实验指导说明书
核磁共振实验

ZKY-HG-Ⅱ专业级边限振荡器核磁共振实验仪实验指导说明书成都世纪中科仪器有限公司地址:成都市人民南路四段9号中科院成都分院邮编:610041电话:(028)85247006 85243932 传真:(028)85247006网址; E-mail: ZKY@ZKY.C n2009-12-10专业级边限振荡器核磁共振实验核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。
1945年12月,美国哈佛大学的珀塞尔等人,报道了他们在石蜡样品中观察到质子的核磁共振吸收信号;1946年1月,美国斯坦福大学布络赫等人,也报道了他们在水样品中观察到质子的核感应信号。
两个研究小组用了稍微不同的方法,几乎同时在凝聚物质中发现了核磁共振。
因此,布络赫和珀塞尔荣获了1952年的诺贝尔物理学奖。
以后,许多物理学家进入了这个领域,取得了丰硕的成果。
目前,核磁共振已经广泛地应用到许多科学领域,是物理、化学、生物和医学研究中地一项重要实验技术。
它是测定原子的阿核磁矩和研究核结构的直接而又准确的方法,也是精确测量磁场的重要方法之一。
本专业级边限振荡器核磁共振实验仪可以证实原子核磁矩的存在及测量原子核磁矩的大小,由此推导出原子核的g 因子、旋磁比γ及核磁矩μ,验证共振频率与磁场的关系002B v γπ=。
它是近代物理实验中具有代表性的重要实验。
【实验目的】1、 了解核磁共振的原理及基本特点。
2、 测定H 核的g 因子、旋磁比γ及核磁矩μ 。
3、 观察F 的核磁共振现象。
测定F 核的g 因子、旋磁比γ及核磁矩μ4、 改变振荡幅度,观察共振信号幅度与振荡幅度的关系,从而了解饱和过程。
5、 通过变频扫场,观察共振信号与扫场频率的关系,从而了解消除饱和的方法。
【实验原理】下面我们以氢核为主要研究对象,以此来介绍核磁共振的基本原理和观测方法。
氢核虽然是最简单的原子核,但同时也是目前在核磁共振应用中最常见和最有用的核。
一、核磁共振的量子力学描述1.单个核的磁共振通常将原子核的总磁矩在其角动量P 方向上的投影μ称为核磁矩,它们之间的关系通常写成P⋅=γμ或P m e g p⋅⋅=2μ (1-1)式中pm e g 2⋅=γ称为旋磁比;e 为电子电荷;p m 为质子质量;g 为朗德因子。
停留时间分布 返混装置 使用说明 实验指导书

单釜与多釜串联反应器返混实验装置一、前言单釜与三釜串联返混实验装置是测定带搅拌器的釜式液相反应器中物料返混情况的一种设备,它对加深了解釜式与管式反应器的特性是最好的实验手段之一。
通常是在固定搅拌马达转数和液体流量的条件下,加入示踪剂,由各级反应釜流出口测定示踪剂浓度随时间变化曲线,再通过数据处理得以证明返混对釜式反应器的影响,并能通过计算机得到停留时间分布密度函数及单釜与三釜串联流动模型的关系。
此外,也可通过其它种类反应器进行对比实验,进而更深刻的理解各种反应器的特性。
二、装置流程图装置流程图见图1。
图1单釜与三釜串联装置流程示意图三、操作步骤1. 准备工作(1)配制饱和KCl溶液。
(2)检查电极导线连接是否正确。
(3)检查仪表柜内接线有无脱落!!!2. 操作打开总电源开关,按下“仪表上电”开关,开启入水阀门,向水槽内注水。
单(大)釜实验时:(1)启动水泵,关闭三釜进水转子流量计的阀门,慢慢打开单釜进水转子流量计的阀门(注意!初次通水必须排净管路中的所有气泡,特别是死角处)。
调节水流量维持在0~20L/h之间某值。
使釜充满水,并能正常地流出。
(2)分别开启单(大)釜搅拌马达开关,后再调节马达转速的旋钮,搅拌速率维持在400rpm左右。
按电导率仪使用说明书分别调节调温度电极常数和“调零”等。
调整完毕,备用。
(电导仪的使用方法见该仪器使用说明书)(3)开启计算机电源,在桌面上双击“单釜与多釜串联实验”图标,选择“单釜实验”,进入单釜实验软件画面,然后单击画面上“开始实验”按钮,实验开始并打开“趋势曲线”绘制窗口,然后再单击“数据记录”按钮,并在“数据记录”窗口内分别输入数据间隔时间(比如30秒)、数据记录总个数(比如50个),输入后先此窗口内的“数据设定”按钮,再单击“开始记录”按钮,然后向单(大)釜示踪剂注入口用注射器注入一定量(比如8.0ml)的饱和KCl溶液,此时可进行数据的实时采集。
待采集结束(达到数据记录总数),按下“数据处理”按钮后,会弹出“数据处理”窗口,并显示计算结果,按下“保存数据”按钮保存数据文件,最后按“退出系统”结束本实验。
使用指导红外光谱仪的操作说明书

使用指导红外光谱仪的操作说明书操作说明1. 引言红外光谱分析是一种常用的分析方法,广泛应用于材料科学、化学、生物学等领域。
本操作说明书将指导您正确使用红外光谱仪进行实验。
2. 设备准备在操作之前,请确保红外光谱仪和相关设备处于正常工作状态。
以下是设备准备的步骤:a. 确保仪器连接正常,并且红外光源和检测器正确安装。
b. 检查红外光谱仪的电源是否连接正常,并确保电源稳定。
c. 清洁红外光谱仪和相关器件,以确保实验结果的准确性。
3. 样品制备样品制备是进行红外光谱分析的重要步骤之一。
以下是样品制备的一般步骤:a. 将待测样品制成透明薄膜或粉末状,以便红外光能够透过样品。
b. 确保样品没有杂质和空气泡,并避免与样品接触的物质对分析结果产生干扰。
c. 根据需要,使用试剂或其他方法对样品进行处理,以提高分析的准确性和可重复性。
4. 仪器操作a. 打开红外光谱仪的电源,并待其预热一段时间,以确保仪器稳定运行。
b. 使用仪器上的控制面板或软件,选择合适的实验参数和扫描范围,例如波数范围和分辨率。
c. 将样品放入红外光谱仪的采样室,并确保室内环境适宜(例如温度和湿度)。
d. 启动实验过程,并观察仪器上显示的红外光谱图。
5. 数据分析a. 根据实验目的,对红外光谱图进行初步分析,识别关键峰值和特征峰。
b. 使用红外光谱数据库或相关文献,对峰值进行谱图比对和解释。
c. 根据分析结果,对样品的化学成分和结构进行推断,并记录相关数据。
6. 实验注意事项在使用红外光谱仪进行实验时,请注意以下事项以确保操作安全和数据准确性:a. 避免样品与仪器的直接接触,以免污染或损坏仪器。
b. 注意样品的制备和保存,避免使用过期或受损的样品。
c. 注意仪器的操作温度和湿度范围,并避免突然变化的环境条件干扰实验结果。
d. 在实验过程中,小心操作,避免发生意外事故。
7. 故障排除如果在操作过程中发生故障或异常情况,请参考以下排除方案:a. 检查仪器连接是否松动或不良,重新插拔连接线或器件。
A3000过程控制实验指导书(实验用)

A3000过程控制实验系统实验指导书V3.0北京华晟高科教学仪器有限公司编制第一章安全注意事项与设备使用安全注意事项:在安装、操作、维护或检查本系统之前.一定仔细阅读以下安全注意事项。
在熟悉设备的知识、安全信息及全部有关注童事项以后使用。
在本使用说明书中,将安全注意事项等级分为“危险”和“注意”。
!危险:不正确的操作造成的危险情况,将导致死亡或重伤的发生。
!注意:不正确的操作造成的危险情况,将导致一般或轻微的伤害或造成物体的硬件损坏。
注意:根据情况的不同,“注意”等级的事项也可能造成严重后果。
请遵循两个等级的注意事项,因为它们对于个人安全都是重要的。
1.1防止触电尽管系统经过多层保护,还是请用户注意以下安全事项。
!危险严格要求系统可靠接地,包括现场对象系统,控制系统,接地电阻不大于4欧姆。
当通电或正在运行时,请不要进行任何维护、维修操作,不要打开机柜后门,接线箱盖子,变频器前盖板,否则会发生触电的危险。
即使电源处于断开时,除维护、维修外,请不要接触任何具有超过安全电压的裸露端子,否则接触各种充电回路可能造成触电事故。
请不要用湿手操作设定各种旋钮及按键,以防止触电。
对于电缆,请不要损伤它,不要对它加过重的应力,使它承载重物或对它钳压。
否则可能会导致触电。
包括布线或检查在内的工作都应由专业技术人员进行。
在开始布线或维修之前,请断开电源,经过10分钟以后,用万用表等检测剩余电压后进行。
1.2防止烫伤!危险不要接触热水管道,避免高温烫伤。
在热水没有冷却时,不要打开锅炉,不要进行任何维修维护工作。
!注意请尽量控制水温在70度以下,以免高温烫伤,提高产品寿命。
1.3防止损坏!危险在水泵运行状态,绝对禁止进行水泵切换控制操作,否则可能损坏变频器。
!危险在水箱水位没有达到一定高度,不能启动调压器输出,否则可能损坏加热器。
该系统增加了硬件的连锁保护,但是也要在操作时注意。
!注意系统应远离可燃物体。
系统发生故障时,请断开电源。
裂缝导流能力测定实验指导书(1)

裂缝导流能力测定实验一、实验目的1.了解岩石被支撑裂缝的导流能力随闭合压力变化的关系、以及在相同闭合压力条件下铺有不同层数的支撑剂的裂缝导流能力的差异;2.分析说明达西公式与二项式公式计算出的结果不同的原因;3.熟悉压力试验机的操作及实验流程。
二、实验原理裂缝的渗透率可由气体渗流的流量来反映,测量气体在不同入口和出口压力下的流量后,可通过气体径向渗流的达西公式来确定裂缝的导流能力。
三、实验仪器和材料及流程1. 仪器: NYL—2000D型压力试验机,空气压缩机—供气源,定值器—气源开关,精密压力表,浮子流量计,岩心(钢板)模,游标卡尺,天平。
2. 材料:不同产地的压裂砂、陶粒。
3.流程:四、实验步骤(一)实验准备1. 在附表1中记录使用的砂子产地、粒径、名称及某温度下的气体粘度;2. 用游标卡尺量出岩心模的外径ro及孔眼的内径re记录附表1中,用作计算岩心模面积;3. 称一定重量的砂子(记下砂子的颗粒直径)均匀地铺在模拟岩心面上,要保持单层,铺完后用放大镜检查一下砂子是否铺的均匀和紧密。
然后称剩余砂子的重量,二者之差即为铺在岩心上的砂重,并按下式计算出支撑剂的浓度:2cm g ,铺有支撑剂岩心的面积单层支撑剂的重量支撑剂(砂子)的浓度将此浓度值记入表1中。
4. 将上岩心片(孔眼向下)放于下岩心片的上方,然后上下岩心片放在试验机下承压板中心位置。
5. 认真记录试验机载荷数显表上显示的加载值。
(二)岩心加压法1. 岩心放在下承压板上,用手旋转螺杆将上承压板合并,压住岩心模型,准备加载。
2. 旋紧回油阀,按绿钮开机器,用送油阀慢慢加压,通过控制送油阀开启程度控制加压速度,当主动指针(黑针)转到1.5吨(或1KN )时,将送油阀放慢关闭维持此点上,将定值器打开使气体进入浮子流量计中,同时浮子上升,调节定值器旋钮,使浮子指示到流量计刻度的最高度值。
3. 送油阀继续开动,当指针加到所规定的吨数时,保持指针示数不变。
楼宇自动化实验指导书

第一章概述随着信息社会的发展,建筑越来越成为人类生活环境的一个组成部分。
从工业社会现代化建筑的概念转向面对信息社会的需求,智能建筑正在世界范围内蓬勃发展,并在大量的建筑实践中取得了显著的成就。
由于智能建筑(国际上通常称为楼宇自动化)比传统建筑更能够为人们提供理想的工作和生活环境,因此,以1984年1月美国联合科技UTBS在康涅狄格州哈特福德市建设的都市大厦为标志,在美国、欧洲及世界其他地区相继兴起了营造智能建筑的热潮。
当前,我国的城市建设正在经历一个前所未有的蓬勃发展阶段,同时也陆续兴建了一些不同智能标准的新型智能建筑。
尤其是进入20世纪90年代以来,智能建筑在我国像雨后春笋般地拔地而起,相信将成为21世纪建筑发展的主流。
我国颁布的智能建筑设计标准(GB/T50314-2000)中指出,智能建筑是“以建筑为平台,兼备建筑设计、办公自动化及通讯网络系统,集结构、系统、服务、管理及它们之间的最优化组合,向人们提供一个安全、高效、舒适、便利的建筑环境。
”智能建筑是综合经济实力的象征和综合性科技产物,其发展涉及电力、电子、仪表、建材、钢铁、建筑、计算机与通信等多种行业。
为配合国内外高等院校智能建筑领域教学、实验的发展,我公司与有关院校紧密合作总结多年的研究成果及调研了众多高等院校的实际要求,重点考虑了国内教学、科研的发展需求,精简了教学、实验内容研制出一套楼宇自动化实验装置。
装置特点:1、系统性强全部实验装置包含了广义楼宇自动化系统的大部分实验内容如:中央空调系统的能量管理及自动控制系统、闭路电视及保安监控系统、火灾探测及消防报警系统。
2、高度的开放性系统在选择技术规范及国内外标准时,重点采用了技术开放、公开、可免费使用的通讯协议和标准。
设计中集中安排了信号端子,可连接不同控制系统。
3、灵活性强由于技术开放、标准、模块化,各校可根据具体需要选择系统配置和组合,并进一步开发实验装置的应用范围。
4、技术先进全部实验装置尽可能的采用当代先进技术,数字化内容丰富,网络化功能强,可根据需要深入集成系统信息。
FuGENE HD 转染试剂简明操作指导说明书
FuGENE®HD转对于表格中未列出的细胞,采用以下步骤进行实验后,可寻找到适用于您所研究细胞的最佳质粒与转染试剂的配比:FuGENE®HD 转染试剂简明操作步骤II. 准备实验所需的细胞、试剂及耗材:•细胞:在合适的培养条件下(建议采用无抗生素培养基,可以含任意比例的血清),实验前细胞系培养至长满60%-80%,原代细胞培养至适当的时间;•转染试剂:使用前,将转染试剂放至室温,颠倒混匀(FuGENE®HD转染试剂储存于4℃,如不慎将FuGENE®HD冰冻,融化后可能会看到不溶物。
这时可将试剂短暂升温至37℃,颠倒混匀后不溶物消失);•质粒:携带报告基因或荧光蛋白的质粒,用于计算转染效率;•无菌、无血清培养基:用于配制质粒与转染试剂的混合物;•无菌的枪头、离心管,超净工作台等。
简易流程图培养细胞至60%-80%融合度配制质粒与转染试剂的混合物混合物加入培养的细胞中检测,计算转染效率I I I.操作步骤1.将无血清培养基预热至室温,按下表的比例配制质粒与转染试剂的混合物:FuGENE®HD与质粒DNA的比例4:1 3.5:13:1 2.5:12:1 1.5:1培养基100μl100μl100μl100μl100μl100μl质粒2μg2μg2μg2μg2μg2μg FuGENE®HD8μl7μl6μl5μl4μl3μl注意:FuGENE®HD应直接加入培养基中,不用沾到离心管的管壁上2.混合物室温静置10-15 min。
3.将混合物滴加至培养的细胞中,96孔板每孔加入5µl,其他孔板的加入量可以按照右侧的表格进行计算。
摇晃或吹打混匀。
继续培养24-48 hr。
4.检测转染效率。
进行报告基因检测或计数表达绿色荧光蛋白的细胞数目,确定最佳的质粒与转染试剂的比例。
注:FuGENE®HD转染试剂对细胞几乎没有毒性,遇到特别难转染的细胞,希望提高转染效率时,可以将混合物的加入量加倍至10μl/孔或15μl/孔(96孔板,其他培养板按培养面积放大)。
电气化自动技术 实验2 IO口开关量输入-实验指导书
实验二 IO开关量输入实验一、实验概述使用按键来控制单片机IO口的高低电平。
二、实验目的熟悉单片机的最小系统,了解单片机I/O的结构;掌握按键键值的读入和处理;学习简单程序的编写。
三、实验预习要求1、单片机最小系统电路构成;2、I/O口的内部结构;3、简单程序指令熟悉;四、实验原理图:AT89C52本实验使用了单片机AT89C52来做实验,该单片机有4组IO口。
单片机总的IO 会分为这几类:电平可变化的IO口和VCC、GND两类。
其中电平可变化的IO有P0口、P1口、P2口、P3口。
本实验就是读取了P1口的电平从而读取按键输入的值,P0口来输出高低电平来控制LED的亮或灭。
图:P1口的电路R1、R2是上拉电阻,拉高了P10和P11两个端口的电平,当按下按键的时候,相应的端口变为低电平。
图:P0口的电路P0口接了8个LED,RP1是限流电阻,保护LED,避免电流过高,烧坏LED;RP2是上拉电阻,将P0口的电平拉高。
五、Proteus使用的元器件1.AT89C51 //51单片机。
2.BUTTON //按键,用于最小系统复位;实现输入功能。
3.CAP //电容,用于搭建复位电路。
4.CAP-ELEC //电解电容,用于搭建复位电路。
5.CRYSTAL //晶振,给单片机提供时钟信号。
6.LED-YELLOW //黄色LED灯。
7.RES //电阻。
8.RESPACK-8 //排阻;RP1是限流电阻,RP2是上拉电阻。
六、实验要求1、利用单片机,按键和发光二极管,构成一个LED灯控制电路;2、上电时, 点亮LED,按下K1时, LED向左移一位,按下K2时, LED向右移一位。
七、硬件连接图1. 硬件电路图:8位独立LED图:8位独立按键2.硬件连接表3.Proteus仿真图图:Proteus仿真图八、实验程序/******************************************************************** ****文件名称: main.c作者:版本: V1.00说明: IO开关量输入实验修改记录:-------------------------------------------------------------------------* 功能描述: 按键扫描程序* 上电时, 点亮P00口LED ,按下K1时, LED向右移一位,按下K2时, LED向左移一位-------------------------------------------------------------------------* 接线说明:P10-K1,P11-K2,P00~P07——D1~D8********************************************************************** ****/#include <reg52.h>#include <intrins.h>#define uchar unsigned char //数据类型宏定义#define uint unsigned int/**********单片机IO口引脚定义********************************************/#define LED P0sbit K1 = P1^0;sbit K2 = P1^1;/**********函数定义******************************************************/uchar scan_key();void proc_key(uchar key_v);void delayms(uchar ms);/**********主函数********************************************************/void main(void){uchar key_s,key_v;key_v = 0x03; //初始化IO口LED = 0xfe;while(1){key_s = scan_key();if(key_s != key_v) //判断按键是否按下{delayms(10); //延时消抖key_s = scan_key();if(key_s != key_v){key_v = key_s;proc_key(key_v);}}}}/**********键盘扫描函数**************************************************/ uchar scan_key(){uchar key_s;key_s = 0x00;key_s |= K2;key_s <<= 1;key_s |= K1;return key_s; //返回按键号}/**********键盘处理函数**************************************************/ void proc_key(uchar key_v){if((key_v & 0x01) == 0){LED = _cror_(LED,1); //循环右移一位}else if((key_v & 0x02) == 0){LED = _crol_(LED, 1); //循环左移一位}}/***********延时函数*****************************************************/void delayms(uchar ms)// 延时子程序{uchar i;while(ms--){for(i = 0; i < 120; i++);}}九、实验步骤1、打开Proteus 8环境,在快捷工具栏中点击源代码按纽,然后在菜单栏选择系统-编译器配置。
【机械基础实验-项目一】LSC-II螺栓组及单螺栓联接综合实验台实验指导书
LSC-II螺栓组及单螺栓联接综合实验台一、工程应用实例螺纹联接是机器中广泛采用的联接形式,常为可拆联接。
在机械设计中大量使用螺纹联接,例如流体传动中液压缸的法兰盘联接、汽车发动机中汽缸盖与缸体的联接等。
在日常生活中,螺栓组联接也有广泛应用,例如空调的室外机的托架等等。
二、实验问题的提出在螺栓承受变动外载荷时,粗螺栓的疲劳寿命比细长螺栓的寿命短,这是为什么呢?另一方面,在机器设计中可以通过哪些措施来提高螺栓的疲劳寿命,机械设计中介绍了三种措施:(1)提高被联接件的刚度;(2)减小螺栓的刚度;(3)提高螺栓联接的预紧力。
也可以同时采用上述三种措施。
第(1)(2)种措施将导致螺栓联接残余预紧力的减小,这对有密封要求的联接是必须考虑的;第(3)种措施会导致螺栓静强度的减弱。
上述结论正确吗?我们通过本实验来观察、分析螺栓的联接特性。
螺栓联接常成组使用。
在外界转矩或倾翻力矩载荷作用下,每只螺栓上承受的载荷一样吗?各螺栓上承受载荷间有什么关系呢?让我们用实验来研究这一问题。
三、实验目的现代各类机械工程中广泛应用螺栓组机构进行联接。
如何计算和测量螺栓受力情况及静、动态性能参数是工程技术人员面临的一个重要课题。
本实验通过对一螺栓组及单个螺栓的受力分析,要求达到下述目的:(一)螺栓组试验(1)了解托架螺栓组受翻转力矩引起的载荷对各螺栓拉力的分布情况。
(2)根据拉力分布情况确定托架底板旋转轴线的位置。
(3)将实验结果与螺栓组受力分布的理论计算结果相比较。
(二)单个螺栓静载试验了解受预紧轴向载荷螺栓联接中,零件相对刚度的变化对螺栓所受总拉力的影响。
(三)单个螺栓动载荷试验通过改变螺栓联接中零件的相对刚度,观察螺栓中动态应力幅值的变化。
2四、螺栓试验台结构及工作原理(一)螺栓组试验台结构与工作原理螺栓组试验台的结构如:图1所示。
图中1为托架,在实际使用中多为水平放置,为了避免由于自重产生力矩的影响,在本试验台上设计为垂直放置。
近代物理实验课件:燃料电池综合实验指导及操作说明书
ZKY-RLDC燃料电池综合特性实验仪实验指导及操作说明书成都世纪中科仪器有限公司地址:成都市人民南路四段9号中科院成都分院邮编:610041电话:(028)85247006 85243932 传真:(028)85247006网址; E-mail: ZKY@ZKY.C n燃料电池综合特性实验仪燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。
燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。
因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。
1839年,英国人格罗夫(W. R . Grove)发明了燃料电池,历经近两百年,在材料,结构,工艺不断改进之后,进入了实用阶段。
按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。
燃料电池的燃料氢(反应所需的氧可从空气中获得)可电解水获得,也可由矿物或生物原料转化制成。
本实验包含太阳能电池发电(光能-电能转换),电解水制取氢气(电能-氢能转换),燃料电池发电(氢能-电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。
实验内含物理内容丰富,实验内容紧密结合科技发展热点与实际应用,实验过程环保清洁。
能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。
为了人类社会的持续健康发展,各国都致力于研究开发新型能源。
未来的能源系统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。
实验目的1、了解燃料电池的工作原理2、观察仪器的能量转换过程:光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能3、测量燃料电池输出特性,作出所测燃料电池的伏安特性(极化)曲线,电池输出功率随输出电压的变化曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验指导说明书 (一) 实验目的 通过实验了解、熟悉设备网(DeviceNet)和工业以太网(EtherNet/IP)的设计、组态及操作,掌握数据通讯、OPC技术等概念。 (二) 实验内容 安装连接设备网。 组态EtherNet/IP。 添加 I/O模块及设备网扫描模块。 离线/在线组态设备网。 通过以太网、设备网分别实现控制程序的上传下载,实现互锁控制。 通过DDE/OPC方式实现控制器与应用程序(如Excel)的数据交互。 (三) 实验设备 硬件: 设备网(DeviceNet)网线、网络连接器 设备网扫描模块1769-SDN、设备网接口模块1761-NET-DNI、1203-GK5 变频器1336PlusⅡ 开关电源(24V) 16口交换机 以太网EtherNet/IP网线 MicroLogix1500、CompactLogix L32E及若干数字、模拟I/O模块 软件: RSLogix5000 RSLogix500 RSNetWorx for DeviceNet RSLinx BOOTP-DHCP Server Microsoft Excel (四) 网络系统结构示意图 1203-GK5 1305 变频器 1# CompactLogix L32E+1769-SDN+I/O模块 PC机 1761-NET-DNI MicroLogix1500 1203-GK5 1305 变频器 10# 1770-KFD Tool PC
„„ „„
PC机 PC机 PC机 „„ „„ EtherNet DeviceNet MAC ID=00 MAC ID=02 MAC ID=06 MAC ID=07 MAC ID=11 MAC ID=62 1# 5# 6# 10# 干线
支线 Scanner 1 PC机
CompactLogix L31
RS-232
(五) 实验步骤 一 硬件平台搭建 二 串口通信组态 1 说明 RSLinx软件是在Microsoft操作系统下建立工厂所有通信方案的工具。它为A-B应用软件,如RSLogix5/500、RSView32、RSBatch、PLC-5A.I.系列、Ladder Logistics以及Panel Builder等软件之间建立起通信联系。RSLinx的Advance DDE接口支持处理器与MMI(Man-Machine Interface)和组件软件间进行通信,也可与DDE兼容软件,如Microsoft Excel 、Access 及其它用户定制的DDE引用通信。它的C应用程序编程接口(API)支持用户使用RSLinx C SDK开发的应用软件。作为开发出的真32位应用程序,RSLinx充分利用了Windows操作系统的多处理性能。通过各种通信接口,RSLinx可以同时进行应用程序组合运行服务。 RSLinx有五种版本,本次实验我们所用的是RSLinx Gateway,它扩展了基于RSLinx的企业内部通信。RSLinx和WINtelligent LINX客户程序能通过TCP/IP网络直接接入RSLinx Gateway驱动程序。这些客户程序能直接对连接到RSLinx Gateway 可访问的网络上的Allen-Bradley PLC、SLC以及MicroLogix处理器进行在线访问。这允许现场动态数据进入应用软件进行显示、登录以及趋势图操作。亦可从监控计算机设置某单独参数或下载配方到所支持的设备中。 2利用RSLinx组态RS232通信 1)用RS232串行接线将PLC控制器模块上的RS232接口与电脑上的串行COM口相连。并打开RSLinx界面窗口。 2)点击菜单栏上的Communications->Configure Drivers打开“驱动配置”对话框。 3)在“可用驱动类型”下拉菜单中,选择通过RS232连接上位机与控制器的“RS232 DF1 devices”驱动类型
4)点击“Add New”按钮,在弹出的命名对话框中采用默认的驱动名称.。 5)选择用于进行连接的正确的电脑串口号,与PLC设备型号,这里选择“Logix5550/CompactLogix”,点击Auto-Configure按钮,软件会自动搜索已连接的硬件。待成功后点击OK确定。此时即可看见新加入的驱动设备初始化且转为Running状态。
6)回到RSLinx主界面点击按钮,打开RSWho窗口,可以依次看见 已经配置完成的CompactLogix控制器机架、控制器模块与I/O模块 三 以太网EtherNet/IP组态 1 说明 由于通过RS232方式组态,信号与程序上传下载都较为缓慢,因此对于具有以太网接口的CompactLogix控制器1769-L32E,可将已配置好的RS232通信方式通过BOOTP协议服务转换为以太网通信方式,提高监控实时性与速度。 BOOTP协议服务是一个低标准协议,提供基于Windows操作系统中TCP/IP网络上其他节点的配置。BOOTP配置文件允许你自动指定控制器网卡模块的IP地址,以及子网地址与网关。网卡模块默认设置为BOOTP使能,一经上电后,网卡通过物理地址向网络中的BOOTP服务器发送信息。服务器通过比较确认发送的信息与配置文件表中的物理地址一致后,向模块发送回适当的IP地址。 2 利用BOOTP进行以太网通信连接 1)将PLC控制器与上位机通过HUB或交换机在以太网层面相连,并在上位机 中指定其IP地址。 2)在RSLinx的RSWho中找到已通过RS232接口通信的PLC控制器,以此展开机架底板前的加号,找到1769-L32E的以太网端口,右键点击,选择Module Configure,将Network Configure Type改为Dynamic,以便BOOTP协议通过物理地址配置IP。 3) 打开BOOTP/DHCP Server软件,等待其自动找到以太网端的物理地址后。在软件界面下端的Rolation List点击New,将找到的MAC物理地址填入,并指定PLC的IP地址,注意其前三位需和已指定上位机IP相同。
至此以太网组态完成,此时在RSLinx中,不仅可以从RS232端口看见控制器,从以太网端口也可以看见PLC控制器及其I/O模块。
四 设备网离线组网 1说明 RSNetWorx for DeviceNet是Rockwell Automation提供的设备网DeviceNet组网软件包。在没有任何硬件的情况下,可通过此软件进行设备网的离线组态、开发;然后将离线组网工程信息通过网络下载到DeviceNet设备中。RSNetWorx软件为所建网络提供一个基于EDS(Electronic Data Sheet,此文件包含了设备的所有说明信息,格式为ASCII文本格式,通过此文件可以将不同的设备离线添加到一个网络工程中)文件的图形接口。 2 步骤 (1)打开RSNetWorx for DeviceNet软件 1)打开桌面RSLogix5000文件:configure.ACD。此文件为针对试验平台上的CompactLogix L32E创建的RSLogix5000文件,如下图所示:
2) 打开工程目录树中的I/O Configuration文件夹,在[5]1769-SDN/A master_scanner点击右键选择Properties。Module Properties对话筐如下图所示: 3) 选择RSNetWorx,单击Launch RSNetWorx for DeviceNet按键。如下图所示: 系统将自动打开RSNetWorx for DeviceNet软件,如下图所示:
(2)离线添加、组态一个DeviceNet工程 1)在左侧Hardware工程树中分别找到1769-SDN Scanner Module、1761-NET-DNI Series B DeviceNet Interface、1770-KFD RS232 Interface、1203-GK5等模块, 通过双击的方式分别将其添加到右侧的网络窗口中,如下图所示: 2)在1761-NET-DNI Series B DeviceNet Interface图标处点击右键选择Properties,打开属性对话框,进行参数设置后点击确定按钮。注意DeviceNet网络最多可组态节点数为64个,可以通过参数设置指定节点地址。同样方法分别对除1769-SDN以外的其它节点进行参数设置,具体操作如下图所示:
3)组态设备网扫描模块(1769-SDN) 打开1769-SDN的属性对话框,选择Scanlist,进行1769-SDN 扫描列表组态,将设备网上挂接的所有设备添加到列表中,并选中Automap on Add以便软件自动将设备的输入、输出数据印象到1796-SDN的输入、输出数据表中。具体操作如下图所示。
在Input、Output中可以看到当前输入、输出数据从DeviceNet设备到CompactLogix平台的印象,如下图所示。注意消息类型(Message type)显示了数据交换的方式为COS(Change of State)或者为Polled,可通过Advanced…进行高级设置。参数设置完后返回主对话框。