磁波的处理通过信号处理算法,雷达系统可以对接收到的电磁波信号进行分析,并提取出目标的距离、方位和速度等信息。
雷达系统会将上述信息通过显示屏、电子设备或计算机等方式传送给用户或操作员。
根据用户或操作员的需要,雷达系统可以实现不同的功能,例如探测、识别、追踪、导航或通信等。
雷达技术的应用雷达技术在天文学、气象学、军事和民用航空等领域都有广泛的应用。
《雷达原理与系统》PPT课件

W
G 发射天线增益
倍
Ar 接收天线有效面积(孔径)m2
工作波长 m
目标的雷达截面积 m2
R 雷达与目标之间的距离 m
Pr min 接收机灵敏度 W
未考虑因素:大气衰减与路径(多精径选,课件曲p率pt),目标特性与起伏
9
1.1 雷达的任务
举例:
某雷达发射脉冲功率为200KW,收发天线增益为30dB,波长0.1m,抗研究所 2014年2月
精选课件ppt
1
主要内容
1、绪论
2、雷达发射机
3、雷达接收机
4、雷达终端显示器与录取设备
5、雷达作用距离
6、目标距离的测量
7、目标角度的测量
8、目标速度的测量
精选课件ppt
2
主要内容
9、连续波雷达 10、脉冲多普勒雷达 11、相控阵雷达 12、数字阵列雷达 13、脉冲压缩雷达 14、双基地雷达 15、合成孔径雷达
收发信号载波频率的差(多卜勒频率)
举例:
fd
ttrt2Vr
2t
tr 2R0Vrt c
频率为10GHz的雷达,当目标径向速度为300m/s时,其多卜勒频率为
c f3 1 1 18 0 H m 0 0/s z0 .0m 3 ,fd2 0 3 .0m m 0 3 /s 0 2K 0Hz
精选课件ppt
8
灵敏度为-110dBm,不考虑大气损耗等,试求其对=1m2目标的最大作用
距离
1
Rm
ax
2
105 1032 0.12
4 3 1014
1
4
1
2 1023
4 3
4
100.786km
精选课件ppt
雷达接收机的工作原理

雷达接收机的工作原理雷达接收机是一种将雷达信号从接收天线传到解调器的机制,其主要作用是将来自雷达天线的电磁波转化为电信号,以供后续处理。
雷达接收机是雷达系统中至关重要的一部分,其主要工作就是接收反射信号,提取目标信息,然后对目标进行跟踪和定位。
雷达接收机的工作原理:雷达接收机的工作原理可以简单地分为两个步骤:第一步是将返回天线的电磁波转化为电信号,第二步是对电信号进行放大和滤波,然后将其输送到解调器以及其他处理单元进行处理。
第一步:将接收到的电磁波转化为电信号雷达接收机使用共振回路来将接收天线接收到的电磁波转化为电信号。
共振回路是一个可以与特定频率振荡的电容和电感组合的电路元件。
当接收天线接收到电磁波时,它会将电场和磁场分别指向接收天线的两个端口。
这些场产生的电压被输入到共振回路中,从而产生振荡电压。
第二步:对电信号进行放大和滤波在将来自天线的信号转化为电信号之后,雷达接收机会将其进一步将其放大和滤波。
接收到的电信号通常非常微弱,因此需要一个放大器来提高信噪比,同时也要进行滤波,以去除任何不需要的频率成分。
滤波的目的是去除噪声和干扰,从而提高雷达系统的灵敏度。
雷达接收机中的放大器和滤波器通常采用晶体管、IO 器件组成的电路。
这些电路可以根据不同的频率和信号强度条件进行优化,以提高雷达系统的性能。
总结:雷达接收机是雷达系统中至关重要的一个部件。
它负责将来自雷达天线的电磁波信号转化为电信号,并对其进行放大和滤波来去除噪声和干扰。
雷达接收机的主要任务是提取目标信息,从而实现目标跟踪和定位。
在雷达系统中,雷达接收机的性能往往是决定系统性能的关键因素之一。
因此,对于雷达系统的设计和优化而言,雷达接收机是一个非常关键的组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章雷达接收机 4. 噪声带宽
功率谱均匀的白噪声, 通过具有频率选择性的接收线性系统后, 输出的 功率谱pno(f)就不再是均匀的了, 如图3.7的实曲线所示。 这个频带Bn称为 “等效噪声功率谱宽度”, 一般简称“噪声带宽”。 因此, 噪声带宽可由下 式求得:
0 pno ( f )df pno ( f0 )Bn
无源四端
网络
RA
Ga
RL
No kT0Bn
F No 1 NiGa Ga
图3.9 无源四端网络
第3章雷达接收机 2. 等效噪声温度
接收机外部噪声可用天线噪声温度TA来表示, 接收机外部噪声的额定功率为
NA=kTABn
(3.2.18)
把接收机内部噪声在输出端呈现的额定噪声功率ΔN等效到输入端来计算, 这
为了使接收机的总噪声系数小, 要求各级的噪声系数小、额定 功率增益高。而各级内部噪声的影响并不相同, 级数越靠前, 对 总噪声系数的影响越大。
第3章雷达接收机
自天线
馈线 Gf 1/Gf
接收机 放电器
Gg 1/Gg
限幅器 Gl 1/Gl
低噪声 高放
GR FR
混频器 Gc Fc
中频 放大器 至检波器
GI FI
(3.2.28)
第3章雷达接收机
一般都采用高增益(GR≥20dB)低噪声高频放大器, 因此式(3.2.28)
可简化为
F0
FR G f GgG1
(3.2.29)
若不采用高放, 直接用混频器作为接收机第一级, 则可得
F0
tc F1 1 G f GgG1Gc
(3.2.30)
式中 tc为混频器的噪声比, 本振噪声的影响一般也计入在内。
(3.2.11)
将No代入式(3.2.10)可得
F 1 N
k T0 BnGa
(3.2.12)
第3章雷达接收机
下面对噪声系数作几点说明: ① 噪声系数只适用于接收机的线性电路和准线性电路, 即 检波器以前部分。 ② 噪声系数只由接收机本身参数确定。
③ 噪声系数F是没有单位的数值, 通常用分贝表示
第3章雷达接收机 3.2.4 接收机灵敏度
接收机的灵敏度表示接收机接收微弱信号的能力。 灵敏度用接收机输入端的最小可检测信号功率Si min来表示。
第3章雷达接收机
已经知道, 接收机噪声系数F0为
或者写成
F0
Si So
/ /
Ni No
(3.2.32)
Si Ni
F0
So No
(3.2.33)
此时, 输入信号额定功率为
接收机中频的选择和滤波特性是接收机的重要质量指标之 一。
在中频的选择可以从30 MHz到4GHz之间。 如何选择接收机的中频? 短波接收机为什么选在465KHz?
在白噪声(即接收机热噪声)背景下应该选择何种滤波方式?
第3章雷达接收机
5. 工作稳定性和频率稳定度 工作稳定性是指当环境条件(例如温度、 湿度、 机械振动等) 和电源电压发生变化时, 接收机的性能参数(振幅特性、 频率特 性和相位特性等)受到影响的程度, 希望影响越小越好。
Pno ( f ) o
Pno (f0) Bn
(3.2.7)
f
第3章雷达接收机 3.2.2 噪声系数和噪声温度
1. 噪声系数
噪声系数的定义是: 接收机输入端信号噪声比与输出端信号噪声比的比值。
EsA ~ Esi ~
RA
Si Ni
接收机
线性电路
Ga
So
RL
No
F Si / Ni So / No
(3.2.9)
第3章雷达接收机
3. 动态范围 动态范围表示接收机能够正常工作所容许的输入信号
强度变化的范围。 最小输入信号强度通常取为最小可检测信号功率Si min,
允许最大的输入信号强度则根据正常工作的要求而定。 使接收机开始出现过载时的输入功率与最小可检测功率
之比, 叫做动态范围。
第3章雷达接收机 4. 中频的选择和滤波特性
包络检波器 视
90°
同频检波器
uI(t)
频
放
uQ(t)
大
器
限幅放大器
相位检波器 cos sin
图3.2 超外差式雷达接收机的一般方框图
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
• 混频器的干扰 • 组合频率干扰
fk pf0 qfs fi
No=kT0BnG1G2F0
(3.2.24a)
而
No N012 N2
(3.2.24b)
Ni=kT0Bn
F1,G1,Bn
F2,G2,Bn
No=No1 2+N2
第3章雷达接收机
No由两部分组成: 一部分是由第一级的噪声在第二级输出端呈现
的额定噪声功率No12,其数值为kT0BnF1G1G2, 第二部分是由第二
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
Si
Ni F0
So No
(3.2.34)
式中, Ni=kT0Bn为接收机输入端的额定噪声功率。于是进一步得
到
Si
k T0 Bn F0
So No
(3.2.35)
第3章雷达接收机
为了保证雷达检测系统发现目标的质量(如在虚警概率为 10-6的条件下发现概率是50%或90%等), 接收机的中频输出必须 提供足够的信号噪声比, 令So/No≥(So/No)min时对应的接收机输入 信号功率为最小可检测信号功率, 即接收机实际灵敏度为
第3章雷达接收机
6. 抗干扰能力 在现代电子战和复杂的电磁干扰环境中, 抗有源干扰和无 源干扰是雷达系统的重要任务之一。
第3章雷达接收机 7. 微电子化和模块化结构
采用单片集成电路, 包括微波单片集成电路(MMIC)、 中频 单片集成电路(IMIC)和专用集成电路(ASIC);其主要优点是体积 小、重量轻。
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机第3章雷达 Nhomakorabea收机第3章雷达接收机 3.1.2
1. 灵敏度 灵敏度表示接收机接收微弱信号的能力。 超外差式雷达接收机的灵敏度一般约为(10-12~10-14)W.
发射脉冲 噪声
被噪声淹 没的信号
图3.3 显示器上所见到的信号与噪声
另外,采用批量生产工艺可使芯片电路电性能一致性好,成本 也比较低。
第3章雷达接收机
3.2 接收机的噪声系数和灵敏度
接收机噪声的概率特性
第3章雷达接收机
• 对数接收器具有恒虚警的特性
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机 2. 额定噪声功率
高频输入
接收机 保护器
低噪声高 频放大器
混频器
中频放大器 (匹配滤波器)
检波器
视 频 至终端设备 放大器
高 频部 分
本振
第3章雷达接收机
天线
近程增益 控制(STC)
AGC
收发开关 接收机保护器 低噪声高频放大器
混 频器 中频放大器 中频增益衰减 中频滤波器
发射机 稳定本振
对数放大器
线性放大器
相干本振
F2 1 G1
(3.2.26)
第3章雷达接收机 三级级联推导
F0
F1
F2 1 G1
F3 1 G1G2
第3章雷达接收机 同理可证, n级电路级联时接收机总噪声系数为
F0
F1
F2 1 G1
F3 1 ..... G1G2
Fn 1 G1G2 ....Gn 1
(3.2.27)
F=10 lg F(dB)
(3.2.13)
第3章雷达接收机
④ 噪声系数的概念与定义, 可推广到任何无源或有源的四端网络。
接收机的馈线、放电器、移相器等属于无源四端网络, 其示意图见图 3.9, 图中Ga为额定功率传输系数。由于具有损耗电阻, 因此也会产生噪声, 下面求其噪声系数。
Ni kT0Bn
F1,GfGgGI,Bn
F2,GRGCGI,Bn
图3.12 典型雷达接收机的高、中频部分
将 图 3.12 中 所 列 各 级 的 额 定 功 率 增 益 和 噪 声 系 数 代 入 式 (3.2.27), 即可求得接收机的总噪声系数:
F0
Gf
1 GgG1
FR
Fc 1 GR
F1 1 GRGc
因此噪声系数的另一定义为: 实际接收机输出的额定噪声功 率No与“理想接收机”输出的额定噪声功率NiGa之比。
第3章雷达接收机
实际接收机的输出额定噪声功率No由两部分组成, 其中一部 分是NiGa(NiGa=kT0BnGa), 另一部分是接收机内部噪声在输出端所 呈现的额定噪声功率ΔN, 即
No=NiGa+ΔN=kT0BnGa+ΔN
S i
m in