矢量场与标量场以及计算方法资料
标量场和矢量场

2、矢量相加和相减可用平行四边形法则求解:
A B
B
A
B
A
AB
B
矢量的乘法
1)矢量与标量相乘
v kA
evx
kAx
evykAy
evzkAz
evAvk
v A
标量与矢量相乘只改变矢量的大小,不改变方向。
2)矢量与矢量点乘
A B | A || B | cosAB Ax Bx Ay By Az Bz
设矢量 A与三个坐标轴 x, y, z 的夹角分别为, , ,则
z
Ax Acos
Ay Acos
v Az
v A
Az Acos
A A(ex cos ey cos ez cos ) 任一方向的单位矢量为
v Ax
o
eA ex cos ey cos ez cos x
v Ay
y
2
2.位置矢量
R2 [(x x)2 ( y y)2 (z z)2 ]
3
3.矢量的代数运算
v A
evx
Ax
evy
Ay
evz
Az
v B
evx
Bx
evyLeabharlann ByevzBz
矢量的加法和减法
v A
v B
evx
( Ax
Bx
)
evy (Ay
By
)
evz
( Az
Bz
)
说明:
1、矢量的加法符合交换律和结合律:
vv vv vv v v vv A B B A (A B) C A (B C)
A B | A || B | sin AB en Ax
Ay
Az
矢量分析【电磁场与波+电子科技大学】

面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为
或
,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记
为
或
。
说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明
矢量分析

∇ × ∇ϕ = 0
梯度
三、矢量场的通量、散度
1、通量
r 定义:若矢量场 A 分布于空间中,在空间中存在任意曲面 S
r 上。定义 A 在曲面上的积分为通量。
r r Ψ = ∫ A ⋅ dS
s
曲面 S 的方向 开表面: 作一封闭线圈,选定绕行方向后,沿绕行方向 按右手螺旋法则,拇指方向为开表面方向 闭合面:外法线方向
s l
无旋场 性质
r ∇× A = 0
r ∇ ⋅ (∇ × A) = 0
旋度
例题讲解(课本) 例题1-8 例题1-9 例题1-10
例题
五、亥姆霍兹定理
内容:位于空间有限区域内的矢量场,当它的散度,旋度 以及它在区域边界上的场分布给定之后,该矢量场就被唯 一确定;对于无限大空间,如果矢量在无限远处减少至零 则该矢量由其散度和旋度唯一确定。
基础
矢量表示式
r r r r A = er Ar + eϕ Aϕ + e z Az
微分长度
r r r r dl = er dr + eϕ rdϕ + e z dz
微分面积
r r dS r = er rdϕdz r r dS ϕ = eϕ drdz r r dS z = e z rdrdϕ
微分体积
dV = rdrd ϕdz
只改变大小,不改变方向 矢量与矢量点乘
s r r r A ⋅ B = A B cosθ AB = Ax Bx + Ay B y + Az Bz
r r r r A⋅B = B⋅A
基础
说明: 1、两个矢量的标量积或点积,是一个标量 。 2、Θ是A、B之间较小的夹角,小于Π弧度。 3、其结果表示一个矢量的模和另一个矢量在该矢量 上的投影和乘积。 矢量与矢量叉乘
1-矢量分析与场论

ex ex 0, ey ey 0, ez ez 0
ex ey ez , ey ez ex , ez ex ey
A B A B en AB
A// B A B 0
A B Axex Ayey Azez Bxex Byey Bzez
如果要了解场的局部特性,即考虑场在空间每 个点沿各个方向的变化情况,
对于标量场,需要引入方向导数和梯度的概念;
对于矢量场,需要引入散度和旋度的概念。
从数学上看,场是定义在空间区域上的函数:
静态标量场和矢量场可分别表示为:
u(x, y, z)、F(x, y, z)
时变标量场和矢量场可分别表示为:
矢量的叉积不符合交换律,但符合分配律 A B B A A(B C) A B AC
两个矢量的叉积为矢量
矢量运算恒等式
A (B C) B (C A) C (A B) A(BC) B(AC) C(A B)
混合积 双重矢量积
几个特殊结论
假设 M(x, y, z) 为矢量线上任一点,则过点 M沿矢量 线的位移元 dl 与矢量 A(x, y, z)共线。
共线矢量dl 与 A(x, y, z) 满足方程
dl A 0 或
dx dy dz Ax Ay Az
矢量形式
标量形式
A
M
dl r r dr
上面这两个方程称为矢量线方程
M0
而 l 的方向余弦为 cos
2
2
12 22 22 3
cos cos
2
2
12 22 22 3
1
1
12 22 22 3
第01章 矢量分析和场论基础

cos ϕ e y
− sin ϕ e x
cos ϕ e x ϕ
e ρ cos ϕ sin ϕ 0 e x e = − sin ϕ cos ϕ 0 e ϕ y ez 0 0 1 e z − sin ϕ cos ϕ 0 0 e ρ 0 eϕ 1 e z
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
3.体、面和线微分元 体 体微分元 dV = ρ d ρ dϕ dz
dS ρ = ρ dϕ dze ρ 面微分元 dSϕ = d ρ dz eϕ dS = ρ d ρ dϕ e z z
Z
ez
线微分元 dl = d ρ e ρ + ρ dϕ eϕ + dze z
P( ρ ,θ , ϕ )
er eϕ
θ是位矢 与正 轴之间的夹角, 是位矢r与正 轴之间的夹角, 与正Z轴之间的夹角
θ
in rs
eθ
r sin θ sin ϕ
(1-17)
式中 n 是一垂直于由矢量 A 和 B 构成的平面的单位矢量, 构成的平面的单位矢量,并遵循 右手螺旋法则,见图1-3。 右手螺旋法则,见图 。
图1-3 矢量的标积和矢积
矢量的矢积不满足交换律: 矢量的矢积不满足交换律: A × B = −B × A (1-18) 矢积满足分配律和数乘, 矢积满足分配律和数乘,即
ϕ
ez
P( ρ , ϕ , z )
ρ
eϕ
eρ
图1-10 圆柱坐标
0 ≤ ρ < +∞ 取值范围 0 ≤ ϕ ≤ 2π −∞ < z < +∞
z = 常数
矢量场,标量场,散度,梯度,旋度的理解

1。
梯度gradient设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy处该参数为w+dw,则称为该物理参数的梯度,也即该物理参数的变化率.如果参数为速度、浓度或温度,则分别称为速度梯度、浓度梯度或温度梯度。
在向量微积分中,标量场的梯度是一个向量场。
标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率.更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。
在这个意义上,梯度是雅戈比矩阵的一个特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率. 梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。
可以通过取向量梯度和所研究的方向的点积来得到斜度.梯度的数值有时也被成为梯度.在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量(δf/x)*i+(δf/y)*j这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y)类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k 记为grad[f(x,y,z)]2.散度气象学中指:散度指流体运动时单位体积的改变率。
简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。
用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。
表示辐合、辐散的物理量为散度.微积分学→多元微积分→多元函数积分中:设某量场由A(x,y,z)= P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中P、Q、R 具有一阶连续偏导数,∑是场内一有向曲面,n 是∑在点(x,y,z) 处的单位法向量,则∫∫A·ndS 叫做向量场A 通过曲面∑向着指定侧的通量,而δP/δx + δQ/δy + δR/δz 叫做向量场A 的散度,记作div A,即div A = δP/δx + δQ/δy + δR/δz。
矢量场与标量场以及计算方法资料

图 1-5 矢量管
矢量管:
通过场域某一曲面s上的所有点的矢量 线的全体构成的管状区域。
0.2 标量场的梯度
Gradient of Scalar Field
1.方向导数:设一个标量函数 (x,y,z),若函数 在点 P 可微,则 在点P 沿任意方向 l 的变化率称
为方向导数,即
l
(
x
ex
y
ey
(x2 y2 z2 )3/2
40 r 40r2
0.3 矢量场的通量与散度
Flux and Divergence of Vector 1 通量 ( Flux )
矢量E 沿有向曲面 S 的面积分
Φ S AndS = S A dS
若 S 为闭合曲面Φ S A dS
图0.3.1 矢量场的通量
(设曲面S的单位法向矢量en),An为A在en上的投影
l A dl S ( A) dS
矢量函数的线积分与面积分的相互转化。
在电磁场理论中,高斯定理 和 斯托克斯定理 是 两个非常重要的公式。
例1-12 求矢量场A=x(z-y) ex+y(x-z)ey+z(y-x)ez在点M(1,0,1) 处的旋度以及沿n=2ex+6ey+3ez方向的环量面密度。
lim
V 0
1 V
A dS lim = d =divA
V 0 V dV
根据奥式公式
蜒 S
A dS
S
( Axdydz
Aydzdx
Azdxdy)
V
( Ax x
Ay y
Az )dV z
通量可看成V内各点处的发散强度的体积分
divA
A
Ax x
标量场和矢量场

第 1 章矢量分析1.2 标量场和矢量场1.2.1 场的分类1.2.2 场的表示一. 什么是场-具有某种物理量在空间的分布。
如地球周围的温度场、湿度场、重力场;另外还有气功场;百慕大三角场(洞、汇)-场在数学上用函数表示。
即场中任一个点都有一个确定的标量值或矢量。
场量在占有空间区域中,除开有限个点和某些表面外,是处处连续、可微的。
二. 场的分类标量场:具有标量特征的物理量在空间的分布,如温度场T(x,y,z)、电位Φ(x,y,z)等。
矢量场:具有矢量特征的物理量在空间的分布,如重力场F(x,y,z)、流速场v(x,y,z)等。
标量场和矢量场都有可能随时间变化。
动态场: 场量随时间变化(时变场)f ( x, y, z, t ), A( x, y, z ,t ), 四元函数静态场: 场量不随时间变化(恒定场)f ( x, y, z), A( x, y, z), 三元函数2)图示法u (x,y,z ):等值面、等值线1. 标量场的表示方法1)数学法f = f ( x, y, z)(A )等高线图(B )色码图(C )地势图三. 场的表示方法标量场Scalar Field火星夜间温度图2. 矢量场的表示方法F(x,y,z) = a x F x(x,y,z) + a y F y(x,y,z) + a z F z(x,y,z) 1)数学法2)图示法(A)矢量图箭头方向→场量的方向箭头颜色或长度→场量的大小(A )矢量图2.图示法(B)场线图切向→场量的方向疏密程度→场量的大小。
(B)场线图(C)纹理图(Grass Seeds)纹理与场方向平行(C)纹理图点电荷产生的电场无限长载流线产生的磁场TE10电场、磁场、电流TE10电场、磁场矢量场和标量场点电荷产生的电场和电位四.场源Source of Field•场是由源产生的,场不能离开场源而存在•不同的场对应不同的源•源有矢量和标量之分(旋度源和散度源)如:温度场由热源产生静止电荷电场运动电荷磁场Note:电荷及电流是产生电磁场唯一的源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表明:标量函数 沿l方向的方向导数就是矢量g在l上的投影。
当 ( g,el ) 0 ,
最大
l
也就是只有当l的方向和g的方向一致时,方向导数才取得最 大值。
l的方向和g的方向垂直时,方向导数为零
l的方向和g的方向相反时,方向导数为-1,取得最小值,此
时 减小的最快
2. 梯度
g
x
ex
y
ey
☻ 标量场的梯度函数
建立了标量场与矢 量场的联系,这一 联系使得某一类矢 量场可以通过标量 函数来研究,或者 说标量场可以通过 矢量场的来研究。
形象描绘场分布的工具——场线
(1) 标量场--等值线(面)
其方程为:
(x, y, z) c
该曲面上任一点的函数值相等 等值面充满了场所在的空间
是单值函数,因此等值面不相交
图0.1.1 等高线
思考 在某一高度上沿什么方向高度变化最快?
3矢量场--矢量线(力线)
目的:形象地描绘矢量场A的分布 特点:
电磁场与电磁波
Vector Analysis(矢量分析)
标量场和矢量场 标量场的梯度 矢量场的通量与散度 矢量场的环量与旋度 亥姆霍兹定理 电磁场的特殊形式
1 标量场和矢量场
补充: 01.矢性函数
在二维空间或三维空间内的任一点P, 它是一个既存在 大小(或称为模)又有方向特性的量,故称为实数矢量,一般用
•
C=A×B=enAB sinθ
•
en=eA×eB (右手螺旋)
矢量的叉积不服从交换律,但服从分配律
A×B= -B×A
C
eann O eaBB
eaAA
B
A
C=A×B B
A
(a)
(b)
图 1 - 3 矢量积的图示及右手螺旋
(a) 矢量积
(b) 右手螺旋
1. 标量场和矢量场
场: 如果在某一空间区域内的每一点,都对应着某个物理量 的一个确定的值,则称在此区域内确定了该物理量的一个场。
1) 标量积
任意两个矢量A与B的标量积
(Scalar Product)是一个标量,
B
它等于两个矢量的大小与它
们夹角的余弦之乘积,如图
1-2所示, 记为
Bcos
A
•A·B=AB cosθ
图1-2 标量积
2) 矢量积
任 意 两 个 矢 量 A 与 B 的 矢 量 积 ( Vector Product)是一个矢量,矢量积的大小等于两 个矢量的大小与它们夹角的正弦之乘积,其 方向垂直于矢量A与B组成的平面, 如图1-3 所示,记为
z
ez)•(ex
cos
ey
cos
ez
cos )
cos cos cos
x
y
z
式中 , , 分别是任一方向 l 与 x, y, z 轴的夹角
设
g x ex y ey z ez ,
el
ex cos ey cos ez cos
则有:
l
g el
|
g
| cos( g, el )
换句话说, 在某一空间区域中,物理量的无穷集合表示 一种场。如在教室中温度的分布确定了一个温度场,在空间电 位的分布确定了一个电位场。(物理量的值可相等)
场的一个重要的属性是它占有一定空间,而且在该空间
域内, 除有限个点和表面外,其物理量应是处处连续 的。 若该物理量与时间无关,则该场称为静态场; 若该物理
设t是一数性变量,A为变矢,对于某一区间G[a, b] 内的每一个数值t, A都有一个确定的矢量A (t)与之对应,则 称A为数性变量t的矢性函数。记为
A A(t)
而G为A的定义域。矢性函数A(t)在直角坐标系中的三个坐 标分量都是变量t的函数,分别为Ax(t)、Ay(t)、Az(t),则矢性函 数A (t)也可用其坐标表示为
黑体A表示。
若用几何图形表示,它是从该点出发画一条带有箭头的 直线段,直线段的长度表示矢量A的模,箭头的指向表示该矢 量A的方向。
矢量一旦被赋予物理单位,便成为具有物理意义的矢量, 如电场强度E、磁场强度H、速度v等等。
若某一矢量的模和方向都保持不变, 此矢量称为常矢, 如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会 发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线 物体运动的速度v等。
例如,在直角坐标下:
(x,
y,
z)
4π [(x
1)2
5 (
y
2)2
z2]
标量场
然而在许多物理系统中, 其状态不仅需要 确定其大小,同时还需确定它们的方向,这就 需要用一个矢量场来描述。例如电场、磁场、 流速场等等。
A(x, y, z) 2xy2ex x2 zey xyzez
矢量场
2.标量场的等值面
(1)它上面每一点处的切线方向都与矢量场在该点的 方向相同
(2)矢量场中的矢量线也充满了整个场域,但它们互
不相交
其方程为:
A dl 0
在直角坐标下:
二维场 三维场
Ax Ay dx dy Ax Ay Az dx dy dz
图0.1.2 矢量线
•物理意义:矢量线和场量的变化方向一致
图 1-4 矢量场的矢量线
图 1-5 矢量管
矢量管:
通过场域某一曲面s上的所有点的矢量 线的全体构成的管状区域。
0.2 标量场的梯度
Gradient of Scalar Field
1.方向导数:设一个标量函数 (x,y,z),若函数 在点 P 可微,则 在点P 沿任意方向 l 的变化率称
为方向导数,即
l
(
x
ex
y
ey
量与时间有关,则该场称为动态场或称为时变场。
场是一个标量或一个矢量的位置函数,即场中 任一个点都有一个确定的标量或矢量。
在研究物理系统中温度、 压力、 密度等在一定
空间的分布状态时,数学上只需用一个代数变量来描 述, 这些代数变量(即标量函数)所确定的场为标量场, 如温度场T(x, y, z)、电位场φ(x, y, z)、高度场等。
A Ax (t)ex Ay (t)ey Az (t)ez
其中ex、ey、ez为x轴、y轴、z轴正向单位矢量。
•终点一般称为矢性函数A(t)的矢端曲线。
z
Z
P(X, Y, Z)
r
Aazz
Aaxx O
Y Aayy
y
X
x
图1-1 直角坐标系中一点的投影
02. 矢量的乘积
•矢量的乘积包括标量积和矢量积。
z
ez
grad
——梯度(gradient)
式中
ex
x
ey
y
ez
z
•
del(代尔)梯度的意义源自——哈密顿算子 图0.1.3
”
nabla (那勃拉)”)
等温线分布
标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数 的最大变化率,即
最大方向导数。 梯度的方向为该点最大方向导数的方向。