北师版八年级中心对称

合集下载

最新北师大版八年级下册数学【教案】 中心对称图形

最新北师大版八年级下册数学【教案】  中心对称图形

教学时间课题中心对称图形课型新授课教学目标知识和能力理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.过程和方法复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.情感态度价值观让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.教学重点中心对称的两条基本性质及其运用.教学难点让学生合作讨论,得出中心对称的两条基本性质.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O 是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材.三、应用拓展例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业设计必做选做教学反思。

北师大版八年级数学下册课件-中心对称

北师大版八年级数学下册课件-中心对称
讲授Fra bibliotek课讲授新课
中心对称与中心对称图形的联系与区分
区分:
中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系:
如果将中心对称图形的两个图形看成一个整 体,则它们是中心对称图形.
如果将中心对称图形对称的部分看成两个图 形,则它们成中心对称.
讲授新课
讲授新课
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
O
讲授新课
注意:
平行四边形不是轴对称图形! 是A中心对称图形D
O


课堂小结
请同学们试着小结本节课
讲授新课
A
O
B C
C1 B1
A1
讲授新课
A
C1
B1
O
B
(1)关于中心对称C 的两个图形是全A等1 形;
(2)关于中心对称的两个图形,对称点所连线段 都经过对称中心,而且被对称中心平分.
讲授新课
作图
(1)如图,选择点O为对称中心,画出点A关 于点O的对称点A′;
A
O
A′
画法:连接AO并延长到A′,使OA′=OA,得到点 A的对称点A′.
北师版 八年级 下册
第三章 图形的平移和旋转
3 中心对称
讲授新课
讲授新课
讲授新课
中心对称与轴对A称的联系与区分C1 B1
B
轴对称
O
C
A1
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕中心旋转180°
3 翻转后和另一个图形重合 旋转后和另一个图形重合
3. 顺次连接A′、B′、C′各点.

北师大版数学八年级下册3.3《中心对称》教学设计

北师大版数学八年级下册3.3《中心对称》教学设计

北师大版数学八年级下册3.3《中心对称》教学设计一. 教材分析北师大版数学八年级下册3.3《中心对称》是学生在学习了平面几何的基本概念和性质之后的内容。

本节课主要介绍中心对称的概念,性质及其在实际问题中的应用。

通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决一些几何问题。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维和解决问题的能力。

但是,对于中心对称这一概念,学生可能比较陌生,需要通过实例和练习来理解和掌握。

同时,学生可能对于如何运用中心对称解决实际问题存在一定的困难。

三. 教学目标1.知识与技能:理解中心对称的定义,掌握中心对称的性质,能够运用中心对称解决一些几何问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。

四. 教学重难点1.重点:中心对称的定义和性质。

2.难点:如何运用中心对称解决实际问题。

五. 教学方法1.讲授法:通过讲解中心对称的定义和性质,引导学生理解和掌握。

2.案例分析法:通过分析实际问题,引导学生运用中心对称解决几何问题。

3.小组讨论法:通过小组讨论,引导学生交流思想,共同解决问题。

六. 教学准备1.教具:多媒体课件、几何图形、黑板。

2.学具:学生手册、练习册。

七. 教学过程1.导入(5分钟)通过多媒体课件,展示一些生活中的中心对称现象,如旋转门、时钟等,引导学生观察和思考,引出中心对称的概念。

2.呈现(10分钟)讲解中心对称的定义和性质,引导学生理解和掌握。

3.操练(10分钟)通过一些练习题,让学生运用中心对称解决几何问题,巩固所学知识。

4.巩固(10分钟)让学生分组讨论,分析实际问题,运用中心对称解决。

引导学生交流思想,共同解决问题。

5.拓展(10分钟)通过一些综合性的练习题,提高学生的解题能力,拓展学生的思维。

北师大版数学八年级下册3.3《中心对称》教案

北师大版数学八年级下册3.3《中心对称》教案

北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。

教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。

二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。

同时,学生也学习了图形的轴对称,对对称概念有一定的理解。

但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。

三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。

2.培养学生运用中心对称解决实际问题的能力。

3.培养学生合作探究的学习精神,提高学生的几何思维能力。

四. 教学重难点1.中心对称的概念和性质。

2.运用中心对称解决实际问题。

五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。

六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。

2.准备一些中心对称图形的性质的练习题。

3.准备一些实际问题,如在实际图形中寻找中心对称等。

七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。

2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。

3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。

4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。

5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。

6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。

7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。

北师大版八年级下册数学《3.3 中心对称》教案

北师大版八年级下册数学《3.3 中心对称》教案

北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。

本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。

但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。

三. 教学目标1.了解中心对称的概念,理解中心对称的性质。

2.能运用中心对称解决一些简单的问题。

3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。

四. 教学重难点1.中心对称的概念和性质。

2.如何运用中心对称解决实际问题。

五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。

通过实例,让学生了解如何运用中心对称解决实际问题。

六. 教学准备1.教学PPT。

2.中心对称的图片和实例。

3.练习题。

七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。

2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。

通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。

3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。

然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。

4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。

通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

北师大版八年级下册3中心对称教学设计

北师大版八年级下册3中心对称教学设计

北师大版八年级下册3中心对称教学设计一、教学目标1.掌握3中心对称的概念。

2.了解3中心对称的性质和应用。

3.能够运用3中心对称的方法解决几何问题。

4.培养观察能力和创新思维,提高数学素养和综合素质。

二、教学内容1.3中心对称的定义和性质。

2.3中心对称的判定方法。

3.3中心对称的应用——构造对称图形。

4.3中心对称的延伸——与平移、旋转的关系。

三、教学方法1.探究法:通过引导学生提出问题,自主探究3中心对称的概念和性质。

2.演示法:通过板书、ppt等形式演示3中心对称的判定方法和应用。

3.课堂练习:通过个人和小组练习,巩固3中心对称的概念和判定。

4.开放式探究:通过开放式问题引导学生深入思考3中心对称与其他几何变换的关系。

四、教学过程1. 导入环节1.教师引导学生回顾对称的概念和性质。

2.教师提出问题:“大家有没有想过一个点对称到另一个点的影射是如何实现的?”3.学生讨论后,教师引导学生思考3中心对称的概念和性质,并引入下一环节。

2. 探究环节1.将4个点分别标在坐标系的四个象限上,以原点为第一个中心,以第一象限的点为第二个中心,以第四象限的点为第三个中心。

2.学生分别计算这4个点分别关于三个中心的坐标,并观察关系。

3.教师引导学生思考3中心对称的性质,并总结出3中心对称的定义。

3. 演示环节1.教师演示3中心对称的判定方法,并进行实例解析。

2.教师演示3中心对称的应用——构造对称图形,并进行实例解析。

4. 练习环节1.学生个人和小组练习3中心对称的判定方法和应用。

2.教师纠正练习中学生的错误,并进行讲解和解析。

5. 拓展环节1.教师提出开放性问题,引导学生深入思考3中心对称与其他几何变换的关系。

2.学生小组讨论并汇报成果。

6. 总结环节1.教师对3中心对称的概念、性质、判定方法和应用进行总结。

2.学生总结本节课的学习内容和心得体会。

五、教学评价1.教师通过教学反复强调概念和性质,巩固学生对3中心对称的理解。

数学北师大版八年级下册《中心对称》教学设计

数学北师大版八年级下册《中心对称》教学设计

北师大版八年级下册3.3《中心对称》教学设计一、教学目标:☆知识与技能:了解中心对称、中心对称图形的概念,探索它的基本性质.☆过程与方法经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.☆情感态度价值观发现生活中的数学美,欣赏自然界的中心对称图形;二、教学重点:了解中心对称、中心对称图形的概念,探索它的基本性质教学难点:在参与活动中发展学生观察问题、分析问题、解决问题的科学探究能力;三、教学时间:( 1学时)四、教学过程一、【复习引入】:[活动过程]:1.通过几何画板的动画演示,带领学生回顾旋转的定义以及性质;2.提出问题:当旋转哪些特殊角度会使旋转前后图形有特殊的位置关系?师生互动引出课题;[活动目的]:利用几何画板的演示,教师的提问、追问让学生体会中心对称与旋转之间的从属关系,为后续学习做铺垫;二、【探究新知】☞知识点1:两成中心对称★两图形成中心对称定义:关于这个点对称或中心对称[活动过程]:教师提问:图中两组图形通过怎样的图形变换能够重合?师生互动后利用几何画板演示总结定义,引导学生找出定义中的关键词;[活动目的]:引入定义以后,通过学生找关键词,体会成中心对称是旋转的一种特殊情况;☞知识点2:探索成中心对称两图形的性质★动手画图,探究中心对称的性质请自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°,连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。

★中心对称的性质:[活动过程]:教师提出问题,引导学生通过小组合作画出旋转以后的图形,通过小组作品的展示,总结两图形成中心对称的性质,教师通过几何画板演示,以及学生说理进一步验证,最后学生动手画图;[活动目的]:通过学生的动手操作,经历探索性质的过程,通过几何画板直观演示,加深对性质的认识,最后通过推理证明,让学生感受数学的严谨性,在学生小组合作过程中,培养学生的团队意识.☞知识点3:中心对称图形先独立观察,再小组交流归纳:中心对称图形:[设计过程]:教师提出问题:通过怎样的变换图形能与原图形重合?师生互动总结定义,通过两组练习题进行训练,加深学生对中心对称图形的认识,并进一步举例我们所学过的平面图形中的中心对称图形.[活动目的]:通过几何画板直观演示认识定义,在总结定义关键词时,教师引导学生对比其与两图形成中心对称的区别与联系,发展学生类比学习的意识,通过练习、举例进一步加深学生对知识的理解.☞知识点4:旋转对称图形观看微视频,学习旋转对称图形定义[设计过程]:1.学生自主学习微课,了解旋转对称图形定义;2.举例说明旋转对称图形与中心对称图形之间的联系;[活动目的]:学习新知识的过程中,对比其与中心对称图形的联系,了解二者之间的从属关系,加深对中心对称图形的认识,发展类比学习的意识;三、【效果检测】1.下列图形中,中心对称图形有个个个个2.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.3与成中心对称,下列结论中不成立的是4为对称中心,若的长为.第3题第4题5如图,在平面直角坐标系中,点的坐标分别为Ⅰ请在图中画出与成中心对称;Ⅱ直接写出(1)中的三个顶点坐标.知者加速;我们把图(1)称作正六边形的基本图,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3(n).(1)将图(n)放在直角坐标系中,设其中第一个基本图的对称中心的坐标为(2)图(n)的对称中心的横坐标为.[活动过程]:学生学习完主要知识后是否达成了本节课的学习目标呢?教师通过效果检测来掌握.同时效果检测完成后教师应及时公布答案,组织学生通过“小组互帮进行对组内学习有困难的同学进行个别帮扶”,及时解决组内个别同学存在的问题.[活动目的]:通过学生自学、小组互帮、教师个别点拨等方式使学生养成独立思考、合作交流、反思质疑的学习习惯,再此过程中教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.四、【自主建网】★1.通过本节课的学习:你有哪些收获与感悟?2.展示两图形成轴对称实例,体会二者之间联系;[活动过程]:学生回答,教师引导,串联本节课所学知识点;类比轴对称,体会二者之间的联系与区别,发展学生类比学习的意识;【因人作业】必做题:课本84页 ----1,2,3选做题:课本84页-----4[设计说明]:通过因人作业的设置,让不同层次的学生都能学有所获,能享受到成功的喜悦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转 1800
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 2700
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 3600
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
能够互相重合的点叫做对称点。如:
A与A1,B与B1, C与C1 。
A C1 B1
O
B
C
A1
在平面内,一个图形绕某个点旋转1800,如 果旋转前后的图形互相重合,那么这个图形
叫做中心对称图形,这个点叫做它的对
称中心。
定理1 关于中心对称的两个图形是全等形。
定理2 中心对称图形对称点的连线通过对称 中心,并且被对称中心平分。
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
试 一试
如图,点O是正六边形ABCDEF的中心。
C
600或其 整数倍。
D E
B A
F
直线AD,BE,CF 以及AB,BC,CD 的垂直平分线都是 这个正六边形的对 称轴。
(1)找出这个轴对称图形的对称轴。
(2)这个正六边形绕点O行四边形是中心对称图形吗?如果是,请找 出它的对 称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的哪些 性质?
O
(1)平行四边形是中心对称图形,对称中心是两条对 角线的交点。 (2)能验证平行四边形的对边相等、对角相等、对角线互 相平分等性质。
(3)在平行四边形、矩形、菱形、 正方形、梯形、等腰梯形中,哪些 图形是具有轴对称性?哪些图形是 中心对称图形?
北师版八年级中心对称
(1)下面这些图形有什么共同的特征? (2)你能将这些图形绕其上的一点旋转
1800,使旋转前后的图形完全重合吗?
(1)
(2)
(3)
(4)
定义:如果一个图形绕一个点旋转180°后 ,能够和另一个图形互相重合,那么这两个图形 关于这个点对称或中心对称。
这个点叫做它的对称中心。
旋转 nx900
正方形是中心对称图形;它绕两条对角线的交点 旋转900或其整数倍,都能与原来的图形重合,因此, 可以验证正方形的四边相等、四角相等、对角线互相 垂直平分等性质。
2、下列哪个图形是中心对称图形?
第一个和第三个是中心对称图形。
拓展演练
1、在26个英文大写正体字母中,哪些字母是 中心对称图形?
(3)如果换成其他的正多边形呢?能得到一般的结论吗?
一般地,绕正n边形的中心旋转3600/n或其整数倍都能与原来 的图形重合。
正三角形是中心对称图形吗?正五边形 呢?正六边形呢?……
边数为偶数的正多边形都是中心对称图形。
轴对称图形与中心对称图形的比较
轴对称图形与中心对称图形的比较
A
C1
B1
O
B
C
A1
轴对称
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕中心旋转180°
3 翻转后和另一个图形重合 旋转后和另一个图形重合
携手共进,齐创精品工程
Thank You
世界触手可及
议一议
(1)举出生活中的一些中心对称图形。 (2)下面的扑克牌中,哪些牌面是中心对称图形?
1、正方形是中心对称图形吗?正方形绕两条对角 线的交点旋转多少度能与原来的图形重合?能由 此验证正方形的一些特殊性质吗?
旋转 900
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
相关文档
最新文档