矢量场的通量和散度

合集下载

矢量场的通量及散度

矢量场的通量及散度

f ) z

f
( Fx x

Fy y

Fz z
) (Fx
f x
Fy
f y

Fz
f )
z
f F f F
证明: 设:
R R3 0
R0
F R
f 1 R3
( fF ) f F F f
1 R R 1
Ψ
Fds
s
sFxdydz Fydxdz Fzdxdy
3 散度
如果包围点P 的闭合面S 所围区域V 以任意方式缩小为点P 时, 通
量与体积之比的极限 lim
Fd s
s
存在,我们就将它定义为P 点处F(r)
的散度(divergence),V 0 V
Fz(x,y,z+z)
+ a3zsincos(ez‧en)] ddz
所以
= 2a2zsin cos ddz
s1 F ds1
/2[a2sincos ( b 2zdz)]d
0
0
a2b2 /2 sincosd a2b2 sin 2 /2 a2b2

(
பைடு நூலகம்
f
F)

( x
ex

y
ey

z
ez
)(
fFx
ex
fFy
ey

fFz
ez )



x ( fFx ) y ( fFy ) z ( fFz )

(
f
Fx x

Fx
f ) ( x
f

散度 通量

散度 通量

散度通量散度和通量都是物理学中涉及到矢量场的概念。

在理解散度和通量之前,需要先了解矢量场的概念。

矢量场是指在空间中各点都有一个矢量与之对应的场。

“矢量”是指具有大小和方向的物理量,比如速度、力等。

在三维空间中,矢量通常用箭头表示,箭头长度代表矢量的大小,箭头指向代表矢量的方向。

矢量场描述了在空间中每个点的矢量是什么。

散度是描述矢量场的一个物理量。

它表示在一个给定点上的矢量场流出或流入的程度。

可以理解为矢量场的源与汇。

如果在一个点上,矢量场大量流出,则散度为正;如果流入,则散度为负;如果没有流入或流出,则散度为零。

通量则是散度的一种数学描述。

通量表示的是矢量场通过一个给定平面的流量,也可以理解为矢量场与该平面垂直的分量。

通量可以用来衡量矢量场在某个平面上的流动情况。

为了更好地理解散度和通量的概念,可以通过一个具体的例子来说明。

假设有一个假想的空气流场,我们在其中放置了一个球体。

球体内外的空气流动方式可能会有所不同。

在球体表面上,空气可能会流出或者流入。

如果空气大量流出,那么球体内的分子数就会减少,表示散度为正。

反之,如果空气流入球体内,散度就为负。

如果球体内外的空气流动情况相同,则表示散度为零。

与散度不同,通量主要描述的是矢量场通过某个平面的情况。

假设我们取球体表面为一个平面,那么空气流动通过这个平面的通量就是描述空气流动情况的一个量。

如果通量为正,表示有空气流出;如果通量为负,表示有空气流入;如果通量为零,则表示球体内外的空气流动情况相同。

散度和通量是紧密相关的物理量,它们描述了矢量场在空间中的流动情况。

散度描述了在一个给定点上的流出或流入程度,而通量描述了通过某个平面的流动情况。

需要注意的是,散度和通量是不同的概念。

散度是一个矢量场的性质,它是矢量场的一个标量函数;而通量是矢量场与一个平面垂直分量的大小。

在数学上,散度通过向量微积分中的散度算子表示,通量则是矢量场在某个平面上的贡献。

总结起来,散度和通量都是矢量场中重要的物理概念。

矢量场的通量和散度

矢量场的通量和散度

S A endS
A
S
en
一、矢量场的通量
通量的物理意义:不同物理量的通量意义不同。
以流速场为例,流速场 v 的通量表示单位时间 内流体穿过 S 的流量。
v
S
en
Φ S v dS
表示穿出闭合
S面的净流量
en
一、矢量场的通量
根据通量的大小判断闭合面中源的性质:
>0
(有正源)
<0
=0
(有负源) (无源或正负源同时存在)
散度是描述矢量场中任一点发散性质的量
通量无法说明闭合面内每一点处的性质,怎么办?
二、矢量场的散度(divergence)
1.散度的定义
divA lim S A dS
V 0 V S
矢量场 A 在点
M
M处的散度
V 0
单位体积发出的 通量—通量体密度
二、矢量场的散度(divergence)
1.散度的定义
S
M
V 0
divA lim S A dS
情况的量 散度是描述矢量场中任一点发散性质的量
本节的研究内容
一、矢量场的通量 二、矢量场的散度
一、矢量场的通量
在上矢 的量面场积中 分, 称取 为一 矢个 量有A 向穿曲过面曲面S ,S则的矢通量量场,A即在
S
Φ
A dS
S
V
lim ( A)P V
V 0
V
V 0 V
divA A
二、矢量场的散度(divergence)
A Ax Ay Az x y z
散度小结: 1. 矢量场的散度是一个标量,它是描述矢量场中
任一点发散性质的量; 2. 散度代表矢量场的通量源的分布特性:

1-2矢量场的散度

1-2矢量场的散度
0 0 0 0 s
∫∫
= 12
3 1
0 0
r 3 1 r r r ( A) y =0 ⋅ (−dxdze y ) + ∫ ∫ ( A) y = 2 ⋅ (dxdze y )
0 0
又因
r ∂Ax ∂Ay ∂Az ∇⋅ A = + + = 2y ∂x ∂y ∂z
r r 2r A = 2 xy a x + x a y
Φ =

N
i =1
∆τ i → 0
r lim ( ∇ ⋅ A ) ∆ τ i =
∑ ∫
i =1 ∆ S
j
N
r r A ⋅ dS
证毕

r ∫ (∇ ⋅ A ) d τ =
τ

S
r r A ⋅ dS
例:长方体区域由 x = 0 ,1; y = 0,2; z = 0,3
r r 2r 六个面组成, 六个面组成,设其内矢量场 A = 2xyex + x ey
∆τ i → 0 ∆τ r r A ⋅dS +
i
∆S

r r A ⋅dS
j
相邻两个体积元有一个公共表面, ∵ 相邻两个体积元有一个公共表面,而公共 r 方向 表面上的通量对这两个体积元来说, 表面上的通量对这两个体积元来说,其 n 恰好相反,故求和时相互抵消。结果, 恰好相反,故求和时相互抵消。结果,上式右边 外表面上的通量, 的积分只剩下 ∆τ i 、 ∆τ j 外表面上的通量,因 个小体积元组成时, 此,当体积 τ 由N 个小体积元组成时,穿出体积 τ的通量就等于限定它的闭合面 S 上的通量。 的通量就等于限定它的闭合面 上的通量。
r ey Ay dy

电磁场与电磁波--矢量场的散度及旋度

电磁场与电磁波--矢量场的散度及旋度

evz Fz
v F
1.4 矢量场的通量和散度
散度的表达式:
直角坐标系
v F
Fx
Fy
Fz
x y z
圆柱坐标系
v F
1 h h hz
h hz F
h hz F
z
h h Fz
1( F ) 1FFz z球坐标系
v F
1 hr h h
r
(h h Fr )
(hr h F
)
F
(hr
h
F
)
1 r2
方向相反大小 相等结果抵消
n
S
C
图 1.曲5.5 面曲面的的剖划分分
1.5 矢量场的环流与旋度
4. 散度和旋度的区别
v
v
F 0; F 0
v
v
F 0; F 0
v
v
F 0; F 0
v
v
F 0; F 0
1.5 矢量场的环流与旋度
例1 .5 点电荷q在离其 rv处产生的电场强度为
1.4.4 散度定理
从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等 于该闭合曲面所包含体积中矢量场的散度的体积分,即
vv
v
ÑS F dS V FdV
高斯(散度)定理
散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁 理论中有着广泛的应用。
1.4 矢量场的通量和散度
vv
v div F
r div F 0
1.4 矢量场的通量和散度
直角坐标系下散度表达式的推导
不失一般性,令包围P点的 微体积V 为一直平行六面 体,如图所示。则
蜒S Fv
v dS
S

2.3 散度

2.3 散度
(即规定了正反面的曲面 . )
求在单位时间内流向S 正面的流量 .
v

n

n
用元素法 .

ds
在单位时间内流经面积元素 dS 的流量元素 0 d (v n ) d S v dS
0 其中 dS n d S 为有向面积元素 .
v dS
《场论初步》
§2.3
矢量场的通量及散度
Flux and Divergence of Vector Field
主要内容
1. 通量 2. 散度 教材:第2章 第3节
2014年3月20日星期四
华北科技学院基础部
1
《场论初步》
§2.3
矢量场的通量及散度
一、通量
不可压缩流体流速为 v (不变) ,
平面 上有洞面积为 s ,
> 0 (有正源) < 0 (有负源) = 0 (无源) 闭合曲面的通量从宏观上建立了矢量场通过闭合 曲面的通量与曲面内产生矢量场的源的关系, 用来描 述空间某一范围内场的发散或会聚具有局域性质,不 能反映空间一点的情况.
2014年3月20日星期四
华北科技学院基础部
7
《场论初步》
例1 已知矢量场 r xi yj zk ,求由内向外穿过
单位法向量为 n (指向正侧 ) .

n

v


s
在单位时间内从 s 中流过的流体的体积 (流量)
s v cos v n s


(1)
2014年3月20日星期四
华北科技学院基础部
2
《场论初步》
§2.3

矢量场散度的定义与计算

矢量场散度的定义与计算
1.6 矢量场的散度
1. 矢量场的矢线(场线) 2. 矢量场的通量 3.散度的定义 4.散度的计算 5.散度定理
1. 矢量场的矢线(场线):
在矢量场中,若一条曲线上每
一点的切线方向与场矢量在该点的
+
-
方向重合,则该曲线称为矢线。
2. 通量: 定义:如果在该矢量场中取一曲面S, 通过该曲面的矢线量称为通量。
S2 F dS2
S3 F dS3
S4 F dS4
S5 F dS5
S6 F dS6
4.散度的计算: 在直角坐标系中,如图做一封闭
曲面,该封闭曲面由六个平面组成。 矢量场表示为:
F Fxaˆx Fyaˆy Fzaˆz
z
S6
S1
S3
S4
S2
S5
y
x
F dS S
S1 F dS1
S2 F dS2
常用坐标系中,散度的计算公式
直角坐标系中: 圆柱坐标系中:
F Fx Fy Fz x y z
F 1 (Fr r) 1 F Fz
rR 2FR R
)
1
Rsin
(F
sin
)
1
Rsin
F
正交曲线坐标系中: F
1
Fu1 h 2 h 3
(Fu2
h1h3
F S
dS
Fxx
Fy y
Fz z
xyz
z
S3 S2
x
S6
S1
S4
S5
y
该闭合曲面所包围的体积: V xyz
散度: divF
F dS
S
Fx Fy Fz
lim V0 V
x y z

1.6 矢量场散度的定义与计算

1.6 矢量场散度的定义与计算

z
S6
S1
S3
FdS S
S1 F dS1
S2 F dS2
S3 F dS3
S4 F dS4
S5 F dS5
S6 F dS6
在 x方向上:计算穿过 S 1和 S 2 面的通量
z
F Fxaˆx Fyaˆy Fzaˆz dS1 dydz(aˆx)
F
1 R2
(R2 FR ) R

1
Rsin
(Fsin
)

1
Rsin
F

正交曲线坐标系中:F
1

Fu1 h 2 h 3

(Fu2
h1h3
)

(Fu3
h1h2
)

h1h2h3 u1
u2
u3
常用坐标系中,坐标变量和拉梅系数
说明穿入的通量大于穿出的通量那么必然有一些矢线在曲面内终止了意味着闭合面内存在负源或称沟
1.6 矢量场的散度
1. 矢量场的矢线(场线) 2. 矢量场的通量 3. 散度的定义 4.散度的计算 5.散度定理
1. 矢量场的矢线(场线):
在矢量场中,若一条曲线上每
一点的切线方向与场矢量在该点的
+
-
方向重合,则该曲线称为矢线。
量,那么必然有一些矢线在曲面内 终止了,意味着闭合面内存 在负源或称沟。
c. 如果闭合曲面上的总通量 0
说明穿入闭合曲面的通量等于穿出的通量。
3. 散度的定义:
定义:矢量场中某点的通量密度称为该点的散度。
F dS
表达式: divF lim S V0 V
4.散度的计算:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

divA lim
AdV
V
lim ( A)P V
V 0
V
V 0
V
divA A
二、矢量场的散度(divergence)
A Ax Ay Az x y z
散度小结: 1. 矢量场的散度是一个标量,它是描述矢量场中
பைடு நூலகம்任一点发散性质的量; 2. 散度代表矢量场的通量源的分布特性:
A 0 (正源) A 0 (负源) A 0 (无源)
矢量场的通量和散度
➢ 本节的研究目的
寻找能够度量和刻画矢量场变化情况的 量 散度是描述矢量场中任一点发散性质 的量
➢ 本节的研究内容
一、矢量场的通量 二、矢量场的散度
一、矢量场的通量
在矢量场中,取一个有向曲面 S ,则矢量场A 在 S 上的面积分称为矢量 A 穿过曲面 S 的通量,即
Φ
A dS
二、矢量场的散度(divergence)
散度小结:
A 0 (正源) A 0 (负源) A 0 (无源)
3. 在矢量场中,若 A 0 , 称之为有源场, 称为(通量)源密度;
4. 若场中处处 A 0 ,称之为无源场。
本节要点
➢ 本节的研究目的
寻找能够度量和刻画矢量场变化情况的量 ——散度(分析矢量场的工具之一)
S
S A endS
A
S
en
一、矢量场的通量
通量的物理意义:不同物理量的通量意义不同。
以流速场为例,流速场 v 的通量表示单位时间 内流体穿过S 的流量。
v
S
en
Φ v dS S
表示穿出闭合
S面的净流量
en
一、矢量场的通量
根据通量的大小判断闭合面中源的性质:
>0
(有正源)
<0
=0
(有负源) (无源或正负源同时存在)
divA lliimm SS AA ddSS V 0 V
divA 0 divA 0
divA 0
该点有正源 该点有负源 该点无源
二、矢量场的散度(divergence)
2.散度的计算
根据高斯—奥斯特洛格拉茨基公式,可得
divA lim
A dS
S
lim
AdV
V
V 0 V
V 0
V
根据积分中值定理,可得
通量无法说明闭合面内每一点处的性质,怎么办?
二、矢量场的散度(divergence)
1.散度的定义
ddiivvAA lliimm SS A dS
V 0 V S
矢量场 A 在点
M
M处的散度
V 0
单位体积发出的 通量—通量体密度
二、矢量场的散度(divergence)
1.散度的定义
S
M
V 0
散度是描述矢量场中任一点发散性质的量
相关文档
最新文档