矢量场的散度是标量
矢量场的通量和散度

divA lim
AdV
V
lim ( A)P V
V 0
V
V 0
V
divA A
二、矢量场的散度(divergence)
A Ax Ay Az x y z
散度小结: 1. 矢量场的散度是一个标量,它是描述矢量场中
பைடு நூலகம்任一点发散性质的量; 2. 散度代表矢量场的通量源的分布特性:
A 0 (正源) A 0 (负源) A 0 (无源)
矢量场的通量和散度
➢ 本节的研究目的
寻找能够度量和刻画矢量场变化情况的 量 散度是描述矢量场中任一点发散性质 的量
➢ 本节的研究内容
一、矢量场的通量 二、矢量场的散度
一、矢量场的通量
在矢量场中,取一个有向曲面 S ,则矢量场A 在 S 上的面积分称为矢量 A 穿过曲面 S 的通量,即
Φ
A dS
二、矢量场的散度(divergence)
散度小结:
A 0 (正源) A 0 (负源) A 0 (无源)
3. 在矢量场中,若 A 0 , 称之为有源场, 称为(通量)源密度;
4. 若场中处处 A 0 ,称之为无源场。
本节要点
➢ 本节的研究目的
寻找能够度量和刻画矢量场变化情况的量 ——散度(分析矢量场的工具之一)
S
S A endS
A
S
en
一、矢量场的通量
通量的物理意义:不同物理量的通量意义不同。
以流速场为例,流速场 v 的通量表示单位时间 内流体穿过S 的流量。
v
S
en
Φ v dS S
表示穿出闭合
S面的净流量
en
一、矢量场的通量
根据通量的大小判断闭合面中源的性质:
电磁场与电磁波练习题

电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。
B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。
C.梯度的散度恒为零。
D.一个标量场的性质可由其梯度来描述。
5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。
电磁场与电磁波概念复习资料

一、判断1. 安培环路定理中,其电流I 是闭合曲线所包围的电流;2. 恒定磁场是无源、有旋场; P1113. 体电荷密度的单位是C/m3; P344. 面电荷密度的单位是C/m2; P355. 线电荷密度的单位是C/m ; P356. 体电流密度的单位是A/m2 ;P367. 面电流密度的单位是A/m ; P378. 矢量场A 的散度是一个标量;9. 如果0F ∇∙=,则F A =∇⨯; P2710. 如果0F ∇⨯=,则F u =-∇ ;P2611. 判断回路中是否会出现感应电动势,则看回路所围面积的磁通是否变化; P6312. 静电场的电容C 比拟恒定电场的电导G ;13. 静电场的电位移矢量D 比拟恒定电场的电流密度J ;P10814. 静电场的介电常数ε比拟恒定电场的电导率σ;P10815. 时变电磁场的能量以电磁波的形式进行传播; P17216. 在无源空间中,电流密度和电荷密度处处为0; P17217. 坡印延定理描述的是电磁能量守恒关系; P17618. 电导率为有限值的导电煤质存在损耗; P20519. 在理想导体内不存在电场强度和磁场强度;20. 弱导电煤质的损耗很小; P20821. 在两种煤质的分界面上,存在面电流分布时,磁场强度H 的切向分量不连续; P7922. 在两种煤质的分界面上,不存在面电流分布时,磁场强度H 的切向分量连续; P7923. 在两种煤质的分界面上,电场强度E 切向分量连续; P7924. 在两种煤质的分界面上,磁感应强度B 的法向分量连续; P7925. 在两种煤质的分界面上,存在面电荷时,电位移矢量D 的法向分量不连续; P7926. 在两种煤质的分界面上,不存在面电荷时,电位移矢量D 的法向分量连续; P7927. 无旋场,其场量可以表示为另一个标量场的梯度; P2628.无散场,其场量可以表示为另一个矢量场的旋度;P2729.梯度的定义与坐标系无关,但具体表达式与坐标系有关;P1230.均匀平面波在理想介质中,其本征阻抗是实数;P19731.时谐电磁场中,电场强度的复数表达式中不含时间因子;P18232.载有恒定电流的两个回路之间存在相互作用力;P4533.电偶极子是相距很小距离的两个等值异号的点电荷组成的电荷系统;P4034.麦克斯韦方程表明:时变电场产生磁场,时变磁场产生电场;P7035.静态电磁场是电磁场的一种特殊形式;P8936.静电场最基本的性质是对静止电荷有作用力,表明静电场有能量;P10037.回路中的感应电动势等于穿过回路所围面积磁通量的时间变化率;P6338.静电场和恒定磁场都属于静态电磁场;P8939.在静态场情况下,电场强度可用一个标量电位来描述P90;磁感应强度可用一个矢量磁位来描述;P11140.要在导电煤质中维持恒定电流,必须存在一个恒定电场;P10641.由麦克斯韦方程可以推导建立电磁场的波动方程;P17242.位移电流= 时变电场;P7043.电磁能量是通过电磁场传输的;44.应用最多的是时谐电磁场;P18045.均匀平面波在理想介质中,电场、磁场与传播方向之间相互垂直,是横电磁波(TEM波);电场和磁场的振幅不变;波阻抗为实数;电场与磁场同相位;电磁波的相速与频率无关;电场能量密度等于磁场能量密度;P19646.均匀平面波在导电煤质中,电场、磁场与传播方向之间相互垂直,仍然是横电磁波(TEM波);电场与磁场的振幅呈指数衰减;波阻抗为复数,电场与磁场不同相位;电磁波的相速与频率有关;平均磁场能量密度大于平均电场能量密度;P20747.电磁波在良导体中,衰减常数随频率、煤质的磁导率和电导率的增加而增大;P20948.趋肤效应是良导体中的电磁波局限于导体表面附近区域;P20949.散度定理是体积分到面积分的变化;P2050.斯托克斯定理是面积分到线积分的变化;P2451.在无损耗煤质中,电磁波的相速与波的频率无关;52.标量场的梯度是一个矢量;P1353.高斯定理中,电场强度由闭合曲面内的电荷确定;54.均匀平面波在理想导体表面发生透射;55.反射系数和透射系数的差为1;P24456.在两种煤质中间插入四分之一波长的匹配层是为了消除煤质1的表面上的反射;P24057.静态场中的边值问题分为三类。
电磁场选择题

填空题:1. 设某螺旋管通有直流I 时的自感为L ,当通有电流2I 时,其自感为 L 。
2. 矩形波导填充 6.25r ε=的理想介质,波导尺寸5025a b mm mm ⨯=⨯。
若要求只传输10TE 模,工作波长0λ的范围为。
050100mm mm λ<<3. 已知一平面波的电场强度(34)ˆˆˆ(453)o jk x z x y z E aj a a e --=++,该平面波的传播方向上的单位矢量ˆn a=(0.6,0,0.8)-,极化方式为 右旋圆极化 。
4. 一个由理想非均匀媒质填充的有限封闭区域被外加均匀电场所极化,则在该区域内部出现的与束缚体电荷密度p ρ对应的束缚体电荷p Q 和与束缚面电荷密度ps ρ对应的束缚面电荷ps Q 之间满足的关系是 0p ps Q Q +=,因为ˆ()()0nVSP dV aP dS -∇+=⎰⎰(填相关公式)。
1. 麦克斯韦方程中包括了三个实验定律,它们分别为: 库伦定律、 安培定律 和 法拉第电磁感应定律。
2. 在研究静电场时,可以引入电位函数的原因是:0E ∇⨯=(或静电场是无旋场或静电场是保守场)。
3. 无源场中麦克斯韦方程组的积分形式为:B E dS c sdl t ∂⋅=-⋅⎰⎰∂ 、DH dS c s dl t∂⋅=⋅⎰⎰∂ 、0S D dS ⋅=⎰ 、B 0s dS ⋅=⎰。
4. 麦克斯韦方程的微分形式中,说明存在电磁波的方程为:BE t∂∇⨯=-∂, D H J t∂∇⨯=+∂ 5. 在时变场中位移电流密度为:J d Dt∂=∂;它与磁场的关系为:J d H J ∇⨯=+;位移电流的物理含义为: 时变电场产生时变磁场.6. 联系着一个矢量场A()r 的散度和通量关系的定理叫: 高斯(散度)定理,其关系式为:d d V S A V A S ∇=⎰⎰;另外联系着A()r 的旋度和环流关系的定理叫:斯托克斯定理,其关系式为:A A l SCdS d ∇⨯=⎰⎰7. 在圆柱坐标中有一电场矢量E Ae Ae ρφ=+,其中A 为常数,E 是常矢量吗?不是。
矢量场的通量和散度

S A endS
A
S
en
一、矢量场的通量
通量的物理意义:不同物理量的通量意义不同。
以流速场为例,流速场 v 的通量表示单位时间 内流体穿过 S 的流量。
v
S
en
Φ S v dS
表示穿出闭合
S面的净流量
en
一、矢量场的通量
根据通量的大小判断闭合面中源的性质:
>0
(有正源)
<0
=0
(有负源) (无源或正负源同时存在)
散度是描述矢量场中任一点发散性质的量
通量无法说明闭合面内每一点处的性质,怎么办?
二、矢量场的散度(divergence)
1.散度的定义
divA lim S A dS
V 0 V S
矢量场 A 在点
M
M处的散度
V 0
单位体积发出的 通量—通量体密度
二、矢量场的散度(divergence)
1.散度的定义
S
M
V 0
divA lim S A dS
情况的量 散度是描述矢量场中任一点发散性质的量
本节的研究内容
一、矢量场的通量 二、矢量场的散度
一、矢量场的通量
在上矢 的量面场积中 分, 称取 为一 矢个 量有A 向穿曲过面曲面S ,S则的矢通量量场,A即在
S
Φ
A dS
S
V
lim ( A)P V
V 0
V
V 0 V
divA A
二、矢量场的散度(divergence)
A Ax Ay Az x y z
散度小结: 1. 矢量场的散度是一个标量,它是描述矢量场中
任一点发散性质的量; 2. 散度代表矢量场的通量源的分布特性:
1-2矢量场的散度

∫∫
= 12
3 1
0 0
r 3 1 r r r ( A) y =0 ⋅ (−dxdze y ) + ∫ ∫ ( A) y = 2 ⋅ (dxdze y )
0 0
又因
r ∂Ax ∂Ay ∂Az ∇⋅ A = + + = 2y ∂x ∂y ∂z
r r 2r A = 2 xy a x + x a y
Φ =
∑
N
i =1
∆τ i → 0
r lim ( ∇ ⋅ A ) ∆ τ i =
∑ ∫
i =1 ∆ S
j
N
r r A ⋅ dS
证毕
即
r ∫ (∇ ⋅ A ) d τ =
τ
∫
S
r r A ⋅ dS
例:长方体区域由 x = 0 ,1; y = 0,2; z = 0,3
r r 2r 六个面组成, 六个面组成,设其内矢量场 A = 2xyex + x ey
∆τ i → 0 ∆τ r r A ⋅dS +
i
∆S
∫
r r A ⋅dS
j
相邻两个体积元有一个公共表面, ∵ 相邻两个体积元有一个公共表面,而公共 r 方向 表面上的通量对这两个体积元来说, 表面上的通量对这两个体积元来说,其 n 恰好相反,故求和时相互抵消。结果, 恰好相反,故求和时相互抵消。结果,上式右边 外表面上的通量, 的积分只剩下 ∆τ i 、 ∆τ j 外表面上的通量,因 个小体积元组成时, 此,当体积 τ 由N 个小体积元组成时,穿出体积 τ的通量就等于限定它的闭合面 S 上的通量。 的通量就等于限定它的闭合面 上的通量。
r ey Ay dy
电磁场复习题

电磁场复习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《电磁场与电磁波基础》复习题一、 填空题: (第一章)(第二章)(第三章)(第四章)(第五章)(第六章)(第一章)1、直角坐标系下,微分线元表达式 z e y e x e l z y x d d d d ++=面积元表达式2、圆柱坐标系下,微分线元表达式z e e e l z d d d d ++=φρρφρ, 面积元表达式z e l l e S z d d d d d φρρφρρ == z e l l e S z d d d d d ρφρφφ ==φρρφρd d d d d z z z e l l e S ==3、圆柱坐标系中,ρe 、e ϕ 随变量ϕ 的变化关系分别是φρφe e =∂∂,ρφφe -e =∂∂ 4、矢量的通量物理含义是 矢量穿过曲面的矢量线的总和;散度的物理意义是 矢量场中任意一点处通量对体积的变化率;散度与通量的关系是 散度一个单位体积内通过的通量。
5、散度在直角坐标系 F zF y F x F V S d F F div Z Y X SV ⋅∇=∂∂+∂∂+∂∂=∆⋅=⎰→∆0lim 散度在圆柱坐标系 zF F F F div Z ∂∂+∂∂+∂∂=φρρρρφρ1)(1 6、矢量微分算符(哈密顿算符)∇在直角坐标系的表达式为 z z y y x x e e e ∂∂+∂∂+∂∂=∇圆柱坐标系 ze z ∂∂+∂∂+∂∂=∇ φρρφρe e球坐标系分别 ϕθθφθ∂∂+∂∂+∂∂=∇sin e e r e r r r 7、高斯散度定理数学表达式 ⎰⎰⋅=⋅∇V sS d F dV F ,本课程主要应用的两个方面分别是 静电场的散度 、 恒定磁场的散度 ;8、矢量函数的环量定义 ⎰⋅=ΓC l z y x F d ),,(;旋度的定义MAX l S Sl d F F rot ∆⋅=⎰→∆ lim 0;二者的关系 ⎰⎰•=•⨯∇C S l d F S d F )(;旋度的物理意义:描述矢量场中某一点漩涡源密度。
1.6 矢量场散度的定义与计算

z
S6
S1
S3
FdS S
S1 F dS1
S2 F dS2
S3 F dS3
S4 F dS4
S5 F dS5
S6 F dS6
在 x方向上:计算穿过 S 1和 S 2 面的通量
z
F Fxaˆx Fyaˆy Fzaˆz dS1 dydz(aˆx)
F
1 R2
(R2 FR ) R
1
Rsin
(Fsin
)
1
Rsin
F
正交曲线坐标系中:F
1
Fu1 h 2 h 3
(Fu2
h1h3
)
(Fu3
h1h2
)
h1h2h3 u1
u2
u3
常用坐标系中,坐标变量和拉梅系数
说明穿入的通量大于穿出的通量那么必然有一些矢线在曲面内终止了意味着闭合面内存在负源或称沟
1.6 矢量场的散度
1. 矢量场的矢线(场线) 2. 矢量场的通量 3. 散度的定义 4.散度的计算 5.散度定理
1. 矢量场的矢线(场线):
在矢量场中,若一条曲线上每
一点的切线方向与场矢量在该点的
+
-
方向重合,则该曲线称为矢线。
量,那么必然有一些矢线在曲面内 终止了,意味着闭合面内存 在负源或称沟。
c. 如果闭合曲面上的总通量 0
说明穿入闭合曲面的通量等于穿出的通量。
3. 散度的定义:
定义:矢量场中某点的通量密度称为该点的散度。
F dS
表达式: divF lim S V0 V
4.散度的计算:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、两个矢量的点积为标量
第一章 矢量分析
➢ 矢量的矢积(叉积)
v A
v B
evn
AB
sin
AB
evx Ax
evy Ay
evz Az
A B
B
AB sin
evx
( Ay Bz
Az By
Bx )
By Bz evy ( Az Bx
Ax Bz )
evz
A
( AxBy
Ay Bx )
说明:
1、矢量的叉积不符合交换律,但符合分配律:
x
表示对 x, y, z 运算
第一章 矢量分析
z P'(x ', y ', z ') r – r'
解
r xex yey zez
r xex yey zez
r' r
O
P(x, y, z) y
R (x x)ex ( y y)ey (z z)ez
kAx
evykAy
evzkAz
evAvk
v A
标量与矢量相乘只改变矢量大小,不改变方向。
➢ 矢量的标积(点积)
r r rr
v
A • B A B cosAB
B v
Ax Bx Ay By Az Bz
AB
A
说明:
1、矢量的点积符合交换律和分配律:
vv vv v v v vv vv A• B B • A A•(B C) A• B A•C
标量场梯度的幅度表示标量场的最大增加率 标量场梯度的方向垂直于等值面,为标量场增加最快的方向 标量场在给定点沿任意方向的方向导数等于梯度在该方向投影
第一章 矢量分析
梯度的运算
直角坐标系:
grad
u
u x
r ex
u y
r ey
u z
r ez
哈密顿算符
( x
r ex
y
r ey
z
r ez
)u
u
柱面坐标系:
evA为单位矢量,表征矢量的方向;
矢量的几何表示:用一条有方向的线段来表示
A
矢量的几何表示
说明:矢量书写时,印刷体为场量符号加粗,如 D。教材
上的矢量符号即采用印刷体。
第一章 矢量分析
矢量用坐标分量表示
A ex Ax ey Ay ez Az Ax A cos Ay A cos Az A cos
(evr
r
ev
1 r
evz
) z
u
u r
r er
1 r
u
r e
u z
r ez
球面坐标系:
(evr
r
ev
1 r
ev
(
r
1
sin
)
)
u
u r
evr
1 u
r
ev
1
r sin
u
ev
第一章 矢量分析
梯度运算相关公式
C 0
((Cu u)v)
Cu u
v
(uv) uv vu
f (u) f (u)u
Bx
)
evy
( Ay
By
)
evz
( Az
Bz
)
说明:
1、矢量的加法符合交换律和结合律:
vv vv vv v v vv A B B A (A B) C A (B C)
2、矢量相加和相减可用平行四边形法则求解:
AB
B
B
A
AB
B
A
第一章 矢量分析
矢量的乘法
➢ 矢量与标量相乘
v kA
evx
vv vv v v v vv vv A B B A A(B C) A B AC
2、两个矢量的叉积为矢量 3、矢量运算恒等式
v vv v vv v vv A• (B C) B • (C A) C • (A B) v v v vv v vv v A(BC) B(A•C) C(A• B)
方向导数与选取的考察方向有关。
第一章 矢量分析
方向导数的计算
u u cos u cos u cos
l x
y
z
式中: 、 、 分别为 l与x,y,z坐标轴的夹角。 c o s 、 c o s 、 c o s —— 的l 方向余弦。
方向导数物理意义:
u 0 l M0
,标量场 u在M0处沿 l 方向增加率;
z
Az
A
Ay
Ax O
y
x
A A(ex cos ey cos ez cos ) eA ex cos ey cos ez cos
第一章 矢量分析
1.1.2 矢量的运算
v A
evx
Ax
evy
Ay
evz
Az
v B
evx
Bx
evy
By
evz
Bz
矢量的加法和减法
v A
v B
evx
( Ax
标量场空间中,由所有场值相等的点所构成的面,即为等值面。
即若标量函数为 u u(x, y, z) ,则等值面方程为:
u(x, y, z) c const
1.1.2 方向导数
方向导数定义:
u lim u(M ) u(M0 )
l l0 M0
l
u(rv)
l
M
M0
l
方向导数表征标量场空间中,某点处场值沿特定方向变化的规律。
u
0 l M0
,标量场
u在
M
处沿
0
l
方向减小率;
u
0 l M0
,标量场 u在M0处沿 l 方向为等值面方向(无改变)
第一章 矢量分析
1.1.3 标量场的梯度
梯度的定义
gradu(x, y,
式中:erl 为场量 u
r z) el
u l
max
最大变化率的方向上的单位矢量。
梯度的性质
标量场的梯度为矢量,且是坐标位置的函数
第一章 矢量分析
1.1 矢量代数
1.1.1 标量和矢量
标量与矢量
标量:只有大小,没有方向的物理量(电压U、电荷量Q、能量W等)
矢量:既有大小,又有方向的物理量(作用力,电、磁场强度)
矢量的代数表示
rr r r
F E Hv 矢r量可表示为:A
B evA
r vD A 其中
eA
A A
A为模值,表征矢量的大小;
第一章 矢量分析
标量场()和矢量场(A)
y
y
x
x
以浓度表示的标量场
以箭头表示的矢量场A
第一章 矢量分析
1.1 标量场的梯度
• 标量场和矢量场
确定空间区域上的每一点都有确定物理量与之对应,称在该区 域上定义了一个场。
如果物理量是标量,称该场为标量场。 例如:温度场、电位场、高度场等。
如果物理量是矢量,称该场为矢量场。 例如:流速场、重力场、电场、磁场等。
如果场与时间无关,称为静态场,反之为时变场。
从数学上看,场是定义在空间区域上的函数:
静态标量场和矢量场可分别表示为: u ( x, y , z )、 F (x, y, z)
时变标量场和矢量场可分别表示为: u ( x, y, z, t) 、 F ( x, y, z, t)
第一章 矢量分析
1.1.1 标量场的等值面
式中:C为常数; u , v为坐标变量函数;
第一章 矢量分析
若引入算符,在直角坐标系中该算符 可表
示为
ex
x
ey
y
ez
z
则梯度可以表示为
grad
z P'(x ', y ', z ')
例 计算 1 及 1 。R来自Rr – r'
r'
P(x, y, z)
这里 R r r 0
O
r
y
表示对 x, y, z 运算