实验说明书
污泥沉降比 实验指导说明书

实验污泥沉降比(SV%)和污泥指数(SVI)的测定一、实验目的掌握沉降比和污泥指数的测定和计算方法,进一步理解污泥沉降比,污泥指数和污泥浓度间的关系以及它们对活性污泥法处理系统的设计和运行控制的意义。
二、实验设备和材料1、量筒2、漏斗3、称量瓶4、烘箱5、干燥器6、天平7、滤纸8、镊子三、实验步骤1、污泥沉降比(1)用量筒取曝气池混合液约1000ml或100ml,静置,并记录体积。
(2)30分钟后计沉淀污泥体积(3)污泥体积除以混合液体积是SV%2、污泥指数(1)滤纸的准备:取定量滤纸一张,按布氏漏斗大小修剪合适(滤纸应比漏斗直径小约1毫米为宜)然后将滤纸折成扇形,放入扁形大称量瓶中,送进烘箱,调节温度于105-110℃烘干一小时(烘时称量瓶盖要打开)取出称量瓶置干燥器中冷却30分钟,在分析天平上称量(称量时,要将称量瓶盖盖好)记下重量(W1).(2)过滤装置的准备:将布氏漏斗安装于抽滤瓶上,连接好抽气泵。
将已烘干称重的滤纸放入漏斗,用少量蒸馏水浸湿,使贴于漏斗上,并开动抽气泵抽气片刻,以使滤纸贴紧。
(3)取样过滤:用已校准过容量的量筒取混合液样50毫升,徐徐倾入滤纸上,至滤纸全部被复盖时开动抽气泵,进行抽滤,最后用少量滤馏水冲洗量筒,将洗水倾于滤纸上。
待滤纸上泥浆已经抽干,不再有水珠下滴时,即可停止抽气(停泵之前,先松开通大气的橡皮管夹)。
(4)滤饼的烘干称重用刮刀小心掀开滤纸边沿,将泥饼包在滤纸中间,取下放入原先放滤纸的称量瓶中,送进烘箱,于105-110℃烘干1-2小时(视样品多少而定)。
取出放干燥器中冷却30分钟,称重,重复烘干,干燥、称重,直至恒重。
(5)计算MLSSMLSS (mg/L )=V W W 10001000)(21⨯⨯-式中W 1—称量瓶和滤纸的重量(克)W 2—称量瓶、滤纸和滤渣的重(克)V —混合液体积(毫升)(6)计算SVI SVI=MLSS SV410四、实验结果分析1、抄其它各组数据,求平均值,误差及相对误差。
实验手册:牛顿环法说明书

LABORATORY MANUAL FORNEWTON’S RING METHODBackground Coherent sources of light,Concept of Interference,Interference by division of wave front and amplitude,Interference in thinfilms,Newton’s ring apparatus.Aim:To determine the wavelength of sodium light by Newton’s Ring method.Apparatus:A nearly monochromatic source of light(source of sodium light),a plano-convex lens C,an optically plane glass plate P,an opticallyflat glass plate G in-clined at an angle of45◦,a travelling microscope with measuring scale and a spherometer.Theory:•Condition for formation of bright and dark fringes:When a parallel beam of monochromatic light is incident normally on a combination of a plano-convex lens C and a glass plate P,as shown infig.1(a),a part of each incident ray is reflected from the lower surface of the lens,and a part,after refraction through thefilm between the lens and the plate,is reflected back from the surface of glass plate. These two reflected rays are coherent,hence they will interfere and produce a system of alternate dark and bright rings(seefig.1(b))with the point of contact between the lens and the plate at the center.These rings are known as Newton’s rings.(a)Experimental set-up(b)Newton’s ringsFigure1In general,the path difference between the reflected light beams which are undergoing interference(for oblique incidence)is given by∆=2µtcosθ−λ2,(1)where additional path difference ofλ2is because one of the interfering beam is reflected fromfilm to glass surface.Also,θis the angle of incidence.For normal incidenceθ=0◦and hence,the path difference will be∆=2µt−λ2.(2)In the interference pattern bright fringe will be formed if the path difference is equal to integral multiple of wavelength of light,i.e.,∆=2µt−λ2=nλ;n=0,1,2,3...⇒2µt=(n+12)λ;n=0,1,2,3 (3)For intensity minima(dark fringe),∆=(n+12)λ,and thus,2µt=nλ.n=0,1,2,3 (4)•Relationship between ring diameter and wavelength:Figure2Infig.2,let LOL is the plano-convex lens placed on glass plate.Plano-convex lens appears as part of circle of radius R.Here,radius R is known as radius of curvature of plano-convex lens.Suppose r is the radius of some n th bright ring having thickness ing the property of circle,fromfig.(2),we can writeEP×P F=P O×P Q,⇒r2n=t×(2R−t),⇒r2n=(2Rt−t2).Since R>>t,t2can be neglected thereforer2n2Rt,(5)by using Eq.(4)and Eq.(5),we haver2 n =nλRµ.(6)Using r n=D n2,we can write following relation for diameter of n th,ringD2n =2r2n=nλRµ.(7)The diameter of some m t h dark fringe will beD2m =mλRµ.(8)Subtracting Eq.(7)and Eq.(8),we can write following relationλ=D2n−D2m4R(n−m)µ.(9)Above equation is used tofind the wavelength of monochromatic light using Newton ring’s method,in which material of refractive indexµis immersed between plano-convex lens and glass plate.If air is enclosed as thinfilm havingµ=1,then Eq.(9)becomesλ=D2n−D2m4R(n−m).(10)The radius of curvature,R is calculated by spherometer(seefig.3)using followingrelationR=l26h+h2.In above,l is the mean length of the three sides of equilateral triangle formed by joining the tips of three outer legs and h represents the height of the central screw above or below the plane of the outer legs.Procedure:The experimental set-up used for the experiment is shown infig.1(a).1.Level the travelling microscope table and set the microscope tube in a verticalposition.Find the vernier constant(least count)of the horizontal scale of the travelling microscope.2.Clean the surface of the inclined glass plate G,the lens C and the glass plate P.Place them in position as shown infig.1(a)and as discussed in the description of apparatus.Place the arrangement in front of a sodium lamp so that the height of the center of the glass plate G is the same as that of the center of the sodium lamp.Figure3:Spherometer.3.Adjust the position of the travelling microscope so that it lies vertically above thecenter of lens C.Focus the microscope,so that alternate dark and bright rings are clearly visible.4.Adjust the position of the travelling microscope till the point of inter-section of thecross wires(attached in the microscope eyepiece)coincides with the center of the ring system.5.Slide the microscope to the left till the cross wire lies tangentially at the centerof the20th dark ring.Note the reading on the vernier scale of the microscope.Slide the microscope backward with the help of the slow motion screw and note the readings when the cross-wire lies tangentially at the center(seefig.1(b))of the 18th,16th,14th,12th,10th,8th,6th,and4th dark rings,respectively.[Observations offirst few rings from the center are generally not taken because it is difficult to adjust the cross-wire in the middle of these rings owing to their large width.]6.Keep on sliding the microscope to the right and note the reading when the cross-wire again lies tangentially at the center of the4th,6th,8th,10th,12th,14th,16th, 18th,and20th dark rings,respectively.7.Remove the plano-convex lens C andfind the radius of curvature of the surface ofthe lens in contact with the glass plate P accurately using a spherometer.8.Find the diameter of the each ring from the difference of the observations taken onthe left and right side of its center.9.Take any two diameter and perform the calculations for D2n −D2m(m<n)as directedin Table.1.10.Finally calculate the value of wavelength of the sodium light source using Eq.(9).Observations:DiameterFigure 4:Vernier Scale of the Microscope.1.M.S.D =....2.V.S.D =....3.Vernier constant =...cm.4.µ(air)=....Sr.no.Ring no.(n )Microscope reading (cm)D n =L-R (cm)D 2n (cm 2)D 2n −D 2m (cm 2)Left(L)Right(R)Main Vernier Total Main Vernier Total12345678910Table 1:Measurements of the diameter of the ring.Spherometer1.Pitch of the screw=.........cm.2.Number of divisions on circular head=..........3.Least count of the spherometer=..........cm.Sr.no.Spherometer readings onh(cm)l(cm) convex surface plane surface1.2.3.Table2:Calculations of h and l.4.The mean height h of the central screw=.......cm and the mean distancebetween the two legs of the spherometer,l=.........cm.5.The radius of curvature R=.........cm.WavelengthSr.no.λ=D2n−D2m4R(n−m)µ(nm)1.2.3.4.5.6.7.8.9.Table3:Calculations for wavelengthλ.•The mean wavelength(λ)of Sodium light is=.........nm. Results:•Observed wavelength of the Sodium light is(λO):.......nm.•Actual wavelength(λA):589.3nm.•%error:|λO−λA|×100=.....%.λAPrecautions:Notice that as you go away from the central dark spot the fringe width decreases.In order to minimize the errors in measurement of the diameter of the rings the following precautions should be taken:1.The microscope should be parallel to the edge of the glass plate.2.The mirrors should be in perfectly stable positions when reading are being taken.3.There should be no play between the screw and the nut in which it rotates.4.To avoid any backlash error,the micrometer screw of the travelling microscopeshould be moved very slowly and be moved in one direction while taking observa-tions.5.While measuring diameters,the microscope cross-wire should be adjusted in themiddle of the ring(seefig.1(b)).Sample viva voce questions:1.What do you understand by the interference of light?2.What are essential conditions for obtaining interference of light?3.What do you understand by coherent sources?4.Is it possible to observe interference pattern by having two independent sourcessuch as two sodium lamp?5.Fro the interference to happen,why two sources should be monochromatic?6.Why are the Newton’s rings circular?7.Why is central ring dark?8.Where are these rings formed?9.Sometimes these rings are elliptical or distorted,why?10.What is the difference between the rings observed by reflected light and thoseobserved by transmitted light?11.What will happen if the glass plate is silvered on the front surface?12.Why do the rings gets closer andfiner as we move away from the center?13.What will happen when a little water is introduced in between the plano-convexlens and the plate?14.How does the diameter of rings change on the introduction of liquid?15.Can youfind out the refractive index of a liquid by this experiment? References•F.Jenkins and H.White,Fundamental of Optics,TATA-McGRAW HILL.•A.Ghatak,Optics,TATA-McGRAW HILL.Note:Soft copy of this manual is available on http://www.nitj.ac.in/physics/。
自由落体实验指南说明书

MechanicsTranslational Motion1 / 2Free FallDETERMINE THE ACCELERATION OF A FALLING OBJECTUE103030003/16 JSBASIC PRINCIPLESIf a body falls to the ground in the Earth’s gravita-tional field from a height h , it undergoes a constant acceleration g , as long as the speed of the fall is slow so that friction can be ignored. Such a falling motion is called free fall.In this experiment a steel ball is suspended from a re-lease mechanism. As soon as it is released into free fall, an electronic timer is started. After it has fallen a distance h the ball hits a target plate at the bottom which stops the time measurement at a time t .Since the ball is not moving before it starts to fall at time t 0 = 0 its initial velocity is zero, i.e. v 0 = 0. Therefore the distance covered in time t is given as follows221t g h ⋅⋅=(1)The results for different fall distances are to be entered as value pairs in a displacement/time diagram. The dis-tance h through which the ball falls is a non-linear func-tion ofthe time t, as can be shown by comparing a straight-line fit with a parabolic fit for the measured data. To obtain a linear graph it is necessary to plot the fall distance against the square of the fall time. From the slope of this line, the gravitational acceleration g can then be calculated.Fig. 1: Experiment set-up for measuring the fall time of a steelball as a function of the distance h between the trigger mechanism and a target plate.UE1030300 3B SCIENTIFIC® PHYSICS EXPERIMENT3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Germany, © Copyright 2016 3B Scientific GmbHLIST OF APPARATUS1 Free-fall apparatus1000738 (U8400830)1 Millisecond counter @230 V 1012833(U8533341-230) or1 Millisecond counter @115 V 1012832 (U8533341-115) 1 Set of three safety experiment leadsfor free fall apparatus 1002848 (U13811)SET-UP∙ Connect the Free Fall Apparatus to the millisecondcounter as shown in Fig. 1. ∙ Set the height of fall h = 950 mm.∙ Press the holding arm with the micromagnet down-wards and suspend the ball from it.EXPERIMENT PROCEDURE∙ Start the free fall by pressing the release lever. ∙ When the ball hits the target plate, measure and rec-ord the fall time t .∙By sliding the release mechanism, reduce the fall height h in steps of 50 mm and determine the fall time t in each case.SAMPLE MEASUREMENTSTab. 1: Measured values of the fall height h and fall time tEVALUATIONFirst method:Calculating the correlation between fall times and fall heights for h 0 = 100 mm,h 1 = 400 mm and h 2 = 900 mm:()()002ms 143ms 286400.h t h t ==⋅, ()()003ms143ms429900.h t h t ==⋅The fall times are found to be in the ratio 3:2:1 and the fall heights in the ratio 9:4:1 within the limits of experi-mental accuracy. In other words, the fall height is propor-tional to the square of the fall time: 2t h ∝Second method:a) Plotting the measurement results in a displace-ment/time diagram (see Fig. 2):Fitting a parabola to the measured values shows that the Fig. 2: Displacement/time diagram for free fallFig. 4: Fall distance as a function of the square of the fall timeThe fit between the matched line, passing through the origin, and the original data confirms Equation (1). The acceleration due to gravity can be calculated from the slope of the line.27892sm .A g =⋅= s / m m。
化工原理实验操作说明书

实验装置由循环泵、转子流量计、有机玻璃管路、循环水池和实验面板组成。
管路上装有进出口阀门和测压玻璃管。
管路中安装了23个测压点。
在φ40管的突扩和突缩处设置有两个排气点,在φ40管下设置有放净口。
四、实验方法与现象观察:循环水槽内无杂物,尽量灌满水。
全开回路阀,全关进口阀和出口阀,启动泵;全开出口阀,全开进口阀,逐渐关小回路阀到全关,使管内水流量达到最大。
此时可反复调节出口阀,观察系统内空气是否排出。
若最后粗管内剩余气泡可采用放气孔排出。
排净气体后全开出口阀。
此阶段为排气阶段;逐渐开大回路阀,调节水流量。
当调到合适水流量时,可进行现象观察;建议,本实验可进行大流量和小流量两种情况演示。
大流量以第1实验测压管内液面接近最大,小流量则以最后1个实验测压管内液面接近最低。
除注意由于位能,动能(扩大或缩小)、动能转化为静压能、摩擦损失引起的静压示值变化外,还可注意由于引射,局部速度分布异常而引起的示值异常,了解测压点的布置,以及相对压力示值的可能影响。
同一流速下现象观察分析:1、由上向下流动现象(1-2点);2、水平流动现象(3-4-5-6点);3、突然扩大旋涡区压力分布情况(6-7-8-9-10-11-12-13-15点);4、毕托管工作原理(13-14点);5、突然缩小的缩脉流区压力分布情况(16-17-18-19-20点);6、由下向上流动情况(22-23点);7、直管阻力测定原理(1-2点,4-5-6点,18-19点,22-23点等);8、局部阻力测定原理(2-4点和21-22点的弯头测定原理,6-12点突扩和16-19点的突缩测定原理)。
阀门调节现象观察:1、分别关小进、出口阀观察各点静压强的变化情况;2、关小进口阀并开大出口阀(或关小出口阀并开大进口阀)维持流量与阀门改变前后相同,观察各点静压强的变化情况;转子流量计现象观察:结构、原理、安装注意操作时的补充说明1、排气操作:当溢流管有溢流时,关出口阀,完全开大进口阀(让水从各测压点流出);然后开出口阀排主管气(可以关小,开大,反复进行,直到排完为止),然后调节出口阀到合适位置;再关小进口阀到合适位置。
杨氏模量实验-实验说明

用拉伸法测金属丝杨氏模量杨氏模量是表征固体材料弹性形变能力的一个重要物理量,是选定机械构件材料的依据之一、是工程技术中常用的参数。
本实验采用静态拉伸法,按光杠杆放大原理装置来测量金属丝的加载之形变,光杠杆法的原理已被广泛应用在测量技术中,如冲击电流计和光点检流计用光杠杆法的装置测量小角度的变化。
实验中的仪器结构、实验方法、数据处理、误差分析等内容较广,能使学生得到全面的训练。
【实验目的】1.掌握拉伸法测定钢丝杨氏模量的原理和方法。
1.掌握用光杠杆法测量长度微小变化量的原理和方法。
2.学习光杠杆和望远镜直横尺的调节与使用。
3.学会用逐差法处理实验数据。
【实验仪器及用具】YMC-1、2杨氏模量测定仪、YMC-1望远镜直横尺、光杠杆、砝码、钢卷尺、千分尺、游标卡尺【实验原理】在外力作用下,固体所发生的形状变化,称为形变。
它可分为弹性形变和范性形变两类。
外力撤除后物体能完全恢复原状的形变,称为弹性形变。
如果加在物体上的外力过大,以致外力撤除后,物体不能完全恢复原状,而留下剩余形变,就称之为范性形变。
在本实验中,只研究弹性形变。
为此,应当控制外力的大小,以保证此外力去除后物体能恢复原状。
最简单的形变是棒状物体(或金属丝)受外力后的伸长与缩短。
设一物体长为L ,截面积为S 。
沿长度方向施力F 后,物体的伸长(缩短)为ΔL 。
比值F/S 是单位面积上的作用力,称为胁强,它决定了物体的形变;比值ΔL/L 是物体的相对伸长,称为胁变,它表示物体形变的大小。
按照胡克定律,在物体的弹性限度内胁强与胁变成正比,比例系数Y 称为杨氏模量。
实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于棒(或金属丝)的材料。
它是描写物体形变程度的物理量。
根据式(1),测出等号右边各量后,便可算出杨氏模量。
其中F 、L 和S 可用一般的方法测得,唯有伸长量ΔL 之值甚小,用一般工具不易测准确。
因此,我们采用光杠杆法来测定伸长量ΔL 。
免疫沉淀实验具体步骤说明书

免疫沉淀实验具体步骤说明书嘿,朋友们!今天咱就来讲讲免疫沉淀实验那些事儿。
这免疫沉淀
实验啊,就像是一场奇妙的冒险!
首先呢,你得准备好你的“武器”,也就是各种试剂和样本。
这就好
比你要去探险,得带上足够的干粮和装备呀!
然后,把样本放在合适的容器里,就像给它们安个家一样。
接下来,加入特定的抗体,这抗体就像是个神奇的钩子,能把你想要的东西给
勾住。
你想想,这抗体就像是个聪明的小侦探,在茫茫样本中准确地找到
目标。
然后呢,让它们好好地结合一会儿,就像两个好朋友聊天一样,得给他们足够的时间熟悉熟悉。
接着,加入一些能让它们沉淀下来的东西,这时候就像是下了一场
魔法雨,把那些结合了抗体的东西都给召唤下来啦。
沉淀下来之后,可不能就这么不管啦。
得小心翼翼地把它们收集起来,这可不能马虎,就像收集宝贝一样得轻拿轻放。
再把收集到的沉淀进行清洗,把那些不相关的杂质都给洗掉,只留
下我们最想要的精华部分。
最后呢,对这些沉淀进行分析检测,看看我们到底抓到了什么“宝贝”。
这整个过程啊,就像是一场精心编排的舞蹈,每一个步骤都要恰到
好处。
你要是哪个环节出了差错,可能就跳不好这支舞啦。
免疫沉淀实验可不简单呢,但只要你认真对待,就一定能收获满满呀!就像你努力去攀登一座高峰,虽然过程辛苦,但当你到达山顶,
看到那美丽的风景时,一切都值啦!所以啊,朋友们,大胆去尝试吧,在免疫沉淀实验的世界里尽情探索吧!。
斯特里尔热机实验指南说明书
HeatCycles1 / 2Hot air engine (Stirling engine)OPERATE A FUNCTIONAL MODEL OF A STIRLING ENGINE AS A HEAT ENGINE• Operate the hot-air engine as a heat engine• Demonstrate how thermal energy is converted into mechanical energy • Measure the no-load speed as a function of the thermal powerUE206101006/06 JSBASIC PRINCIPLESThe thermodynamic cycle of the Stirling engine (invented by Rev. R. Stirling in 1816) can be presented in a simpli-fie d manne r as the proce sse s the rmal input, e xpansion, the rmal output and compre ssion. The se proce sse s have be e n illustrate d by sche matic diagrams (Fig. 1 to Fig. 4) for the functional model used in the experiment. A displacement piston P1 moves upwards and displaces the air downwards into the heated area of the large cylinder, thereby facilitating the input of air. During this operation the working piston is at its bottom dead centre position since the displacement piston is ahead of the working piston by 90°. The heated air expands and pushes the working piston up-wards. Due to this, mechanical energy is transferred to the flywheel rod via the crankshaft. While the working piston is in its top dead centre position: the displacement piston retracts and air is displaced towards the top end of the large cylinder so that it cools.The cooled air is compressed by the working piston extend-ing. The mechanical work required for this is provided by the flywheel rod.If the Stirling engine is operated without any mechanical load, it operates with at a speed which is limited only by internal friction and which depends on the input heating energy. The speed is reduced as soon as a load takes up some of the mechanical energy. This is most easily demon-strated by allowing a frictional force to act on the crankshaft.Fig. 1: HeatingFig. 2: ExpansionFig. 3: CoolingFig. 4: CompressionUE206010 3B SCIENTIFIC® PHYSICS EXPERIMENT3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Germany, LIST OF APPARATUS1 Wilke-type Stirling engine U8440480 1 Power supply unit 8-15 V,2 A, e.g. U8521121 1 Set of safety experiment leads, 75 cm U13802 1 Mechanical stopwatch (60 seconds) U40800SET-UP• Release the transport lock of the crankshaft and thedisplacement piston.•Insert the loop of nylon string, onto which the displace-ment piston is suspended, into the front end of the crankshaft.• Firmly screw on the second flywheel rod to the crank-shaft at its rear end.• Seal off the large cylinder with the black covers.EXPERIMENT PROCEDURE• Connect the power supply unit to the heater voltage input.•Set the heater voltage to 12 V. Wait for a few minutes and manually start the Stirling engine by moving the flywheel rod. • Vary the heater voltage from 8 V to 15 V in steps of 1 V.•In each case, wait for one minute. Measure the time required for 10 revolutions of the engine shaft and cal-culate the corresponding speed (rpm).Fig. 5: Set-up for the operation of a Stirling engine as a heat engineby means of electric heatingSAMPLE MEASUREMENTSTable 1: Measured values for no-load speed n in relation to the heater voltage UU (V) 10 T (s) n (s -1)8 27.5 0.36 9 24.6 0.41 10 21.3 0.47 11 19.0 0.53 12 16.9 0.59 13 15.00.67 14 13.4 0.75 15 12.0 0.83EVALUATIONIf we consider the internal friction to be constant, then theno-load speed is proportional to the mechanical energyoutput of the Stirling engine in its unloaded state. If, in addi-tion, we assume the resistance of the heater to be a constant,then the heating energy is proportional to the square of the heater voltage. In Fig. 6, therefore, the no-load speed n of the Stirling engine (as a measure for the mechanical energyoutput) has been plotted as a function of the square of theheater voltage U (as a measure of the heat energy input).Fig. 6 thus shows that the mechanical energy output in-creases when the heat energy input is increased.Fig. 6: No-load speed of a Stirling engine plotted against thesquare of the heater voltageRESULTSWhile operating as a heat engine, the Stirling engine converts part of the supplied thermal energy into mechanical energy and releases the remaining energy into the environment as heat.。
科学实验报告说明书
科学实验报告说明书一、实验目的本实验旨在研究某种物质在不同温度下的溶解度变化规律,并通过实验结果分析其影响因素。
二、实验原理溶解度是指单位溶剂中能溶解的最大溶质量,通常用质量浓度表示。
在本实验中,我们将通过改变溶质与溶剂的温度来观察溶解度的变化。
温度的升高会增加溶质分子的动能,从而加快溶质与溶剂之间的相互作用,促进溶质的溶解,因此溶解度随温度的升高而增加。
三、实验材料和设备1. 实验材料:- 某种物质(溶质)- 水(溶剂)2. 实验设备:- 温度计- 量筒- 烧杯- 搅拌棒四、实验步骤1. 准备工作:- 清洗实验设备,确保无杂质。
- 称取一定质量的溶质。
2. 实验操作:- 将一定质量的溶质加入烧杯中。
- 加入适量的水溶解。
- 使用温度计测量溶液的温度。
- 记录溶解度与温度的对应关系。
3. 实验数据处理:- 绘制溶解度与温度的曲线图。
- 分析曲线图,得出结论。
五、实验结果与讨论根据实验数据处理的结果,我们得到了溶解度与温度的曲线图。
从曲线图中可以看出,随着温度的升高,溶解度逐渐增加,呈正相关关系。
这说明温度的升高对该物质的溶解度有促进作用。
六、实验结论本实验通过研究某种物质在不同温度下的溶解度变化规律,得出了温度对溶解度的影响。
实验结果表明,温度的升高会增加溶质与溶剂之间的相互作用,从而促进溶质的溶解,导致溶解度增加。
七、实验注意事项1. 实验过程中要注意安全,避免溶液溅到皮肤或眼睛。
2. 操作时要轻拿轻放,避免实验设备的破损。
3. 温度计使用时要小心,避免摔落或碰撞。
八、实验改进方向1. 可以进一步研究其他因素对溶解度的影响,如压力、溶剂种类等。
2. 可以扩大样本量,提高实验结果的可靠性和准确性。
3. 可以进行对比实验,研究不同物质在相同条件下的溶解度差异。
九、参考文献[1] 张三, 李四. 温度对溶解度的影响[J]. 化学实验, 20XX, X(X): XX-XX.以上是本次实验的科学实验报告说明书,通过对某种物质在不同温度下的溶解度变化规律的研究,我们了解到温度对溶解度的影响,并提出了实验改进方向。
科学实验:水分解实验说明书
Instruction sheet3B SCIENTIFIC ® PHYSICS®The purpose of the water-decomposition is for the elec-trolysis of water (converting electrical energy into chemical energy), quantitative determination of the resulting gases and confirmation of Faraday’s laws.1. Safety instructions•Since the conductivity of distilled water is too low,electrolysis is carried out using dilute sulfuric acid (c =1 mol/l approx.).•Carefully add the sulfuric acid to the water while stirring. Never do this the other way round.•Wear protective goggles when mixing the solution and when releasing the gases.•Students should always be informed of the dan-gers of the chemicals needed for the experiment.•Caution. Any acid that escapes can cause irrepa-rable stains and holes in clothing.•Be careful when taking the glass tubing off its se-curing plate.•Do not subject the glass components of the water-decomposition apparatus to mechanical stress.2. Description, technical dataThe water-decomposition apparatus consists of an H-shaped section of glass tubing attached to a securing plate fixed to a stand rod that rests on a base-plate.The glass section involves two gas collection tubes eachU14332 Hofmann water-decomposition apparatus11/03 ALFwith a measuring scale. At the top of each tube there is a ground stopcock. Two platinum electrodes are se-cured at the lower ends via GL-18 screw fittings. A flex-ible plastic hose leads to a leveling bulb for equalising the pressure in the collection tubes.Dimensions:Water-decomposition apparatus:Height:800 mm approx.Width:150 mm Base-plate:250 mm x 160 mm Rod:750 mm x 12 mm ØSecuring plate:120 mm x 110 mm Gas collection tubes:Height:510 mm Width:150 mm Tube diameter:19 mm Scale:50 ml each with 0.2 ml divisions Leveling bulb:Volume:250 ml2.1Scope of delivery:1 Glass section with gas collection tubes1 Base-plate with stand rod and securing plate 1 Pair of platinum electrodes with 4-mm sockets 1 Leveling bulb with plastic hose 1 Stand ring to hold the leveling bulb 1 Universal sleeve1Base-plate with stand rod 2Platinum electrodes 3GL-18 screw fitting 4GL-14 screw fitting 5Gas collection tubes 6Securing plate 7Ground stopcock 8Plastic hose 9Stand ring bl Leveling bulb123456789bl2.2SparesU14333 Gas collection tubesU14334 Pair of platinum electrodes U14335 Leveling bulb, 250 ml3. TheoryUnlike metallic conductors, where current is carried by electrons, current in electrolytes is transported via ions.In water to which sulfuric acid has been added the fol-lowing ions are present: HSO 4–, SO 42– and H 3O +. When a voltage is applied, ions begin to move and the water is electrolyzed. This leads to the liberation of hydro-gen and oxygen gas. At the cathode (the negative pole)two 2 H 3O + ions combine to form an H 2 molecule. At the anode (positive pole) O 2 is formed. The sulfuric acid remains unchanged and acts solely as a catalyst for the electrolysis of water.The charge Q transported between the electrodes dur-ing electrolysis can be calculated from the current Ιand the duration of the electrolysis t by means of the following equation:Q = Ι · t.If an ion has a charge of z times the charge on an elec-tron e, then Q/ze ions are released.For H 3O + z = 1 so that Q/2e H 2 molecules are produced.2 ions are needed to produce one molecule. To release n moles of H 2 therefore requires a chargeQ = 2e · N L · nwhere N L is the Loschmidt or Avogadro number that represents the number of molecules per mole (N L = 6.0 · 1023/mol).If n and Q are known, the equation can be used to find the Faraday constant F, which is the product of the two fundamental constants, the charge on an electron and the Avogadro number:F = e · N L ~ 105 C/molThe number n of moles released can simply be deter-mined from the volume.The gas lawp · V = n · R · T,summarizes the relationship between pressure p, vol-ume V , temperature T and the number of moles n.The temperature T in Kelvin can easily be determined from the temperature in Celcius t c (T = t c + 273 K). R is the universal gas constant and takes the value R = 8.3 J mol –1K –1 (joules per mole per Kelvin).A charge Q produces Q/2e H 2 molecules at the cath-ode. If the Avogadro number N L = 6 · 1023/mol, we then obtain fromn Q e N p VR Tmol L =⋅=⋅⋅2 a value for the Faraday constant ofF e N Q R Tp VC mol L =⋅=⋅⋅⋅⋅=296500/.3. Example experiments3.1Investigation of the conductivity andcomposition of water Required equipment:Water-decomposition apparatusVoltage supply (e.g. U11760 AC/DC power supply)Connecting leads Distilled water Dilute sulfuric acidExperiment procedure:•Set up the experiment according to Figure 1.•Pour distilled water into the leveling bulb with both stopcocks open.Fill the gas collection tubes completely by altering the height of the leveling bulb.•Close the glass stopcocks. The water level in the leveling bulb should be higher than that in the col-lection tubes.•Check the apparatus for leaks and tighten connec-tions where necessary.•Turn on the power supply and observe the elec-trodes.•Since there is no perceptible reaction, turn the power supply off again.•Add a few drops of dilute sulfuric acid (c = 1 mol/l approx.).•After waiting for about 5 minutes, switch on the power supply again.•Gas bubbles should rise from both electrodes.•When the gas collection tube at the negative pole (cathode) is half filled with gas, turn off the power supply.•To achieve a precise reading of the gas volumes,lower the leveling bulb until the water in the bulb is level with that in the tube to be measured.•Release the gases through the stopcocks and col-lect them in upturned test tubes.•Demonstrate the presence of hydrogen by the pop test and the presence of oxygen using a glowing splint.Result:•Electrolysis does not take place when distilled wa-ter is used on its own.•Addition of dilute sulfuric acid has a catalytic ef-fect so that the distilled water is electrolyzed into its two components, hydrogen and oxygen.•The volume of hydrogen gas formed at the cath-ode is twice the volume of the oxygen gas formed at the anode.Fig. 13.2Determining the Faraday constantRequired equipment:Water-decomposition apparatusVoltage supply (e.g. U11760 AC/DC Power supply) Ammeter (e.g. U13000 multimeter)Connecting leadsDistilled waterSulfuric acidStopwatchThermometerBarometerHydrometerExperiment procedure:•Set up the experiment according to Figure 2.•Pour distilled water into the leveling bulb with both stopcocks open.Fill the gas collection tubes completely by altering the height of the leveling bulb.•Close the glass stopcocks. The water level in the leveling bulb should be higher than that in the col-lection tubes.•Check the apparatus for leaks and tighten where necessary.•Turn on the power supply and set the voltage so that approximately 1 A of current flows. Check tosee that gas is being emitted into both tubes.•Turn the power supply off again, open the stop-cocks and release the gas.•Close the glass stopcocks. Turn on the power sup-ply and the stopwatch at the same time.•When the glass collection tube at the negative pole (cathode) is nearly full, turn off the power supplyand the stopwatch together and record the time.•Determine the volumes of gas. The hydrostatic pres-sure should be equalized in order to do this.•Measure the air pressure and room temperature. Calculation:•For a known current Ι (A), time t (s), air pressure p (Nm–2), temperature T (K), volumes of gas VH2, VO2 (m3) and universal gas constant R (8.3 J mol–1 K–1)the Faraday constant F is given byFQ R Tp V=⋅⋅⋅⋅2Fig. 2。
化学实验说明书
化学实验说明书一、实验名称:酸碱中和反应的观察与分析二、实验目的:1. 了解酸碱中和反应的基本原理;2. 观察酸碱中和反应的现象,并进行定性分析;3. 学习使用适当的实验仪器和试剂。
三、实验原理:酸碱中和反应是指酸和碱在一定条件下混合反应,生成盐和水的化学反应。
酸和碱的中和反应是一种放热反应,反应过程中会产生热量。
酸碱中和反应的化学方程式可以表示为:酸 + 碱→ 盐 + 水。
四、实验仪器和试剂:1. 试剂:盐酸溶液、氢氧化钠溶液、酚酞指示剂;2. 仪器:量筒、滴定管、烧杯、玻璃棒。
五、实验步骤:1. 准备工作:将所需试剂和仪器摆放整齐,清洗干净;2. 取一个干净的烧杯,用量筒分别量取10 mL的盐酸溶液和氢氧化钠溶液;3. 将盐酸溶液慢慢滴入氢氧化钠溶液中,同时加入几滴酚酞指示剂;4. 每滴盐酸溶液滴入后,用玻璃棒搅拌均匀,直到溶液由红色变为无色;5. 记录滴定过程中盐酸溶液的滴数。
六、实验结果与分析:1. 实验现象:在滴定过程中,盐酸溶液滴入氢氧化钠溶液后,溶液由红色逐渐变为无色;2. 实验数据:记录滴定过程中盐酸溶液的滴数为20滴;3. 实验分析:根据滴定过程中酚酞指示剂的颜色变化,可以确定盐酸和氢氧化钠发生了完全的中和反应。
七、实验结论:通过本实验的观察与分析,可以得出以下结论:1. 盐酸和氢氧化钠发生了完全的中和反应;2. 酸碱中和反应生成了盐和水。
八、实验注意事项:1. 实验过程中要注意安全,避免试剂的直接接触皮肤和眼睛;2. 实验仪器和容器要保持干净,避免杂质的干扰;3. 滴定过程中要慢慢滴加试剂,并用玻璃棒搅拌均匀。
九、实验拓展:1. 可以尝试使用其他酸和碱进行中和反应,观察其现象和结果;2. 可以尝试改变酸和碱的浓度,观察对中和反应的影响。
十、实验总结:本次实验通过观察酸碱中和反应的现象和分析实验数据,加深了对酸碱中和反应的理解。
同时,学习了使用适当的实验仪器和试剂进行实验操作,提高了实验技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验说明书题目:(车模)组合生产线布置模式选择与平面布置姓名:付朋远任娟陈莹莹任茹雪学号:******** ******** ******** ******** 班级: 441205班指导教师:***吉林大学交通学院二〇一五年八月一、实验目的(1)学习多品种混流装配生产的组织与计划方法;(2)学习使用电子看板系统;(3)对比实验,分析产量、节拍、工位数等变量对生产线平衡效率的影响,比较不同生产线布置模式下的生产效率,确定出最优的生产线布置模式。
二、实验资源1.实验设备1)总控制台(包括看板):总控制台是本次实验中最重要的部分,负责控制整个实验的进程。
生产线运行之前,需要在控制台进行以下工作:①产品BOM表的输入:将本实验两种车型所需零件输入电脑。
②工序的输入:分别输入组装魔幻战蝠、B800的工序,同时要注明每道工序所需材料的种类、个数时间,并上传操作过程的示意图片(见附件1)。
③生产线的平衡:根据魔幻战蝠和防爆特警B800的作业流程图和各工序作业时间,手动分配各工作站负责的工序。
④发布任务,任务会下达至每个工位站的看板,点击执行,生产线开始运行生产。
2)传送带:负责传递各个工位站完成的半成品,节拍可以根据各工位实际操作时间而定,但需要以最长的时间为标准,并在此基础上增加一段容错时间。
3)操作台:各工位的任务均在操作台上完成。
4)物料盒:本次实验物料盒为3层,每层平均分为九个小格,用于各工位物料的存放。
5)魔幻战蝠和防爆特警B800:本次实验的两种车模。
2.实验设施本次实验均在实验室进行,实验室布局如图1:图1 实验室平面布置图实验室分为生产区,物料供应区和办公区(非实验区)。
3.人员分工由于本次实验需要控制单一变量,三种类型实验工位数目有所差异,故所需人员数不是定值。
在研究产量对生产线平衡效率的影响和研究变节拍生产对生产平衡效率的影响时,实验工位数目为5,故只需要5个装配操作员;而在研究工位数对生产平衡效率的影响时,需要将装配生产分配到到10个工位,此时需要10个装配操作员。
而此次实验需要生产调度、配料等工作,实际生产现场人员分工见表1:表1 人员分工表三、实验原则本次实验分析产量、节拍、工位数等变量对生产线平衡效率的影响,采用控制变量的原则,比较不同生产线布置模式下的生产效率,确定出最优的生产线布置模式。
根据魔幻战蝠和防爆特警B800的作业流程图和各工序作业时间,将5工位定节拍生产3辆魔幻战蝠、3辆防爆特警B800的实验定为对照组。
分析产量对生产线平衡效率的影响时,工位数、节拍不变,产量为单一变量(生产6辆魔幻战蝠、6辆防爆特警B800和生产9辆魔幻战蝠、9辆防爆特警B800两组实验),并与对照组进行比较;分析节拍对生产线平衡效率的影响时,工位数、产量不变,以节拍为单一变量进行生产,并与对照组进行比较;分析工位数对生产线平衡效率的影响时,产量、节拍不变,保证工位数为单一变量,并与对照组进行比较。
四、实验内容1.实验准备1)产品的选取此次实验选取玩具车模进行装配生产,分别是魔幻战蝠四驱车和防爆特警B800玩具车模。
(1)产品功能及实用性:魔幻战蝠和防爆特警车B800有助于孩子们智力和脑力的开发,深受大家的喜爱。
魔幻战蝠如图2;防爆特警B800如图3。
图2 魔幻战蝠图3 防爆特警B800(2)产品零件:魔幻战蝠的BOM表见表2,零部件见图4;防爆特警B800的BOM表见表3,零部件图见图5。
315427121011161718141368915图4 魔幻战蝠零部件图表2 魔幻战蝠BOM 表1234567891011121314151718192021222423252627282930313234333536373839404142434416图5 防爆特警B800零部件图(3)生产线考虑:玩具车模是单线生产,由一条生产线就可以完成;装配中以车模底盘为承载进行流水生产传递。
(4)产品差异性:两种玩具车模虽然材料不同,装配细节也不一样,但是整体结构类似,都可以以底盘作为承载进行流水线生产,所以不会影响到装配线设计。
(5)单个装配参数:防爆特警B800车模平均用时约7min,魔幻战蝠由于结构较复杂,平均用时10min。
(6)质检:防爆特警B800车模型没有动力装置,只需检查模型外观有无重大失误即可;魔幻战蝠可以通过安装2节5号电池,按动开关,检查其运动有无异常,以此来判断产品是否合格。
2)产品装配注意事项本次组装的车模均为益智玩具。
防爆特警B800的主要功能是促使孩子的大脑在自己动手拼装的过程中得到锻炼;魔幻战蝠的组装要特别注意它的动力性能,保证在有动力的情况下车模能够灵活运转。
装配时要注意以下问题:(1)防爆特警B800属于拼插玩具,装配时要注意各个部分的衔接,避免操作失误。
(2)魔幻战蝠要保证装饰物的位置正确,如果装错,很难进行二次操作。
(3)轴的安装要注意位置,传动轴要和齿轮系统配合好。
(4)齿轮要分清楚正确的位置,由于数量较多,要注意齿轮跟轴的配合。
(5)螺钉拧紧过程要先后退半步再拧紧。
(6)检验过程要保证产品硬性过关,不仅要保证车能跑,还要通过观察车的运行路线判断车的性能。
3)产品组装工艺程序分析和流程分析(1)经过实际装配,我们把魔幻战蝠的装配过程分解为9个工序:车轴与底盘组装;齿轮轴、开关、开关盖、开关铜片、车轮、马达与底盘组装;龙头与底盘组装;凤尾与底盘组装;前导轮安装在龙头上;后导轮安装在凤尾上;整车组装、贴纸、质检。
装配步骤及时间见表4,详细组装流程见表5,装配流程图见图6。
表4 魔幻战蝠装配步骤及时间表表5 魔幻战蝠详细组装流程表图6 魔幻战蝠装配流程图(2)为了说明方便,我们将防爆特警B800进行了模块化,模块化后的名称及部件如表6和图7。
表6防爆特警B800模块名称12354678910111213图7 防爆特警B800模块化部件图经过实际装配,我们把防爆特警B800模型的装配过程分解为14个工序:车底盘组装;驾驶员组装;车轮装在底盘上;前保险杠组装;变速杆组件组装;前保险杠与变速杆组件装在底盘上;后保险杠组装;驾驶室组装;后保险杠与驾驶室装在车上;后备箱组装;后备箱、座椅、锹座、锹、变速杆、长杆、车灯装到车上;将驾驶员装到车上;贴纸;质检。
装配步骤及时间见表7,详细组装流程见表8,组装流程图见图8。
表7 防爆特警B800装配步骤及时间表8 防爆特警B800详细组装流程图8 防爆特警组装流程图2.实验过程1)实验一:研究产量对生产线平衡效率的影响 (1)生产线平衡:根据魔幻战蝠和防爆特警B800的作业流程图和各工序作业时间,我们决定分配5个工作站。
接下来分别计算魔幻战蝠和防爆特警B800完成一件产品全部作业的时间总和。
==442(s ) 式1 ==629(s) 式2 式中 --完成一辆魔幻战蝠全部作业的时间总和 --完成一辆防爆特警B800全部作业的时间总和--魔幻战蝠各项作业所需时间(见表4)--防爆特警B800各项作业所需时间(见表7)由于实验设备的限制,为了实现混装的目的,我们将一辆魔幻战蝠和一辆防爆特警B800的组合作为一件新的产品输入设备进行组装生产。
我们将进行三次实验,产量分别是6辆(3辆魔幻战蝠、3辆防爆特警B800)、12辆(6辆魔幻战蝠、辆防爆特警B800)和18辆(9辆魔幻战蝠、9辆防爆特警B800)。
据此,计算生产节拍:∑∑==⋅=nii nii i N S T N C 11= 214.2(s ) 式3式中 i N ----第i 型产品的计划产量i T ----第i 型产品的单件加工时间S ----工位个数2)工作站分配:要使得每个工作站的操作时间尽量接近工作节拍214秒。
具体的工作站安排如下,如表9(表中的作业元素与表4和表7相对应,其中M 表示魔幻战蝠,B 表示防爆特警B800)。
图中所用时间为一个周期内组装的总时间,即组装1个魔幻战蝠,1个防爆特警B800的总时间。
3)生产平面布置:在只有5个工位的情况下,结合实验室的布局,我们决定采用直线型布置模式,方便生产,节约设备。
布置平面图如图9,各工位分配表见表10。
图9 5工位平面布置图4)物料供应方案:实验一的三组实验均采用5工位布置模式定节拍(C=214s)生产,但由于产量不同,所以其供料方案不同。
但是供料原则是一样的,即各工位的每个格子里放每个生产周期内所需要的全部零件,同时魔幻战蝠和防爆特警要分开,避免混乱。
三组实验的供料方案见附件2。
5)实验数据记录:我们实际进行3次实验,分别记录各工位操作时间如表11、表12和表13。
表11 5工位6辆车各工位操作时间记录表单位:s表12 5工位12辆车各工位操作时间记录表单位:s实验说明书表13 5工位12辆车各工位操作时间记录表单位:s152)实验二:研究变节拍生产对生产平衡效率的影响为了控制变量,我们采用变节拍生产6辆车,与实验一生产的6辆车进行对比,并且采用对照组的作业流程、平面布置方式及物料供应计划。
考虑到现实生活中,随着生产的进行,工人和设备的合作效率会逐步提高,所以操作时间或有所缩短,通过几次试验,我们决定3个周期采用的节拍分别是:214秒、200秒和180秒。
实验数据记录见表14。
3)实验三:研究工位数对生产平衡效率的影响通过对两类车的流程和各工序所用时间的深入研究,我们发现还可以将装配生产分配到到10个工位,但由于实验室的布局影响,要采用L型的布置模式。
(1)装配线平衡:为了与前面的实验进行对比,我们还是生产6辆车,进而与实验一和实验二的生产6辆车的数据进行比较。
利用式3计算生产节拍:C = 107.1(秒)(2)工作站分配:要使得每个工作站的操作时间尽量接近工作节拍107秒。
具体的工作站安排如下,如表15(表中的作业元素与表4和表7相对应,其中M表示魔幻战蝠,B表示防爆特警B800)。
图中所用时间为一个周期内组装的总时间,即组装1个魔幻战蝠,1个防爆特警B800的总时间。
(3)生产平面布置:在10个工位的情况下,结合实验室的布局,我们决定采用L型布置模式,方便生产。
布置平面图如图10,各工位分配表见表16。
图10 10工位平面布置图4)物料供应方案:其供料原则与实验一相同,具体的供应方案见附件3。
5)实验数据记录:记录各工位的操作时间如表17。
五.工位操作总结1.定节拍5工位生产线1)1号工位(1)任务:①魔幻战蝠的车轴与底盘组装及齿轮轴、开关、开关盖、开关铜片、车轮、马达与底盘的组装。
②B800的车底盘组装、驾驶员组装及将车轮装在底盘上。
(2)工位特点由于本工位不需要在其他零件的基础上,即不需要前一个工位提供原料,可以提前准备下一个零件的装配,另一方面,可以不用建立在前一个零件的基础上,所以不会出现补救前面工位的工作,而直接进行装配就行,可以保证质量。