高三数学12月月考试题 理1

合集下载

山东省日照一中2014届高三数学12月月考 理

山东省日照一中2014届高三数学12月月考 理

高三阶段检测理科数学2013.12第Ⅰ卷 选择题(共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效. 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( )A .0或 3B .0或3C .1或 3D .1或32. 若i 为虚数单位,图1中网格纸的小正方形的边长是1,复平面内点Z 表示复数z ,则复数z1-2i的共轭复数是( )图1A .-35i B.35I C .-i D .i3. 设βα、为两个不同的平面,m 、n 为两条不同的直线,且,m n αβ⊂⊂,有两个命题:p :若//m n ,则//αβ;q :若m β⊥,则αβ⊥;那么A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ” 是假命题D .“非p 且q ”是真命题4. 已知a>0且a≠1,若函数f(x)=log a (x +x 2+k)在(-∞,+∞)上既是奇函数,又是增函数,则函数g(x)=log a |x -k|的图象是( )5. 设偶函数()x f 满足()()042≥-=x x x f ,则不等式()2-x f >0的解集为A.{x x <2-或x >}4B.{x x <0或x >}4C.{x x <0或x >}6D.{x x <2-或x >}26.一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF →=12AD →,AK →=λAC →,则λ的值为( )A.15B.14C.13D.127.则这个几何体的外接球的表面积为A .23π B.8π3 C .4 3 D.16π38.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为 ( ) A.16 B.14 C.13 D.129. 已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .既不充分也不必要的条件B .充分而不必要的条件C .必要而不充分的条件D .充要条件10.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是 ( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]11.项数为n 的数列a 1,a 2,a 3,…,a n 的前k 项和为S k (k =1,2,3,…,n ),定义S 1+S 2+…+S nn为该项数列的“凯森和”,如果项数为99项的数列a 1,a 2,a 3,…,a 99的“ 凯森和”为1 000,那么项数为100的数列100,a 1,a 2,a 3,…,a 99的“凯森和”为( )A .991B .1 001C .1 090D .1 100 12.设定义在R 上的函数f (x )=⎩⎪⎨⎪⎧1|x -2|,x ≠2,1, x =2,若关于x 的方程f 2(x )+af (x )+b =0有3个不同实数解x 1、x 2、x 3,且x 1<x 2<x 3,则下列说法中错误的是A .x 21+x 22+x 23=14 B .1+a +b =0 C .a 2-4b =0D .x 1+x 3=4第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中相应题的横线上. 13.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.14.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________.15.已知1(2)xa e x d x =+⎰(e 为自然对数的底数),函数l n ,0()2,0x x x f x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________.16.16.已知,x y 满足约束条件224200x y x y y ⎧+≤⎪-+≥⎨⎪≥⎩,则目标函数2z x y =+的最大值是___________三、解答题:本大题共6小题,共74分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数f(x)=cos(2x +π3)+sin 2x(1)求函数f(x)的单调递减区间及最小正周期;(2)设锐角△ABC 的三内角A ,B ,C 的对边分别是a ,b ,c ,若c =6,cosB =13,f(C 2)=-14,求b.18.(本小题满分12分)“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:3221x 80x 5 040x,x 120,144)3y ,1x 200x 80 000,x 144,500)2⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩[[且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损.(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 19.(本小题满分12分)已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解,若命题p 是真命题,命题q 是假命题,求a 的取值范围. 20.(本小题满分12分)已知在四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2,AB =1,PA⊥平面ABCD ,E 、F 分别是线段AB 、BC 的中点. (1)证明:PF⊥FD;(2)判断并说明PA 上是否存在点G ,使得EG∥平面PFD ;(3)若PB 与平面ABCD 所成的角为45°,求二面角A -PD -F 的平面角的余弦值.21.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 满足11b =,且点*1(,)()n n P b b n N +∈在直线2y x =+上.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)求数列{}n n a b ⋅的前n 项和n D ;(Ⅲ)设22*sincos ()22n n n n n c a b n N ππ=⋅-⋅∈,求数列{}n c 的前2n 项和2n T .22.(本小题满分13分)已知二次函数g(x)对任意x ∈R 都满足g(x-1)+g(1-x)=x 2-2x-1且g(1)=-1,设函数f(x)=g(x+12)+ m ln x +98(m ∈R ,x>0). (1)求g(x)的表达式;(2)若存在x ∈(0,+∞),使f(x)≤0成立,求实数m 的取值范围; (3)设1<m ≤e ,H(x)=f(x)-(m+1)x ,求证:对于任意x 1,x 2∈[1,m ],恒有|H(x 1)-H(x 2)|<1.高三数学(理科)练习题参考答案及评分标准一、选择题: 1. B [解析] 本小题主要考查集合元素的性质和集合的关系.解题的突破口为集合元素的互异性和集合的包含关系.由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1,经检验,m =1时B ={1,1}矛盾,m =0或3时符合,故选B.2.C [解析] 由题意z =2+i ,所以z 1-2i =2+i 1-2i =++-+=i ,则其共轭复数是-i ,选C.3. D4. A[解析]由已知f(0)=0,得log a k =0,∴k =1, ∴f(x)=log a (x +x 2+1),又∵其为增函数,∴a>1.故g(x)=log a |x -1|的图象可由y =log a |x|的图象向右平移一个单位得到,且在(-∞,1)上为减函数,在(1,+∞)上为增函数,故选A.5. B6.A [解析] 本题主要考查向量的线性运算.属于基础知识、基本运算的考查.过点F 作FG ∥CD 交AC 于G ,则G 是AC 的中点,且AK KG =1312=23,所以AK →=25AG →=25×12AC →=15AC →,则λ的值为15. 7.D [解析] 设几何体的外接球的半径为r ,由(3-r )2+1=r 2得r =23,几何体的外接球的表面积为16π3.8.D [解析] 函数y =tan ⎝⎛⎭⎪⎫ωx +π4向右平移π6后得到 y =tan ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π6+π4=tan ⎝ ⎛⎭⎪⎫ωx -ωπ6+π4.又因为y =tan ⎝ ⎛⎭⎪⎫ωx +π6,∴令π4-ωπ6=π6+k π,∴π12=ωπ6+k π(k ∈Z),由ω>0得ω的最小值为12. 9. D [解析] 由于f (x )是R 的上的偶函数,当f (x )在[0,1]上为增函数时,根据对称性知f (x )在[-1,0]上为减函数.根据函数f (x )的周期性将f (x )在[-1,0]上的图象向右平移2个周期即可得到f (x )在[3,4]上的图象,所以f (x )在[3,4]上为减函数;同理当f (x )在[3,4]上为减函数时,根据函数的周期性将f (x )在[3,4]上的图象向左平移2个周期即可得到f (x )在[-1,0]上的图象,此时f (x )为减函数,又根据f (x )为偶函数知f (x )在[0,1]上为增函数(其平移与对称过程可用图表示,如图1-1所示),所以“f (x )为[0,1]上的减函数”是“f (x )为[3,4]上的减函数”的充要条件,选D.10.D[解析]由已知f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎪⎫θ+π3, 又θ∈⎣⎢⎡⎦⎥⎤0,5π12.∴π3≤θ+π3≤3π4,∴22≤sin ⎝⎛⎭⎪⎫θ+π3≤1,∴2≤f ′(1)≤2.答案 D11. C [解析] 项数为99项的数列a 1,a 2,a 3,…,a 99的“凯森和”为1 000,所以S 1+S 2+…+S 9999=1 000,又100,a 1,a 2,a 3,…,a 99的“凯森和”为100+100+S 1+100+S 2+…+100+S 99100=100+S 1+S 2+…+S 99100=100+990=1 090,故选C.12.C[解析] 作出函数f (x )的图象,令t =f (x ), 则方程f 2(x )+af (x )+b =0化为t 2+at +b =0,∵t =f (x )>0,故要使原方程有3个不同的实数解, 则需方程t 2+at +b =0的根,t 1=t 2=1或t 1=1,t 2≤0,故Δ=a 2-4b =0或⎩⎪⎨⎪⎧Δ=a 2-4b >0b ≤0,故C 错误.令f (x )=1,易得x 1=1,x 2=2,x 3=3, 所以A 、B 、D 皆正确. 答案 C二、填空题: 13.答案:15 [解析] 依题意得 n 2=+2=100,∴n =10. 易知 m 3=21m +m m -2×2,整理得(m -5)(m +4)=0, 又 m ∈N *,所以 m =5, 所以m +n =15. 14答案 2[解析]设x =a 与f (x )=sin x 的交点为M (a ,y 1), x =a 与g (x )=cos x 的交点为N (a ,y 2), 则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫a -π4≤ 2.15.答案 7; 16.答案[解析]由2z x y =+得,2y x z =-+.作出不等式对应的区域,,平移直线2y x z =-+,由图象可知,当直线2y x z =-+与圆在第一象限相切时,直线2y x z =-+的截距最大,此时z 最大.直线与圆的距离2d ==,即z =±,所以目标函数2z x y =+的最大值是三、解答题:17【解析】(1)∵f(x)=cos(2x +π3)+sin 2x=cos2xcos π3-sin2xsin π3+1-cos2x2=12cos2x -32sin2x +12-12cos2x =-32sin2x +12,…………………………………3分 ∴最小正周期T =2π2=π,令2k π-π2≤2x ≤2k π+π2(k ∈Z),得k π-π4≤x ≤k π+π4,k ∈Z ,∴f(x)的单调递减区间是[k π-π4,k π+π4](k ∈Z). …………………………………6分(2)由(1)f(x)=-32sin2x +12得:f(C 2)=-32sinC +12=-14, ∴sinC =32, 又cosB =13,∴sinB =1-(13)2=223,∴b sinB =c sinC ,即b =c ·sinB sinC=6×22332=83, 故b =83. …………………………………12分18【解析】(1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -(12x 2-200x +80 000)=-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S<0.因此,该项目不会获利. 当x =300时,S 取得最大值-5 000,所以政府每月至少需要补贴5 000元才能使该项目不亏损. …………………………6分 (2)由题意可知,食品残渣的每吨平均处理成本为:21x 80x 5 040,x 120,144)y 3.1x x 80 000x 200,x 144,500)2⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩[[①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,∴当x =120时,yx 取得最小值240;…………………………………8分②当x ∈[144,500)时,y x =12x +80 000x-200≥212x ·80 000x-200=200. 当且仅当12x =80 000x ,即x =400时,yx 取得最小值200.∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低……………………12分 19.【解析】∵x 1,x 2是方程x 2-mx -2=0的两个实根,∴x 1+x 2=m ,x 1·x 2=-2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8, ∴当m ∈[-1,1]时,|x 1-x 2|max =3,…………………………………4分 由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,可得:a 2-5a -3≥3,∴a ≥6或a ≤-1,…………………………………6分∴命题p 为真命题时a ≥6或a ≤-1, 若不等式ax 2+2x -1>0有解,则①当a>0时,显然有解,②当a =0时,ax 2+2x -1>0有解, ③当a<0时,∵ax 2+2x -1>0有解, ∴Δ=4+4a>0,∴-1<a<0,所以不等式ax 2+2x -1>0有解时a>-1.又∵命题q 是假命题,∴a ≤-1, 故命题p 是真命题且命题q 是假命题时,a 的取值范围为a ≤-1. ……12分20. 【解析】方法一:(1)∵PA ⊥平面ABCD ,∠BAD =90°, AB =1,AD =2,建立如图所示的空间直角坐标系Axyz , 则A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).不妨令P(0,0,t),∵PF =(1,1,-t),DF =(1,-1,0), ∴PF ·DF =1×1+1×(-1)+(-t)×0=0, 即PF ⊥FD. …………………………………4分(2)存在.设平面PFD 的一个法向量为n =(x ,y ,z),结合(1),由PF 0DF 0⎧⋅=⎪⎨⋅=⎪⎩n n ,得⎩⎪⎨⎪⎧x +y -tz =0x -y =0,令z =1,解得:x =y =t 2.∴n =(t 2,t2,1).设G 点坐标为(0,0,m),E(12,0,0),则EG =(-12,0,m),要使EG ∥平面PFD ,只需EG ·n =0,即(-12)×t 2+0×t 2+m ×1=m -t4=0,得m =14t ,从而满足AG =14AP 的点G 即为所求. …………………………………8分(3)∵AB ⊥平面PAD ,∴AB 是平面PAD 的法向量,易得AB =(1,0,0), 又∵PA ⊥平面ABCD ,∴∠PBA 是PB 与平面ABCD 所成的角,得∠PBA =45°,PA =1,结合(2)得平面PFD 的法向量为n =(12,12,1),∴cos 〈AB ,n 〉=AB |AB |||⋅⋅nn =1214+14+1=66, 由题意知二面角A -PD -F 为锐二面角. 故所求二面角A -PD -F 的平面角的余弦值为66.…………………………………12分 方法二:(1)连接AF ,则AF =2,DF =2, 又AD =2,∴DF 2+AF 2=AD 2,∴DF ⊥AF , 又PA ⊥平面ABCD ,∴DF ⊥PA ,又PA ∩AF =A , ∴DF ⊥平面PAF ,又∵PF ⊂平面PAF ,∴DF ⊥PF.(2)过点E 作EH ∥DF 交AD 于点H ,则EH ∥平面PFD ,且有AH =14AD ,再过点H 作HG ∥DP 交PA 于点G ,则HG ∥平面PFD 且AG =14AP ,∴平面EHG ∥平面PFD ,∴EG ∥平面PFD. 从而满足AG =14AP 的点G 即为所求.(3)∵PA ⊥平面ABCD ,∴∠PBA 是PB 与平面ABCD 所成的角,且∠PBA =45°,∴PA =AB =1,取AD 的中点M ,则FM ⊥AD ,FM ⊥平面PAD ,在平面PAD 中,过M 作MN ⊥PD 于N ,连接FN ,则PD ⊥平面FMN , 则∠MNF 即为二面角A —PD —F 的平面角, ∵Rt △MND ∽Rt △PAD ,∴MN PA =MDPD ,∵PA =1,MD =1,PD =5,∴MN =55, 又∵∠FMN =90°,∴FN =65=305,∴cos∠MNF =MN FN =66.2122.【解析】(1)设g(x)=ax2+bx+c(a≠0),于是g(x-1)+g(1-x)=2a(x-1)2+2c=(x-1)2-2,所以1 a.2 c1⎧=⎪⎨⎪=-⎩又g(1)=-1,则1b2=-.所以g(x)=211x x1.22--…………………………………4分(2)f(x)=g(x+12)+m ln x+98=12x2+m ln x (m∈R,x>0).当m>0时,由对数函数的性质知,f(x)的值域为R;当m=0时,f(x)=2x2,对任意x>0,f(x)>0恒成立;当m<0时,由f ′(x)=x+m x =0得x = 列表:这时f(x)min 2-+ 由f(x)min ≤0得m 02m 0⎧-+≤⎪⎨⎪<⎩,所以m ≤-e,综上,存在x>0使f(x)≤0成立,实数m 的取值范围是(-∞,-e ]∪(0,+∞).…………8分(3)由题知H(x)=12x 2-(m+1)x+mlnx, ()()()x 1x m H x .x --'=因为对任意x ∈[1,m ],()()()x 1x m H x 0,x--'=≤所以H(x)在[1,m ]内单调递减. 于是|H(x 1)-H(x 2)|≤H(1)-H(m)=12m 2-mlnm-12. 要使|H(x 1)-H(x 2)|<1恒成立,则需12m 2-mlnm-12<1成立, 即12m-lnm-32m<0. 记()13h m m lnm (1m e)22m=--<≤,则 ()221133111h m ()0,2m 2m 2m 33'=-+=-+> 所以函数h(m)=12m-lnm-32m 在(1,e ]上是单调增函数, 所以h(m)≤h(e)=e 2-1-32e=()()e 3e 12e -+<0,故命题成立. …………………13分。

数学理卷·2014届山东省青岛开发区一中高三12月月考(2013.12)

数学理卷·2014届山东省青岛开发区一中高三12月月考(2013.12)
( I)若 b = 13, a = 3 ,求边 c 的值; ( II)设 t = sin Asin C ,求 f 的最大值.
(18)(本小题满分 12 分)
已知函数 f (x) = 2x + kg2−x , k ∈ R .
( I)若函数 f (x) 为奇函数,求实数 k 的值;
第 3 页 共 10 页
uuur
uuur
uuur uuur
BC = (−1,1,0) ,且 P(0,0,1) , C(0,2,0) ,所以 PC = (0,2, −1) ,又 PE = λ PC ,
uuur
所以 E(0,2λ,1 − λ) , DE = (0,2λ,1 − λ ) .
(D)既不充分也不必要条件
∫ (6)定积分 4π (16 − x2 )dx 等于 0
128π
(A)
3
(B) 52π
64π
(C)
3

(D)
3
(7)若函数 y = 3 sin x − cos x 的图象向右平移 m(m > 0) 个单位长度后,所得到的图象关于
y 轴对称,则 m 的最小值是
π
(A)
6
π
因为 A + B + C = π ,所以 B = π . 3
………2 分
因为 b = 13 , a = 3 , b2 = a2 + c2 − 2ac cos B ,
所以 c2 − 3c − 4 = 0 . 所以 c = 4 或 c = −1 (舍去).
…………6 分
(Ⅱ)因为 A + C = 2π , 3
(I)求数列{an} ,{bn} 的通项公式;
(
II)设 Tn

河北省唐山一中2014届高三12月月考数学(理)试题 Word版含解析

河北省唐山一中2014届高三12月月考数学(理)试题 Word版含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.不等式21ax <解集为Q ,{}0p x x =≤,若104R QC P x x ⎧⎫=<<⎨⎬⎩⎭,则a 等于( )A.14 B.12C.4D. 22.设S n 为等比数列{a n }的前n 项和,若0852=-a a ,则=24S S ( ) A.8- B.5 C. 8 D. 153.已知直线l ⊥平面α,直线m ⊂平面β,则“α∥β”是“l ⊥m”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件【答案】A 【解析】4.已知命题p :∀x ∈(0,∞+),3x>2x,命题q :∃x ∈(∞-,0),x x ->2,则下列命题为真命题的是( )A . p ∧qB .(¬p )∧q C.(¬p )∧(¬q ) D.p ∧(¬q )5.直线230x y --=与圆C :22(2)(3)9x y -++=交于,E F 两点,则ECF ∆的面积为( )A .23B.52C.553 D. 436.已知向量(sin(),1),(4,4cos 6παα=+=a b ,若⊥a b ,则4sin()3πα+等于( )A. B. 14- D. 147. (0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .8.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )9.函数3sin(2)3y x π=-的图像为C ,如下结论中错误的是( ) A .图像C 关于直线1112x π=对称B .图像C 关于点2(,0)3π对称 C .函数()f x 在区间)127,12(ππ-内是增函数D .由x y 2cos 3=得图像向右平移125π个单位长度可以得到图像C10.已知函数()(f x x ∈R)是偶函数,且(2)(2)f x f x +=-,当[0,2]x ∈时,()1f x x =-,则方程1()1||f x x =-在区间[10,10]-上的解的个数是 ( ) A .8 B .9 C .10 D .1111.△ABC 内接于以O 为圆心,1为半径的圆,且02=-+OC OB OA ,则的值为( )A.1-B.1C. 2-D. 2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线22px y =过点()2,2M ,则点M 到抛物线焦点的距离为.14.已知,x y 满足约束条件⎪⎩⎪⎨⎧≤-≤+≥231y x y x x ,点A (2,1), B (x ,y ),O 为坐标原点,则OA OB ∙最大值时为 .15.已知A 、B 、C 是球O 的球面上三点,∠BAC=90°,AB=2,BC=4,球O 的表面积为48π,则异面直线AB 与OC 所成角余弦值为 .16.已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立,且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知等差数列}{n a 中,公差0>d ,其前n 项和为n S ,且满足:4532=⋅a a ,1441=+a a .(1)求数列}{n a 的通项公式;(2)令122-=n S b nn ,*)()25()(1N n b b n n f n n ∈+=+,求)(n f 的最小值.18.(本小题满分12分)已知a ,b ,c 分别是ABC ∆的三个内角A ,B , C 的对边,ACa cb cos cos 2=- (1)求A 的大小;(2)当3=a 时,求22cb +的取值范围.19.(本小题满分12分)在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD 的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.考点:1.线面垂直的判定和性质;2.正三角形的性质;3.线面平行的判定;4.面面平行的判定;5.空间向量法;6.夹角公式.20.(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。

重庆市沙坪坝区2024届高三上学期12月月考数学试题含答案

重庆市沙坪坝区2024届高三上学期12月月考数学试题含答案

2023年重庆高2024届12月月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2101x A x x ⎧⎫+=≤⎨⎬-⎩⎭,集合(){}2ln 22B y y x x ==++,则A B = ()A.[]0,1 B.[)0,1 C.1,2⎡⎫-+∞⎪⎢⎣⎭D.1,12⎡⎤-⎢⎥⎣⎦【答案】B 【解析】【分析】解分式不等式求集合A ,求对数复合函数的值域求集合B ,应用集合交运算求结果.【详解】由(21)(1)0211011012x x x x x x +-≤⎧+≤⇒⇒-≤<⎨-≠-⎩,即1[,1)2A =-,由()2222111x x x ++=++≥,故[0,)B =+∞,所以[0,1)A B = .故选:B2.已知p :双曲线C 的方程为22194x y -=,q :双曲线C 的渐近线方程为23y x =±,则()A.p 是q 的充要条件B.p 是q 的充分不必要条件C.p 是q 的必要不充分条件D.p 是q 的既不充分也不必要条件【答案】B 【解析】【分析】根据双曲线的性质,判断充分必要条件,即可判断选项.【详解】若双曲线C 的方程为22194x y -=,则渐近线方程为23y x =±,若双曲线C 的渐近线方程为23y x =±,则双曲线的方程为()22094x y λλ-=≠,所以p q ⇒,但q p ⇒/,所以p 是q 的充分不必要条件.故选:B3.()1:sin3010l a x y +︒++=,)2:20l x y +︒+=,若12l l ⊥,则实数a 的值为()A.72-B.56-C.52D.16【答案】C 【解析】【分析】由直线垂直的充要条件列出方程结合特殊三角函数值运算即可.【详解】由题意12l l ⊥,则当且仅当()sin 3011tan1200a +⨯+=,即1302a +-=,解得52a =.故选:C.4.设22tan22.51tan 22.5a ︒=-︒,sin861cos86b ︒=+︒,c =,则有()A.b a c <<B.a c b <<C.c b a <<D.b c a<<【答案】C 【解析】【分析】由倍角公式化简为正切函数,再结合正切函数的单调性可得出答案.【详解】22tan22.5=tan 451tan 22.5a ︒=︒-︒,22sin862sin43cos432sin43cos43=tan 431cos8612cos 4312cos 43b ︒︒︒︒︒===︒+︒+︒-︒,cos 47.5sin 42.5=sin 47.5cos 42.5c ︒︒=︒︒因为tan y x =在π0,2⎛⎫⎪⎝⎭上单调递增,所以tan 42.5tan 43tan 45︒<︒<︒,即c b a <<,故选:C .5.已知在四面体-P ABC 中,底面ABC,D 为PA 的中点,则直线BP 与直线CD 所成角的余弦值为()A.24-B.24C.14-D.14【答案】B 【解析】【分析】利用中位线将异面直线所成角转化为相交直线DE 与DC 所成角,再利用余弦定理解三角形即可.【详解】取AB 中点E ,连接DE ,由D 为PA 中点,则//DE PB,且122DE PB ==;则EDC ∠(或其补角)即为直线BP 与直线CD 所成角.又底面三角形ABC是边长为的等边三角形,则中线长31522CE ==;在PAC △中,设中线长DC m =,则cos cos 0ADC PDC ∠+∠=,由余弦定理得,222222022DA DC AC DP DC PC DA DC DP DC +-+-+=⋅⋅,所以222222202m ⎛⎫+--= ⎪ ⎪⎝⎭,化简得23m =,解得m =,则有DC =,在DEC 中,由余弦定理得,222115324cos 224DE DC EC EDC DE DC +-+-∠==-⋅,直线BP 与直线CD 所成角为锐角,则余弦值为24.故选:B .6.教务处准备给高三某班的学生排周六的课表,上午五节课,下午三节课.若准备英语、物理、化学、地理各排一节课,数学、语文各排两节课连堂,且数学不排上午的第一节课,则不同的排课方式有()A.216种B.384种C.408种D.432种【答案】D 【解析】【分析】由数学、语文不能同时安排在下午,分为数学(连堂)或语文(连堂)安排在下午、数学、语文都安排在上午,再应用分步计数及排列组合求不同的排课方式.【详解】由题意,数学、语文不能同时安排在下午,若数学(连堂)安排在下午,在英语、物理、化学、地理中选一种安排在下午有1242C A 8=种,再把余下的三科与语文(连堂)安排在上午,把上午看作四节课,则有44A 24=种,此时共有824192´=种;若语文(连堂)安排在下午,在英语、物理、化学、地理中选一种安排在下午有1242C A 8=种,再把余下的三科与数学(连堂)安排在上午,且数学不排上午的第一节课,把上午看作四节课,数学只能安排在后三节有13C 3=种,其余三科全排有33A 6=种,此时共有836144⨯⨯=种;若数学、语文都安排在上午,在英语、物理、化学、地理中选一种安排在上午有14C 4=种,将上午看作三节课,且数学不排上午的第一节课,有1222C A 4=种,再把余下的三科安排在下午作全排有33A 6=种,此时共有44696⨯⨯=种;综上,共有19214496432++=种.故选:D7.已知{}n a 为正项等比数列,且10121a =,若函数()212ln 1x f x x x -=-+,则()()()122023f a f a f a ++⋅⋅⋅+=()A.2023B.2024C.20232D.1012【答案】A 【解析】【分析】由等比数列的性质可得222311202322012020211a a a a a a a ⋅=⋅=⋅===L ,再由题意可得出()12f x f x ⎛⎫+= ⎪⎝⎭,由倒序相加法可求出答案.【详解】因为{}n a 为正项等比数列,且10121a =,所以222311202322012020211a a a a a a a ⋅=⋅=⋅===L ,由()212ln 1x f x x x -=-+可得22111112ln 12ln 11x x f x x x x x⎛⎫- ⎪-⎛⎫⎝⎭=-+=++ ⎪⎝⎭,所以()12f x f x ⎛⎫+=⎪⎝⎭,所以设()()()122023S f a f a f a =++⋅⋅⋅+,则()()()202320221S f a f a f a =++⋅⋅⋅+,所以两式相加可得:222023S =⨯,故2023S =,故选:A .8.已知a = ,1= b ,0a b ⋅= ,4c a c a ++-= ,2430d b d -⋅+= ,则c d - 的最大值为()A.22113+ B.4C.23+ D.313【答案】A 【解析】【分析】由题意首先得出c d -为两外切的圆和椭圆上的两点间的距离,再由三角形三边关系将问题转换为椭圆上点到另一个圆的圆心的最大值即可.【详解】如图所示:不妨设)()()()()13,0,0,1,,,,,3,0a OA b OB OC m n OD p q A ======-,满足3a = ,1= b ,0a b ⋅= ,又4c a c a ++-=()()22221334223m n m n a c A A ++-+=>=,由椭圆的定义可知点C 在以1,A A 为焦点,长轴长为4的椭圆上运动,222,3,431a c b a c ===--,所以该椭圆方程为2214x y +=,而2430d b d -⋅+= ,即22430p q q +-+=,即()2221p q +-=,这表明了点D 在圆()2221x y +-=上面运动,其中点()0,2E为圆心,1r =为半径,又1c d OC OD CD CE ED CE -=-=≤+=+,等号成立当且仅当,,C D E 三点共线,故只需求CE 的最大值即可,因为点C 2214x y +=在椭圆上面运动,所以不妨设()2cos ,sin C θθ,所以()()222224cos sin 241sin sin 4sin 43sin 4sin 8CE θθθθθθθ=+--+-+--+,所以当()42sin 233θ-=-=-⨯-且,,C D E 三点共线时,c d - 有最大值max113CE +==+.故选:A.【点睛】关键点睛:解题的关键是将向量问题转换为圆锥曲线中的最值问题来做,通过数学结合的方法巧妙的将几何问题融入代数方法,从而顺利得解.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知左、右焦点分别为1F ,2F 的椭圆222:13x y C a +=的长轴长为4,过1F 的直线交椭圆于P ,Q 两点,则()A.离心率2e =B.若线段PQ 垂直于x 轴,则3PQ =C.2PQF 的周长为8D.2PQF 的内切圆半径为1【答案】BC 【解析】【分析】首先由题意把参数a 求出来,根据平方关系、离心率公式运算即可判断A ;由题意将=1x -代入椭圆方程求出弦长即可判断B ;由椭圆定义即可判断C ;由2PQF 的周长是定值,但面积会随着直线的倾斜程度而变化,由此即可判断D.【详解】对于A ,由题意椭圆222:13x y C a +=的长轴长为4,所以124a =,解得22112,43a a b ==>=,所以12,1a a c =====,离心率为12c e a ==,故A 错误;对于B ,由A 可知椭圆方程为22143x y +=,由题意若直线PQ 的方程为=1x -,将其代入椭圆方程可得32y =±,即33322PQ ⎛⎫=--= ⎪⎝⎭,故B 正确;对于C ,2PQF 的周长为()()2212122248PQ QF F P PF PF QF QF a a a ++=+++=+==,故C 正确;对于D ,由题意直线PQ 斜率不为0且经过点()1,0-,不妨设直线()()1122:1,,,,PQ x my P x y Q x y =-,将其与椭圆方程22143x y +=联立消去x 得()2234690m y my +--=,()()2221212226936363414410,,3434m m m m y y y y m m -∆=++=+>+==++,一方面()()()()222221212121222222363413612142343434PQF m m m S F F y y y y y y m m m ++=-=+-++++ ,另一方面,由C 选项分析可知228PQ QF F P ++=,不妨设2PQF 的内切圆的半径为r ,所以()222142PQF S PQ QF F P r r =++= ,对比两式可知223134m r m +=+,即r 与m 有关,故D 错误.故选:BC.10.与二项式定理()0C nnk n k k n k a b a b -=+=∑类似,有莱布尼兹公式:()()()()()()()()()()()()0112200120C C C C C nn n n n n n k kn k nnnnn n uv u vuv uv u vuv ---==+++⋅⋅⋅+=∑,其中()k u (0,1k =,2,…,n )为u 的k 阶导数,()0u u =,()0v v =,则()A.1C2nknnk ==∑ B.1351C C C 2n n n n -+++⋅⋅⋅=C.()()()()nnuv vu = D.()6e x f x x =,则()()606!f =【答案】BCD 【解析】【分析】由二项式定理,分别赋值,a b ,即可判断AB ;再根据莱布尼兹公式,结合组合数公式和性质,即可判断CD .【详解】A.由二项式定理可知,当1a b ==时,()0C 1111C 2nnnnk n k k k nn k k -==+===∑∑,1C221nkn n k n n C ==-=-∑,故A 错误;B.由二项式定理可知,当1,1a b ==-时,()012345.1C C C C C C .1.nn n n n n n =-+-+-+-()()024135C C C ...C C C ...0n n n n n n =+++-+++=,所以024135C C C ...C C C ...n n n n n n +++=+++又由A 可知,012345C C C C C C ...2nn n n n n n ++++++=,所以1351C C C 2n n n n -+++⋅⋅⋅=,故B 正确;C.()()()()()()()()()()011220012C C C ...C nn n n n n n n n n uv u v u v u v u v--=++++()()()()()()()()()()011220012C C C ...C nn n n n n n n n n vu v u v u v u v u--=++++,由组合数的性质可知,0C C n n n =,11C C n n n -=,22C C n n n -=,……,可知,()()()()n nuv vu =,故C 正确;D.()()()()()()()()()()()()()()()()()()6605142066061626666666e C e C e C e ...C e x xx xx x x x x x =++++,因为()()e e n xx =,()()066x x =,()()1656x x =,()()26465x x =⋅⋅,()()363654x x =⋅⋅⋅,()()4626543x x =⋅⋅⋅⋅,()()5665432x x =⋅⋅⋅⋅⋅,()()666543216!x =⋅⋅⋅⋅⋅=,所以()()606!f =,故D 正确.故选:BCD11.全球有0.5%的人是高智商,他们当中有95%的人是游戏高手.在非高智商人群中,95%的人不是游戏高手.下列说法正确的有()A.全球游戏高手占比不超过10%B.某人既是游戏高手,也是高智商的概率低于0.1%C.如果某人是游戏高手,那么他也是高智商的概率高于8%D.如果某人是游戏高手,那么他也是高智商的概率低于8.5%【答案】AC 【解析】【分析】利用全概率公式和条件概率定义进行计算.【详解】A 项,高智商中有的人是游戏高手概率为0.0050.950.00475⨯=,非高智商人群中是游戏高手的概率为0.9950.050.04975⨯=,所以全球游戏高手占比为0.004750.049750.05450.1+=<,所以A 项正确;B 项,既是游戏高手,也是高智商的概率为0.0050.950.004750.001⨯=>,所以B 项错误;C 项,设事件A 为某人是游戏高手,事件B 为某人是高智商,则()0.0545P A =,则()()()0.0050.9519|0.0870.080.0545218P AB P B A P A ⨯===≈>,所以C 项正确;D 项,由C 项知,()19|0.0870.085218P B A =≈>,所以D 项错误.故选:AC.12.已知定义在()0,∞+上的函数()f x 满足()()2ln ln 2xf x f x x x +'+=,()11f =,且实数()a f x <对任意0x >都成立(ln20.693≈,ln3 1.098≈),则()A.()18f ''= B.()f x 有极小值,无极大值C.()f x 既有极小值,也有极大值D.23<a 【答案】ABD 【解析】【分析】将题设条件化为()222[][ln ]x f x x x ''=,进而有()222ln x f x x x C =+,其中C 为常数,()0,x ∈+∞,根据已知求得()221ln f x x x =+,对函数求导判断A 、B 、C ;问题化为()0,x ∈+∞上()min a f x <,结合()f x 的极值()2200222000111ln (f x x x x x =+=+且0(1,2)x ∈求参数范围判断D.【详解】由题设()()222(ln ln )f x xf x x x =+'+,则()()2222(ln ln )xf x x f x x x x x +'+=,所以()222[][ln ]x f x x x ''=,故()222ln x f x x x C =+,其中C 为常数,()0,x ∈+∞,又()11f =,则()11f C ==,所以()222ln 1x f x x x =+,即()221ln f x x x=+,所以()32ln 2x f x x x '=-,故()242(1ln )6x f x x x-''=+,则()18f ''=,A 对;由()232(ln 1)x x f x x -'=且()0,x ∈+∞,令21ln ()x x x g =-在()0,x ∈+∞上递增,(1)10g =-<,1ln 20.4430)4(2g -=≈>,故0(1,2)x ∃∈使0()0g x =,即0201ln x x =,0(0,)x 上()0g x <,即()0f x '<,()f x 递减;0(,)x +∞上()0g x >,即()0f x ¢>,()f x 递增;所以()f x 有极小值,无极大值,B 对,C 错;由题设,()0,x ∈+∞上()min a f x <,即()2200222000111ln ()f x x a x x x =+=+>,令2011(,1)4t x =∈,则()20f x y t t ==+在1(,1)4t ∈上递增,故()05(,2)16f x y =∈,所以52163a ≤<,D 对.故选:ABD【点睛】关键点睛:根据题设条件得到()222[][ln ]x f x x x ''=,进而求得()221ln f x x x =+为关键.三、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{}n a 满足211n n n a a a +-+=,且113a =,则9a =______.【答案】13【解析】【分析】先求得数列的周期性,再应用周期性求值即可.【详解】由211n n n a a a +-+=,得2421111211211nn n nn n n n n a a a a a a a a a +++---+====-+++,则95113a a a ===.故答案为:13.14.已知()220x x m m -+=∈R 的两共轭虚根为1x ,2x,且12x x +=,则m =______.【答案】3【解析】【分析】由根与系数关系有12122x x mx x =⎧⎨+=⎩,设11i x a =+,21i x a =-且R a ∈,结合题设和复数模长、乘法运算求参数.【详解】由题设12122x x mx x =⎧⎨+=⎩,可令11i x a =+,21i x a =-且R a ∈,所以2122x x a +==⇒=,所以21213x x a m =+==.故答案为:315.已知圆()()22:344C x y -+-=,过直线:4310l x y ++=上一动点P 作圆C 的两条切线,切点分别为A ,B ,则PA PB +的最小值为______.【答案】425【解析】【分析】首先利用图形,解决向量的运算,再利用PC 的最小值,即可求解.【详解】如图,连结,CA CB ,CA PA ⊥,CB PB ⊥,AB 和CP 交于点D ,2PA PB PD += ,因为2PA PD PC =,所以2244PAPC PD PC PCPCPC-===-,设4y x x=-,易知其在()0,∞+为增函数,则PC 的最小值为圆心()3,4C 到直线:4310l x y ++=的距离5d ==,所以PD 的最小值为421555-=,那么PA PB + 的最小值为425.故答案为:42516.正方体1111ABCD A B C D -棱长为2,E ,F 分别是棱CD ,1DD 的中点,M 是正方体的表面上一动点,当四面体BEFM 的体积最大时,四面体BEFM 的外接球的表面积为______.【答案】11π【解析】【分析】根据题意只需M 点离平面1BEFA 最远即可,构建空间直角坐标系,应用向量法求各点到面1BEFA 距离得到M 与1C 重合,再将1EFC △置于如下直角坐标系中求1EFC △外接圆圆心,进而确定空间坐标系中外接球球心O 坐标,即可求球的表面积.【详解】如下图,11////EF CD BA ,即1,,,B E F A 四点共面,要使四面体BEFM 的体积最大,只需M 点离平面1BEFA 最远即可,显然点D 、线段1CD 上点到平面1BEFA 距离都相等,构建下图空间直角坐标系D xyz -,则(0,1,0),(0,0,1),(2,2,0)E F B ,所以(0,1,1),(2,1,0)EF EB =-= ,若面1BEFA 的一个法向量为(,,)m x y z =,则020EF m y z EB m x y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令2y =,则(1,2,2)m =- ,而11(0,2,0),(0,2,2),(2,0,0),(2,2,2)C C A B ,则(0,2,0)AB = ,(0,1,0)EC =,1(0,1,2)EC = ,1(0,0,2)BB =,所以A 到面1BEFA 距离为||43||m AB m ⋅= ,C 到面1BEFA 距离为||23||m EC m ⋅= ,1C 到面1BEFA 距离为1||2||m EC m ⋅= ,1B 到面1BEFA 距离为1||43||m BB m ⋅=,综上,正方体的表面上1C 到面1BEFA 距离最远,故四面体BEFM 的体积最大,M 与1C重合,首先确定1EFC △外接圆圆心1O 坐标,将1EFC △置于如下直角坐标系中,则1(2,2),(0,1),(1,0)C F E ,则1O 是直线1:DC y x =与1FC 的垂直平分线l 的交点,由112FC k =,则2l k =-,且1FC 中点为3(1,)2,故3:2(1)2l y x -=--,即:4270l x y +-=,联立76427076x y x x y y ⎧=⎪=⎧⎪⇒⎨⎨+-=⎩⎪=⎪⎩,即177(,)66O 对应到空间直角坐标系的坐标为177(0,,66O ,由四面体BEFM 的外接球球心O 在过1O 垂直于面1EFC 的直线上,设77(,,66O n ,由||||OB OE ==76n =,=24π11π⨯=.故答案为:11π【点睛】关键点点睛:利用向量法求出正方体的表面上到面1BEFA 距离最远的点为关键.四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.疫情结束之后,演唱会异常火爆.为了调查“喜欢看演唱会和学科是否有关”,对本年级的100名老师进行了调查.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()20P k χ≥0.0500.0100.0010k 3.8416.63510.828(1)完成下列22⨯列联表,并判断是否有95%的把握认为本年级老师“喜欢看演唱会”与“学科”有关;喜欢看演唱会不喜欢看演唱会合计文科老师30理科老师40合计50(2)三楼大办公室中有11名老师,有4名老师喜欢看演唱会,现从这11名老师中随机抽取3人,求抽到的3人中恰有1人喜欢看演唱会的概率.【答案】(1)列联表见解析,有95%的把握认为本年级老师“喜欢看演唱会”与“学科”有关(2)2855【解析】【分析】(1)根据表格进行运算即可得到完整的列联表,再根据卡方计算公式运算对比临界值即可求解.(2)根据超几何分布的概率计算公式进行运算即可求解.【小问1详解】由表可知喜欢看演唱会的理科老师有503020-=人,理科老师共有204060+=人,文科老师共有1006040-=人,不喜欢看演唱会的文科老师有403010-=人,不喜欢看演唱会的人有104050+=人,完成22⨯列联表如下表所示:喜欢看演唱会不喜欢看演唱会合计文科老师301040理科老师204060合计5050100()()()()()()22210012002005016.667 3.841406050503n ad bc a b c d a c b d χ-⨯-===≈>++++⨯⨯⨯,故有95%的把握认为本年级老师“喜欢看演唱会”与“学科”有关.【小问2详解】由题意11名老师中,有4名老师喜欢看演唱会,有7名老师不喜欢看演唱会,若从这11名老师中随机抽取3人,求抽到的3人中恰有1人喜欢看演唱会,则只能从4名喜欢看演唱会的老师中抽取1人,从7名不喜欢看演唱会的老师中抽取2人,即所求的概率为1247311C C 42128C 16555p ⨯===.18.如图,在直三棱柱111ABC A B C -中,18AA =,6AB =,E ,F 为1CC 上分别靠近C 和1C 的四等分点,若多面体11AA B BEF 的体积为40.(1)求EF 到平面11AA B B 的距离;(2)求二面角1E AB B --的大小.【答案】(1)2;(2)π4.【解析】【分析】(1)由直三棱柱结构特征有11//CC AA ,应用线面平行判定证1//CC 面11AA B B ,问题化为求C 到面11AA B B 的距离,再结合面ABC ⊥面11AA B B ,进一步化为求ABC 中AB 上的高h ,根据多面体体积列方程求结果;(2)过C 作CD AB ⊥于D ,过E 作EH ⊥面11AA B B 于H ,连接,DH DE ,证AB ⊥面CEHD ,进而有EDH ∠为二面角1E AB B --的平面角,即可求大小.【小问1详解】直三棱柱111ABC A B C -中11//CC AA ,1CC ⊄面11AA B B ,1AA ⊂面11AA B B ,所以1//CC 面11AA B B ,即//EF 面11AA B B ,只需求C 到面11AA B B 的距离,又面ABC⊥面11AA B B ,面ABC ⋂面11AA B B AB =,则C 在面11AA B B 上的射影在直线AB 上,即C 到面11AA B B 距离为ABC 中AB 上的高h ,又E ,F 为1CC 上分别靠近C 和1C 的四等分点,且多面体11AA B BEF 的体积为40,所以111118622640232AA B BEF V h h =⨯⨯-⨯⨯⨯⨯=,可得2h =,即EF 到平面11AA B B 的距离为2.【小问2详解】过C 作CD AB ⊥于D ,过E 作EH ⊥面11AA B B 于H ,连接,DH DE ,由(1)分析易知:,//CD EH CD EH =,即四边形CEHD 为平行四边形,由1CC ⊥面ABC ,AB ⊂面ABC ,则1CC AB ⊥,由1CD CC C = ,1,CD CC ⊂面CEHD ,则AB ⊥面CEHD ,而,DE DH ⊂面CEHD ,则AB DH ⊥,AB DE ⊥,故EDH ∠为二面角1E AB B --的平面角,由(1)知:2EH CD h ===,2CE DH ==,所以tan 1EH EDH DH ∠==,故锐二面角1E AB B --为π4.19.已知数列{}n a 满足12a =,23a =,且()*2123n n n a a a n +++=∈N.(1)求证:数列{}1n n a a +-为等比数列;(2)若()1111nn n n b a a +⎛⎫=-+⎪⎝⎭,求数列{}n b 的前n 项的和n S .【答案】(1)证明见解析(2)1(1)221n n--++【解析】【分析】(1)根据已知等式变形得()2112n n n n a a a a +++-=-,利用等比数列的定义证明即可;(2)对项数n 分奇偶讨论,由裂项相消法求和可得.【小问1详解】()*2123n n n a a a n +++=∈N ,且12a =,23a =,()()*2112n n n n a a a a n +++∴=-∈-N ,且2110a a -=≠,()*2112n n n na a n a a +++=--∈∴N ,故数列{}1n n a a +-是以1为首项,2为公比的等比数列.【小问2详解】由(1)知,112n n n a a -+-=,则有211a a -=,322a a -=,21,2n n n a a ---= ,各式相加得122111212222112n n n n a a ----=++++==--- ,又12a =,则121n n a -=+.()1111n n n n b a a +⎛⎫=-+ ⎪⎝⎭,则当n 为奇数时,122334111111111111n n n n n a a a S a a a a a a a -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-+++-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111221n n a a +=--=--+;当n 为偶数时,122334111111111111n n n n n a a a S a a a a a a a -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++-++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111111221n n a a +=-+=-++;综上所述,1(1)221n n n S -=-++.20.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,a c +成等比数列.(1)若π5A =,求角C ;(2)若ABC 的面积为S ,求2Sa 的取值范围.【答案】(1)2π5C =;(2)13(,22.【解析】【分析】(1)由题设可得22b a ac -=,结合余弦定理可得2cos c a a B =+,应用正弦边角关系、三角恒等变换可得sin()sin B A A -=,进而有B A A -=,即可求角C ;(2)由(1)有2B A =,结合锐角三角形得ππ64A <<,应用三角形面积公式、三角恒等变换可得2222tan (3tan )(1tan )S A A a A -=+,令tan 3t A =∈,利用导数求等式右侧单调性,再求值域即得范围.【小问1详解】由题设2()b a a c =+,即22b a ac -=,且π()C A B =-+,由2222cos 2cos b a c ac B a c a B =+-⇒=-,即2cos c a a B =+,所以sin sin 2sin cos C A A B =+,即sin()sin 2sin cos A B A A B +=+,所以cos sin sin sin cos A B A A B =+,故sin()sin B A A -=,所以B A A -=或πB A A -=-(舍),可得2π25B A ==,故2π5C =.【小问2详解】由(1)知2B A =,ABC 为锐角三角形,则π02π022π0π32A A A ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,可得ππ64A <<,又1sin 2S ac B =,则2sin sin sin sin(3)sin(2)22sin 2sin S c B C B A A a a A A===,所以221sin(3)cos sin cos cos 2cos sin 2sin 2(cos 2)2S A A A A A A A A A a ==+=+,又22tan sin 21tan A A A =+,221tan cos 21tan A A A -=+,故22222tan 1tan 1()1tan 1tan 2S A A a A A -=⨯+++,整理得2222tan (3tan )(1tan )S A A a A -=+,令3tan 3t A =∈,则32223()(1)S t t f t a t -==+,所以2423312()(1)t t f t t -+'=+,令42()123g t t t =-+,则2()4(6)0g t t t '=-<,故()g t在,1)3t ∈上递减,8()()039g t g <=-<,即()0f t '<,所以()f t在(,1)3t ∈上递减,故322231()(,)(1)22S t t f t a t -==∈+.21.已知抛物线2:4y x Γ=的准线l 交x 轴于M ,过()1,1P -作斜率为1k 的直线1l 交Γ于,C D ,过()1,1Q --作斜率为2k 的直线2l 交Γ于,E G .(1)若抛物线的焦点2F l ∈,判断直线l 与以EG 为直径的圆的位置关系,并证明;(2)若,,C E M 三点共线,①证明:21k k -为定值;②求直线1l 与2l 夹角θ的余弦值的最小值.【答案】(1)相切,证明见解析(2)①1;②35【解析】【分析】(1)将直线EG 和抛物线联立,利用韦达定理,求出线段EG 的中点和长度,即可得以EG 为直径的圆的方程,通过判断圆心与直线l 的距离与半径的大小关系来去顶直线与圆的位置关系;(2)①设221212,,,44y y C y E y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,通过,,C E M 三点共线即斜率相等可得124y y =,再将其代入21212221111144y y k k y y +--=-++计算即可;②设直线12,l l 的倾斜角分别为,αβ,()2121tan tan tan tan 1tan tan 1k k k k βαθβαβα--=-==++,通过21,k k 的关系代入消2k ,通过直线和抛物型线相交,利用判别式求出1k 的范围,进而可得最值.【小问1详解】若抛物线的焦点2F l ∈,则直线EG 即为直线QF ,又()1,0F 故()10:111EG l y x --=---,整理得:210EG l x y --=联立22104x y y x--=⎧⎨=⎩,消去x 得2840y y --=,6416800D =+=>则8E G y y +=,124y y =-,所以()2218E G E G x x y y +=++=,且20EG =,故以EG 为直径的圆的圆的方程为()()2294100x y -+-=,其圆心为()9,4,半径为10,所以以EG 为直径的圆的圆心到直线l 的距离为9110+=,故直线l 与以EG 为直径的圆相切;【小问2详解】①设221212,,,44y y C y E y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,又()()()1,0,1,1,1,1M P Q ----,因为,,C E M 三点共线,所以CE CM k k =,即1212221211444y y y y y y -=-+,整理得124y y =,所以()()2212212121222221211111441111114444y y y y y y k k y y y y ⎛⎫⎛⎫++--+ ⎪ ⎪+-⎝⎭⎝⎭-=-=⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭()222212112212122122222211221112444444121441644y y y y y y y y y y y y y y y y y y ⎛⎫+++-+-- ⎪++⎝⎭===+++++,即21k k -为定值1;②设直线12,l l 的倾斜角分别为,αβ,则()()21221111tan tan 11tan tan 1tan tan 1111324k k k k k k k βαθβαβα--=-====++++⎛⎫++ ⎪⎝⎭由已知可得()11:11l y k x =++,联立()12114y k x y x⎧=++⎨=⎩,消去x 得2114440y y k k -++=,所以21144440k k ⎛⎫⎛⎫∆=-+> ⎪ ⎪⎝⎭⎝⎭,解得11122k ---+<<,当112k =-时,()max 14tan 334θ==,此时θ最大,cos θ最小,此时由22sin 4cos 3sin cos 1θθθθ⎧=⎪⎨⎪+=⎩,解得3cos 5θ=.即直线1l 与2l 夹角θ的余弦值的最小值为35.【点睛】关键点睛:本题关键是在解答第(2)①中设出点的坐标,将条件和目标式都坐标化,从而可以真正的通过计算得出结论.22.已知()()()2341e 3x f x x kx kx k =--+∈R (1)当0k =时,求()f x 过点()()1,1f 的切线方程;(2)若对[]1,2k ∀∈,[]0,x k ∈,不等式()f x a ≤恒成立,求实数a 的取值范围.[参考不等式:()21e 102x x x x ≥++≥]【答案】(1)22e e 0x y --=;(2)452e 3a ≥-.【解析】【分析】(1)利用导数的几何意义求切线方程;(2)构造()2()1e x g x x =-、343()kx kx h x =-并应用导数研究单调性,进而判断[]0,x k ∈上()()()f x g x h x =-最大值所在区间,利用导数研究()f x 在1(,]2x k ∈的最值,得到242max 4()(1)e 3k f x k k k =--+,利用导数求右侧最大值,即可得参数范围.【小问1详解】由题设()()21e x f x x =-,则()()221e xf x x '=-,所以()10f =,()21e f '=,故过点()()1,1f 的切线方程为2(e 1)y x =-,即为22e e 0x y --=.【小问2详解】下述过程均在[]1,2k ∈且[]0,x k ∈条件下,令()2()1e x g x x =-,则()2()21e xg x x '=-,令1()02g x x '=⇒=,故1[0,)2x ∈上()0g x '<,()g x 递减,1(,]2x k ∈上()0g x '>,()g x 递增,且21e (0)1,(,()(1)e 22k g g g k k =-=-=-,令343()kx kx h x =-,则2)()(41x h x k '-=,令1()02h x x '=⇒=,故1[0,)2x ∈上()0h x '<,()h x 递减,1(,]2x k ∈上()0h x '>,()h x 递增,且2214(0)0,(),()(1)233k h h h k k k ==-=-,由()()()f x g x h x =-,而11(0)((0)()22h h g g >>>,故1[0,2x ∈上()0f x <,32k =时33e 39()()()()2222g k g h k h ==>==,故1(,]2x k ∈上可能存在()0f x >(特殊值法判断最大值可能区间),要使不等式()f x a ≤恒成立,即max ()a f x ≥,只需找到1(,]2x k ∈上max ()f x ,在1(,]2x k ∈上2(21)(e 2)()x f x kx k x =-'--,显然210x ->,且()010f =-<,令22()e x kx k x ϕ=--且1(,]2x k ∈,则2e )0()2(x x k ϕ=->'且为增函数,若e [1,]2k ∈时01()()22e k x ϕϕ>=≥-,即()0f x '≥,()f x 递增,则max ()()f x f k =;若e (,2]2k ∈时e 01()22k ϕ=<-,22112(220))12(k k k k k k ϕ≥++⋅--=+>,所以01(,]2x k ∃∈使0200e 20()x x k x k ϕ--==,即020e 2x kx k =+,此时01(,)2x x ∈上()0f x '<,()f x 递减,0(,]x x k ∈上()0f x '>,()f x 递增,1e 0232k f ⎛⎫=-< ⎪⎝⎭,故01(,)2x x ∈上()0f x <,只需()0f k >则必为最大值,此时max ()f x 在0(,]x x k ∈上右侧端点上取得;综上,在[]1,2k ∈上确定2424()(1)e 3kf k k k k =--+的最大值即可,令2424()(1)e 3k k k k k φ=--+,[]1,2k ∈,则2316()(21)e 23k k k k k φ'=--+,令()()k k ηφ'=,则2()4(e 4)2k k k k η'=-+,对于2e 4k y k =-有22e 40k y '=->,即2e 4k y k =-在[]1,2k ∈上递增,所以22e 4e 40k y k =->->,即()0k η'>,则()()k k ηφ'=递增,所以216()(1)e 203k φφ''>=+->,即()k φ递增,则4max 52()(2)e 3k φφ==-,故4max 52()e 3f x =-,即452e 3a ≥-.【点睛】关键点睛:第二问,构造中间函数研究()f x 最大值位置,进而得到max ()f x 关于参数k 的表达式为关键.。

山东省济宁市第一中学2024届高三上学期12月月考数学试题(解析版)

山东省济宁市第一中学2024届高三上学期12月月考数学试题(解析版)

济宁一中高三12月份定时检测数学试题一、单选题(本大题共8小题,共40分.在每小题列出的选项中,选出符合题目的一项.)1. 已知1i22i z -=+,则z z -=( )A. i -B. iC. 0D. 1【答案】A 【解析】【分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出.【详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .2. 若集合{}2230A x x x =--≤,(){}lg 10B x x =+≤,则A B ⋃=( )A. {}10x x -≤≤ B. {}10x x -<≤C. {}13x x -≤≤ D. {}13x x -<≤【答案】C 【解析】【分析】由一元二次不等式的解法求A ,再根据对数函数的定义域及单调性求B ,最后求并集即可.【详解】由()()[]2231301,3x x x x x --=+-≤⇒∈-,即{}13A x x =-≤≤,由()(](]lg 10lg110,11,0x x x +≤=⇒+∈⇒∈-,即{}10B x x =-<≤,故A B ⋃={}13x x -≤≤.故选:C3. 已知()2,3AB = ,()3,AC t = ,1BC = ,则AB BC ⋅=( )A 8B. 5C. 2D. 7【答案】C 【解析】.【分析】由()1,3BC AC AB t =-=-及1BC = ,可得3t =,从而根据向量数量积的坐标表示即可求解.【详解】解:因为()2,3AB = ,()3,AC t = ,所以()1,3BC AC AB t =-=-,因为1BC = ,所以()22131t +-=,解得3t =,所以()1,0BC =u u u r,所以21302AB BC ⋅=⨯+⨯=,故选:C.4. 函数()3e e x xf x x-+=的图像可能是( )A. B.C. D.【答案】B 【解析】【分析】先判断函数奇偶性,以图像的对称性排除错误选项CD ;再以图像的切线情况去排除错误选项A ,即可得到函数()3e e x xf x x -+=的正确图像.【详解】()3e e x xf x x -+=的定义域为{}0x x ≠()()()()33e e e e x x x xf x f x x x ----++-===---,则()f x 为奇函数,其图像关于原点中心对称,排除选项CD ;()()()()()3264e e 3e e e 3e e xx x x xx x x x x e x f x x x ------+--+'==的则()()()1010101010104410e e 3e e 7e 13e 1001010f -----+-'==>即函数()f x 在点()()10,10f 的切线斜率为正值,选项A 的图像在第一象限内每一点的切线斜率均为负值,故排除选项A.选项B 的图像在第一象限内存在切线斜率为正值的点.故选:B 5. 已知1sin ,123πθ⎛⎫-= ⎪⎝⎭则sin 23πθ⎛⎫+= ⎪⎝⎭( )A. 29-B.29C. 79-D.79【答案】D 【解析】【分析】设12παθ=-,则1,sin 123πθαα=+=,则sin 2sin 3223[1πππθα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭化简,由余弦的二倍角公式可得答案.【详解】设12παθ=-,则1,sin 123πθαα=+=,从而2[7sin 2sin 2sin 2cos 212sin 3329πππθαααα⎛⎫⎛⎛⎫+=+=+==-= ⎪ ⎪⎝⎭⎝⎝⎭.故选:D【点睛】关键点睛:本题考查三角函数中知值求值的问题,解答本题的关键是设12παθ=-,然后可得sin 2sin 32]23[1πππθα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,属于中档题.6. 已知等比数列{}n a 的前n 项和为n S ,2532a a a =,47245a a +=,则5S =( )A. 29 B. 31C. 33D. 36【答案】B 【解析】【分析】根据2532a a a =,47245a a +=可求出首项1a ,公比q ,然后利用等比数列求和公式即可求解.【详解】因为数列{}n a 是等比数列,2532a a a =,所以3252222a a a a q a q =⨯=,即222a q =,则42a =.又因为47245a a +=,故有714a =.所以37418a q a ==,则12q =,所有41316a a q ==,所有551161231112S ⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦==-,故B 项正确.故选:B.7. 已知抛物线()220x py p =>上一点(),1M m 到焦点的距离为32,则其焦点坐标为( )A. 10,2⎛⎫ ⎪⎝⎭B. 1,02⎛⎫⎪⎝⎭C. 1,04⎛⎫⎪⎝⎭D. 10,4⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】由抛物线的定义可求p 的值,进而可求焦点坐标.【详解】解: 抛物线()220x py p =>上一点(),1M m 到焦点的距离为32,∴由抛物线的定义知322M p y +=,即3122p +=,所以1p =,所以122p =,∴抛物线的焦点坐标为10,2⎛⎫ ⎪⎝⎭,故选:A .8. 如图1,某广场上放置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的正三棱锥得到的,它的所有棱长均相同,数学上我们称之为半正多面体(semiregular solid ),亦称为阿基米德多面体,如图2,设1AB =,则平面BCG 与平面EMQ 之间的距离是()A.B.C.D.【答案】D 【解析】【分析】不妨记正方体为22221111A B C D A B C D -,设对角线21A C 分别交平面EMQ 和平面BCG 于点1M ,1N ,可推出11M N 即为平面EMQ 与平面BCG 的距离,结合等体积法求得21A M ,结合对称性求得11M N 即可.【详解】如图,不妨记正方体为22221111A B C D A B C D -,1122//A D B C ,1122A D B C =,故四边形1122A D C B 是平行四边形,所以1221//A B C D ,又E ,Q 分别为12A A ,22A B 的中点,所以12//EQ A B ,同理21//BG C D ,所以//EQ BG ,又EQ ⊄平面BCG ,BG ⊂平面BCG ,所以//EQ 平面BCG ,同理//EM 平面BCG ,又EM EQ E ⋂=,EM ,EQ ⊂平面EMQ ,所以平面//EMQ 平面BCG ,设对角线21A C 分别交平面EMQ 和平面BCG 于点1M ,1N ,因为12C C ⊥平面2222A B C D ,MQ Ì平面2222A B C D ,所以12C C MQ ⊥,连接2211,A C A C ,因为,M Q 分别为2222,D A B A 的中点,故22A C MQ ⊥,又12C C ,22A C ⊂平面1221A A C C ,12222C C A C C = ,所以MQ ⊥平面1221A A C C ,又21A C ⊂平面1221A A C C ,所以21A C MQ ⊥,同理21A C EQ ⊥,又MQ EQ Q ⋂=,MQ ,EQ ⊂平面EMQ ,所以21A C ⊥平面EMQ ,又平面//EMQ 平面BCG ,所以21A C ⊥平面BCG ,11M N 即为平面EMQ 与平面BCG 的距离,则11212111M N A C A M N C =--,得21A C ==,由题意得222EA MA QA ===EMQ 为等边三角形,故21EMQ S ==,根据22E A MQ A EMQ V V --=,得1111323M ⨯=,解得21A M =根据对称性知2111A M N C =,所以112121112M N A C A M N C =--=-=,则平面EMQ 与平面BCG .故选:D【点睛】方法点睛:求点到平面的距离方法,一是建立空间直角坐标系,利用空间向量求解;二是利用等体积法求解;三是作出辅助线,在三角形中结合余弦定理等方法进行求解.二、多选题(本大题共4小题,共20分.在每小题有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 下列表述正确的是( ).A. 如果0a b >>,c d >,那么ac bd >B. 如果0a b >>>C. 如果0a b >>,0c d >>,那么11ac bd<D. 如果0a b ≥>,那么2a bb a +≤≤【答案】BCD 【解析】【分析】根据函数的单调性、不等式的性质等知识逐个验证选项即可.【详解】A .如果0a b >>,c d >,取2a =,1b =,1c =-,2d =-,则2ac bd =-=,故A 错误;B .由于12y x ==在[0,)+∞为单调增函数,从而若0a b >>>B 正确;C .如果0a b >>,0c d >>,则0ac bc bd >>>,而1()f x x =在(0,)+∞上单调递减,从而11ac bd<,故C 正确;D .如果0a b ≥>,则22a a b b ≥+≥,故2a bb a +≤≤,故D 正确.故选:BCD .10. 已知直线:210l x my ++=,圆22:3E x y +=,则下列说法正确的是( )A. 直线l 必过点(1,0)B. 直线l 与圆E 必相交C. 圆心E 到直线l 的距离的最大值为1D. 当12m =时,直线l 被圆E 【答案】BC 【解析】【分析】利用直线和圆的相关性质求解即可.【详解】易知直线l 必过点(1,0)-,故A 错误;点(1,0)-在圆E 内,所以直线l 与圆E 必相交,故B 正确;圆心(0,0)E 到直线l 的距离d =,当0m =时距离取最大值1,故C 正确;当12m =时,直线:10l x y ++=,则直线l 被圆E 截得的弦长为=,故D 错误.故选:BC11. 把函数sin y x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向左平移π6个单位长度,得到函数()y g x =的图象,则( )A. ()g x 在π5π,36⎛⎫⎪⎝⎭上单调递减B. ()g x 在[]0,π上有2个零点C. ()y g x =的图象关于直线π12x =对称D. ()g x 在π,02⎡⎤-⎢⎥⎣⎦上的值域为⎡⎢⎣【答案】BC 【解析】【分析】由题意,由函数sin(+)y A x ωϕ=的图象变换规律,求得()y g x =的解析式,再根据正弦函数的图象和性质,逐一判断各选项得出结论.【详解】把函数sin y x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,可得到sin 2y x =的图象;再把所得曲线向左平移π6个单位长度,得到函数()πsin(2)3y g x x ==+的图象,π5π(,36x ∈时,π2(π,2π)3x +∈,则()g x 在π7π(,)312单调递减,在7π5π(,)126单调递增,故A 错误;令()0g x =,得π2π(Z)3x k k +=∈,即ππ26k x =-,因为[0,π]x ∈,所以ππ0π26k ≤-≤,解得1733k ≤≤,因为Z k ∈,所以1k =或2k =,所以()g x 在[]0,π上有2个零点,故B 正确;因为ππππ()sin(2)sin 1121232g =⨯+==,为()g x 的最大值,所以直线π12x =是()y g x =的图象的一条对称轴,故C 正确;当π,02x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,333x ⎡⎤+∈-⎢⎥⎣⎦,()g x ⎡∈-⎢⎣,故D 错误.故选:BC12. 如图,1P 是一块半径为1的圆形纸板,在1P 的左下端前去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个前掉半圆的半径)得图形3P ,4,,,n P P ,记纸板n P 的周长为n L ,面积为n S ,则下列说法正确的是( )A. 37142L π=+ B. 31132S π=C. 1111222n n n L π-+⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ D. 1212n n n S S π++=-【答案】ABD 【解析】【分析】观察图形,分析剪掉的半圆的变化,纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,再分别写出n L 和n S 的递推公式,从而累加得到通项公式再逐个判断即可【详解】根据题意可得纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,故1111122222n n n n L L π---=-⨯+⨯,即112122n n n n L L π----=-,故12L π=+,2110122L L π-=-,3221122L L π-=-,4332122L L π-=- (1121)22n n n n L L π----=-,累加可得1210121112......222222n n n L ππππ--⎛⎫⎛⎫=+++++-++ ⎪ ⎪⎝⎭⎝⎭1111112222111122n n ππ--⎛⎫-- ⎪⎝⎭=++---1211222n n π--⎛⎫=-+ ⎪⎝⎭,所以132171421222L ππ⎛⎫=-+ ⎪⎝⎭=+,故A 正确,C 错误;又1211122n n n S S π--⎛⎫=- ⎪⎝⎭,故1212n n n S S π---=-,即1212n n n S S π++=-,故D 正确;又12S π=,2132S S π-=-,3252S S π-=- (121)2n n n S S π---=-,累加可得3521...2222n n S ππππ-=----111841214n ππ-⎛⎫- ⎪⎝⎭=--211132n π-⎛⎫=+ ⎪⎝⎭,故31132S π=正确,故B 正确;故选:ABD三、填空题(本大题共4小题,共20分)13. 设等差数列{a n }的前n 项和为S n ,a 1≠0,a 1+a 5=3a 2,则1020S a =_____.【答案】114##2.75【解析】【分析】由1523a a a +=,得到1a 与d 的关系,再利用等差数列的前n 项和公式和通项公式求解.【详解】解:1523a a a += ,∴112433a d a d +=+,∴1a d =,1012011045551119204S a d d a a d d +===+.故答案为:11414. 已知双曲线2222:1x y M a b-=的左焦点为F 1,A ,B 为双曲线M 上的两点,O 为坐标原点若四边形1F ABO 为菱形,则双曲线M 的离心率为___________.1+【解析】【分析】利用双曲线的对称性,连结1BF ,2BF ,根据图形分析可得12BF F △是直角三角形,且260BF O ∠= ,在结合双曲线的定义,即可得到双曲线的离心率.【详解】如图,设双曲线的右焦点2F ,连结1BF ,2BF ,四边形1F ABO 是菱形,1212BO F F ∴=,12BF BF ∴⊥,并且根据对称性可知2OBF △是等边三角形,260BF O ∴∠=,1BF ∴=,根据双曲线定义可知,122B F B F a -=,2c a -=,即1c a ==1题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式ce a=求解;2.公式法:c e a ===,3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15. 如图,已知正四棱台的两底面均为正方形,且边长分别为20cm 和10cm ,侧面积为2780cm ,则其体积为________.【答案】32800cm 【解析】【分析】利用四棱台的结构特征,作出辅助线,根据侧面积列出方程,求出正四棱台的高,结合棱台的体积公式计算得结论【详解】如图,取11A B 的中点1E 、AB 的中点E ,上、下底面的中心1O 、O ,则1E E 为斜高,四边形11EOO E 为直角梯形.正四棱台的侧面积1114(1020)7802S EE =⨯⨯+⨯=,113cm EE ∴=,在直角梯形11EOO E 中,过点1E 作1M ⊥OE 于点M ,则115cm O E OM ==,11O O E M =,因为111115cm 2O E A B ==,110cm 2OE AB ==,所以5EM OE OM =-=cm ,1112O O E M ∴====cm ,∴该四棱台的体积为()()223112102010202800cm 3V =⨯⨯++⨯=故答案为:32800cm 16. 已知函数()()1f x x sinx cosx =++,若对于任意的()1212,0,2x x x x π⎡⎤∈≠⎢⎥⎣⎦,均有()()1212|x x f x f x a e e --成立,则实数a 的取值范围为______.【答案】[)1,+∞【解析】【分析】求导可知函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上为增函数,进而原问题等价于对于任意的()1212,0,2x x x x π⎡⎤∈≠⎢⎥⎣⎦,均有()()1212x x f x ae f x ae ->-,构造函数()()x h x f x ae =-,则函数()h x 在0,2π⎡⎤⎢⎥⎣⎦上为减函数,求导后转化为最值问题求解即可.【详解】解:()()()sin 1cos sin 1cos f x x x x x x x =++-=+',任意的()1212,0,2x x x x π⎡⎤∈≠⎢⎥⎣⎦,()0f x '>恒成立,所以()f x 单调递增,不妨设12x x <,则()()12f x f x <,又12x x e e <,故()()1212|xxf x f x a e e --等价于()()2121x xf x f x ae ae -<-,即()()1212xxf x ae f x ae ->-,设()()()1,0,2x xh x f x ae x sinx cosx ae x π⎡⎤=-=++-∈⎢⎥⎣⎦,易知函数()h x 在0,2π⎡⎤⎢⎥⎣⎦上为减函数,故()()'10xh x x cosx ae =+-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立,即()1xx cosx a e +≥在0,2π⎡⎤⎢⎥⎣⎦上恒成立,设()()1,0,2xx cosx g x x eπ+⎡⎤=∈⎢⎥⎣⎦,则()()()211'0()x xx xcosx x sinx e x cosx e xsinx sinx xcosx g x e e ⎡⎤-+-+⋅---⎣⎦==≤,故函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上为减函数,则()()01max g x g ==,故1a ≥.故答案为:[)1,+∞.【点睛】本题考查利用导数研究函数的单调性,最值及不等式的恒成立问题,考查转化思想,属于中档题.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17. 已知函数()sin()14f x x x π=+-.(1)求()4f π的值及()f x 的单调递增区间;(2)求()f x 在区间[0,2π上的最大值和最小值.【答案】(1)(14f π=;单调递增区间为3[,]88k k ππ-+π+π,Z k ∈(2;最小值1-【解析】【分析】(1)由()sin()14f x x x π=+-,直接求()4f π;将函数转化为())4f x x π=+,利用正弦函数的性质求解;(2)根据函数())4f x x π=+,利用正弦函数的性质求解.【小问1详解】解:()sin 1442f πππ=-,11=-,1=;()sin(14f x x x π=+-,)1x x x =⋅-, 22sin cos 2cos 1x x x =+-,sin 2cos 2x x =+,4x π=+,令222,242k x k k Z πππππ-+≤+≤+∈,322244k x k ππππ-+≤≤+,k Z ∈,388k x k ππππ-+≤≤+,k Z ∈, 所以()f x 的单调递增区间为3[,]88k k ππ-+π+π,Z k ∈;【小问2详解】因02x π≤≤,所以52444x πππ≤+≤,所以sin 214x π⎛⎫≤+≤ ⎪⎝⎭, 故124x π⎛⎫-≤+≤ ⎪⎝⎭,当2,42x ππ+=即8x π=时,()f x;当2,44x π5π+=即2x π=时,()f x 有最小值1-.18. 已知等差数列{}n a 满足1235n n a a n ++=+.(1)求数列{}n a 的通项公式;(2)设()22nn n b a =+,求数列{}n b 的前n 项和n T .【答案】(1)1n a n =+ (2)()1422n n T n +=-++【解析】【分析】(1)利用赋值法可得数列的首项及公差;(2)利用错位相减法求数列的前n 项和.【小问1详解】当1n =时,1228a a +=①,当2n =时,23211a a +=②,②-①得,33d =,解得1d =,所以12112228a a a a +=++=,12a =,所以()2111n a n n =+-⨯=+;【小问2详解】由(1)得1n a n =+,为则()()2232nn n nn b a =++=,()()12314252622232n n n T n n -=⨯+⨯+⨯+++++ ,()()234124252622232n n n T n n +=⨯+⨯+⨯+++++ ,()12314222232n n n T n +∴-=⨯++++-+ ()()21121283212n n n -+-=+-+-()1422n n +=-+,()1422n n T n +∴=-++.19. 如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,E 是BC 的中点.(1)求证:1//BD 平面1C DE ;(2)已知120ABC ∠=︒,1AA =,求直线1A D 与平面1C DE 所成角的正弦值.【答案】(1)证明见解析. (2【解析】【分析】(1)连接1CD 交1DC 于O ,连接OE ,易得1//OE BD ,再根据线面平行的判定即可证结论.(2)F 为AB 中点,结合已知可构建以D 为原点,,DF DC ,1DD为x 、y 、z 轴正方向的空间直角坐标系,设1AA ==,写出对应点坐标,并求出直线1A D 的方向向量和平面1C DE 的法向量,由空间向量夹角的坐标表示求直线1A D 与平面1C DE 所成角的正弦值.【小问1详解】由题设,连接1CD 交1DC 于O ,易知:O 是1CD 的中点,连接OE ,∵E 是BC 的中点,∴1//OE BD ,又OE ⊂面1C DE ,1BD ⊄面1C DE ,∴1//BD 面1C DE .【小问2详解】底面ABCD 是菱形,120ABC ∠=︒,即60DAB ∠=︒,若F 为AB 中点,则DF AB ⊥,∴30ADF ∠=︒,故在直四棱柱1111ABCD A B C D -中有DF DC ⊥、1DD DC ⊥、1DD DF ⊥,∴可构建以D 为原点,,DF DC ,1DD为x 、y 、z轴正方向的空间直角坐标系,设1AA ==,∴1131(0,0,0),,0),42D E C A -,则1131,0),42DE DC DA ===- ,若(,,)m x y z = 是面1C DE的一个法向量,则13040DE m x y DC m y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令x =m=-,∴111|cos,|||||||m DAm DAm DA⋅<>===,故直线1A D与平面1C DE.20. 已知等比数列{}n a的前n项和为n S,且11a=,6328SS=,数列{}nb满足()33log1n nb a=+.(1)求数列{}n a和{}n b的通项公式;(2)若对任意的*n∈N,3n nb aλ<恒成立,求实数λ的取值范围.【答案】(1)13nna-=,*n∈N;32nb n=-,*n∈N(2)9,4⎛⎫-∞⎪⎝⎭.【解析】【分析】(1)设等比数列{}n a的公比为q,由6328SS=求得公比,再由11a=求解;进而由()33log1n nb a=+求解.(2)由332nnλ<-对于任意的*n∈N恒成立,令()332nf nn=-,*n∈N,求得其最小值即可.【小问1详解】解:设等比数列{}n a的公比为q,由6328SS=,显然1q≠,所以631281qq-=-,解得3q=,由于11a=,所以{}n a的通项公式为13nna-=,*n∈N;所以()1333log13log3132nn nb a n-=+=+=-,*n∈N,所以{}n b的通项公式为32nb n=-,*n∈N.【小问2详解】因为3n nb aλ<恒成立,即332nnλ<-对于任意*n∈N恒成立.的令()332nf n n =-,*n ∈N ,则()()()()()136733131323132n n nn f n f n n n n n +⋅-+-=-=+-+-,当1n >时()()1f n f n +>,,所以()()()()1234f f f f ><<<⋅⋅⋅,即()f n 的最小值为()924f =,所以实数λ的取值范围为9,4⎛⎫-∞ ⎪⎝⎭.21. 已知椭圆()2222:10x y C a b a b +=>>过点⎛ ⎝,且C(1)求椭圆C 的方程;(2)过点()1,0P 的直线l 交椭圆C 于A 、B 两点,求PA PB ⋅的取值范围.【答案】(121y +=;(2)3,34⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据已知条件可得出关于a 、、c 的方程组,解出a 、b 的值,进而可求得椭圆C 的方程;(2)对直线l 分两种情况讨论,直线l 与x 轴重合时,直接求出PA PB ⋅的值,在直线l 不与x 轴重合,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,利用弦长公式可得出PA PB ⋅关于m 的代数式,综合可得出PA PB ⋅的取值范围.【详解】(1)由题意得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得21a b =⎧⎨=⎩.所以椭圆C 的方程为2214x y +=;(2)分以下两种情况讨论:①若直线l 与x 轴重合,则()()21113PA PB a a a ⋅=-⋅+=-=;②若直线l 不与x 轴重合,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立22114x my x y =+⎧⎪⎨+=⎪⎩,消去x 可得()224230m y my ++-=,则()()22241241630m m m ∆=++=+>恒成立,由韦达定理可得12224m y y m +=-+,12234y y m =-+,由弦长公式可得()()221223114m PA PB m y y m +⋅=+⋅=+()2223499344m m m +-==-++,244m +≥ ,则299044m <≤+,所以,2393344m ≤-<+.综上所述,PA PB ⋅的取值范围是3,34⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.22. 已知函数()21)xf x e ax a =-->(,(1)证明:函数()y f x =在(),0∞-内存在唯一零点;(2)若函数()y f x =有两个不同零点12,x x 且12x x >,当12x x -最小时,求此时a 的值.【答案】(1)证明见解析;(2)2.【解析】【分析】(1)求出导数,可判断()f x 在(,0)-∞单调递减,再根据零点存在性定理即可判断;(2)令120t x x =->,则由题可得()22212x t x e e ea tx --==,利用导数可得1()(0)t e g t t t -=>在(0,)+∞单调递增,判断出要求t 的最小值即求()g t 最小值,构造函数()22222x x e v x x e -=,利用导数判断单调性求出其最小值即可.【详解】(1)()x f x e a '=-, 0x <,1x e ∴<,又1a >,∴()0f x '<,∴()f x 在(,0)-∞单调递减,(0)10f =-<,220a f e a -⎛⎫-=> ⎪⎝⎭,存在唯一02,0x a ⎛⎫∈- ⎪⎝⎭使得0()0f x =,所以函数()y f x =在(),0∞-内存在唯一零点;(2)由条件知12122020x x e ax e ax ⎧--=⎨--=⎩,1212121222x x x x e e e e a x x x x ---∴===-,令()22122120,x t x e e e t x x a t x --=->∴==,则有22212x t x e e t x e --=,令1()(0)t e g t t t -=>,2(1)1()t t e g t t -+=',令()(1)1t h t t e =-+,()0th t te =>',()h t ∴(0,)+∞单调递增,()(0)0h t h ∴>=,()g t ∴在(0,)+∞单调递增,要求t 的最小值即求()g t 最小值,令()22222x x e v x x e -=,()()()22222222222222,12220x x x x x x e x e x e v x x x e x e'-+-+-==<,在令()22222x m x x e =+-,()2220x m x e =->',()2m x ∴在(,0)-∞单调递增,又1(0)10,(1)0m m e -=>-=-<,∴存在唯一0(1,0)x ∈-使得()00m x =.此时0022x e x =+,2x ()0,x -∞0x ()0,x +∞()2v x '-0+()2v x 极小 当02x x =时,()2v x 有最小值故12x x -取最小值时000022222x x e a x x +--===.【点睛】关键点睛:解决本题得关键是得出()22212x t x e e e a t x --==,利用导数判断出要求t 的最小值即求()g t 最小值,构造函数()22222x x e v x x e -=,利用导数判断单调性求出其最小值.。

2022-2023学年重庆市长寿中学高三上学期12月月考数学试题(解析版)

2022-2023学年重庆市长寿中学高三上学期12月月考数学试题(解析版)

重庆市长寿中学校高三上期·12月月考数学试题一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.已知集合,集合,则( )A. B. C. D.2.复数在复平面内对应点的点是,则复数是虚数单位的虚部为( )A. B. C. D.3.若两个正实数,满足,且不等式恒成立,则实数的取值范围为( )A. 或B.C. 或D.4.如图所示,等腰梯形中,,点为线段上靠近的三等分点,点为线段的中点,则( )A. B.C. D.5.某地高考规定每一考场安排名考生,编成六行四列就坐若来自同一学校的甲、乙两名学生同时排在“考点考场”,那么他们两人前后左右均不相邻的概率是( )A. B. C. D.6.在中,内角,,所对的边分别为,,,若,,则当取最大值时,外接圆的面积( )A. B. C. D.7.如图所示,在直角梯形中,,、分别是、上的点,,且如图将四边形沿折起,连结、、如图在折起的过程中,下列说法中错误的个数是( ) 平面;、、、四点不可能共面;若,则平面平面;平面与平面可能垂直.A. 1B. 2C. 3D. 48.已知函数,若关于的函数有个不同的零点,则实数的取值范围是( )A. 或B. 或C. D.二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求)9.已知函数,下列叙述正确的有( )A. 函数是偶函数B. 函数的周期为C. 函数在区间上单调递减D. ,,10.已知为椭圆的左焦点,直线与椭圆交于,点,轴,垂足为,与椭圆的另一个交点为,则( )A. 的最小值为B. 面积的最大值为C. 直线的斜率为D. 直线与直线的斜率之积为定值11.已知二项式的展开式中各项系数的和为,则下列结论正确的是( )A. B. 展开式中二项式系数和为C.展开式中项的系数为D.展开式中有项有理项12.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为吨,最多为吨,月处理成本元与月处理量吨之间的函数关系可近似表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为元.以下判断正确的是( )A. 该单位每月处理量为吨时,才能使每吨的平均处理成本最低B. 该单位每月最低可获利元C. 该单位每月不获利也不亏损D. 每月需要国家至少补贴元才能使该单位不亏损三、填空题(本大题共4小题,共20分)13.已知函数在上具有单调性,则实数的取值范围是.14.已知函数为奇函数,设,则.15.若,,,且,,共面,则.16.已知函数是定义在的奇函数,当时,,则不等式的解集为.四、解答题(本大题共6小题,共70分。

2023届福建省南安市柳城中学高三上学期12月月考数学试题(解析版)

2023届福建省南安市柳城中学高三上学期12月月考数学试题(解析版)

2023届福建省南安市柳城中学高三上学期12月月考数学试题一、单选题 1.已知复数i2iz =+,i 为虚数单位,则z 的共轭复数为( ) A .12i 55+B .12i 55-C .21i 55+D .21i 55-【答案】B【分析】根据复数的运算公式求复数z 的代数形式,再求其共轭复数即可. 【详解】()()()i 2i i 12i 12=i 2i 2i 2i 555z -+===+++-, 所以z 的共轭复数为12i 55-,故选:B.2.已知集合()(){}120A x x x =+-<,{}Z 1B x x =∈≥,则()A B =R ( ) A .[]{}1,21⋃- B .[]1,2C .{}1,1,2-D .{}1,2【答案】C【分析】解一元二次不等式求得集合A ,解绝对值不等式求得集合B ,由此求得()A B ⋂R . 【详解】由120x x,得1x <-或2x >,所以[]1,2R A =-;由1x ≥,得1x ≤-或1x ≥,所以{Z|1B x x =∈≤-或}1x ≥, 从而(){}1,1,2A B ⋂=-R . 故选:C3.已知随机变量X 服从正态分布()23,N σ,若()()12436P X P X >=⋅<,则()23P X <<=( ) A .13B .14C .16D .19【答案】A【分析】利用对称性可得(2)(4)P X P X <=>结合条件可求()2P X <,再由 1(2)(4)(23)2P X P X P X -<-><<=求解.【详解】因为随机变量X 服从正态分布()23,N σ,又()()12436P X P X >=⋅<, 所以1(2)(4)6P X P X <=>=, 故1111(2)(4)166(23)223P X P X P X =---<-><<==. 故选:A.4.已知某圆锥的侧面展开图为半圆,该圆锥的体积为,则该圆锥的表面积为( )A .27πB .C .D .16π【答案】A【分析】根据条件先算出母线长与底面半径的关系,再根据体积计算出底面半径即可.【详解】设圆锥底面半径为r ,母线长为l ,则r l 2π=π,所以2l r =,=,所以213r π⨯=,解得3r =,故其表面积291827S r rl πππππ=+=+=;故选:A .5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .12【答案】C【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0ω>,故当0k =时,ω的最小值为13.故选:C.6.已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.7.如图,在正三棱柱111ABC A B C 中,13AA =,2AB =,则异面直线1A B 与1B C 所成角的余弦值为( )A .513B .713C .913D .1213【答案】B【分析】在三棱锥内构造直线使其平行于1A B ,然后构造三角形,运用异面直线夹角的定义求解即可.【详解】取11A C 的中点D ,连接1BC 交1B C 于点E ,连接DE , 则1//DE A B 且112DE A B =,则1DEB ∠为异面直线1A B 与1B C 所成的角或其补角. 易求1113A B BC =13B D ,则113DE B E ==, 所以222111113133744cos 21313132DE B E B D DEB DE B E +-+-∠===⋅⨯⨯. 故选:B .8.已知函数()f x 是定义域为R 的偶函数()1f x +为奇函数,当[]0,1x ∈时,()2xf x k a =⋅+,若()()036f f +=,则()2log 96f =( )A .2B .0C .-3D .-6【答案】C【分析】根据条件,可以证明()f x 是周期为4的周期函数,计算出a 和k ,由周期性可得()()22log 961log 3f f =+ ,再利用函数的对称性即可求解.【详解】因为()1f x +为奇函数,所以()()11f x f x -+=-+,又()f x 为偶函数, 所以()()11f x f x -+=-,所以()()11f x f x -=-+,即()()2=-+f x f x , 所以()()()42f x f x f x +=-+=,故()f x 是以4为周期的周期函数;由()()11f x f x -+=-+,易得()10f =,()()()3110f f f =-==,所以()06f =, 所以6k a +=,20k a +=,解得6k =-,12a =;所以()()()222log 965log 31log 3f f f =+=+()23log 2223log 31log 621232f f ⎛⎫⎛⎫=--=-=--⨯+=- ⎪ ⎪⎝⎭⎝⎭; 故选:C .9.已知0a b >>,0c d <<,则( ) A .a b d c> B .a b d c< C .ac bd < D .ac bd >【答案】BC【分析】利用不等式的基本性质判断不等关系. 【详解】因为0c d <<,所以0cd >,所以110d c <<,所以110d c->->,又0a b >>,所以a b d c ->-,所以a bd c<,故 A 错误,B 正确; 因为0a b >>,0c d ->->,所以ac bd ->-,所以.ac bd <故D 错误,C 正确. 故选:BC .10.已知数列{}n a 的前n 项和为n S ,则( ) A .若22n S n n =-,则{}n a 是等差数列 B .若121n n S +=-,则{}n a 是等比数列 C .若{}n a 是等差数列,则202310122023S a =D .若{}n a 是等比数列,且10a >,0q >,则221212n n n S S S -+⋅> 【答案】AC【分析】利用n a 与n S 的关系,结合等差数列与等比数列的定义,可得A 、B 的正误;根据等差中项以及等差数列求和公式,可得C 的正误;取1n =时的特殊情况验证不等式,可得D 的正误.【详解】对于A ,若22n S n n =-,则11a =,当2n ≥时,143n n n a S S n -=-=-,显然1n =时也满足43n a n =-, 故43n a n =-,由14n n a a --=,则{}n a 为等差数列,故A 正确;对于B ,若121n n S +=-,则13a =,2214a S S =-=,3328a S S =-=,显然3212a a a a ≠,所以{}n a 不是等比数列,故B 错误; 对于C ,因为{}n a 为等差数列,则()12023101220231012202320232202322a a a S a +⨯===,故C 正确;对于D ,当1n =时,()()222222132111110S S S a q q a q a q ⋅-=++-+=-<,故当1n =时,不等式不成立,即221212n n n S S S -+⋅>不成立,故D 错误.11.关于函数()()π3sin 21R 3f x x x ⎛⎫ ⎪⎝⎭=-+∈,下列说法正确的是( )A .若()()121f x f x ==,则()12πZ x x k k -=∈B .()y f x =的图像关于点2π,13⎛⎫⎪⎝⎭对称 C .()y f x =在π0,2⎛⎫⎪⎝⎭上单调递增D .()y f x =的图像向右平移π12个单位长度后所得图像关于y 轴对称【答案】BD【分析】对于A ,根据三角函数的对称中心性质即可判断; 对于B ,可根据对称中心对应的函数值特征即可判断; 对于C ,根据三角函数单调性判断即可;对于D ,求出平移后的解析式并根据偶函数的性质进行判断即可.【详解】对于A ,由()()121f x f x ==知()1,1x ,()2,1x 是()π3sin 213f x x ⎛⎫=-+ ⎪⎝⎭图象的两个对称中心,则12x x -是函数()f x 的最小正周期的整数倍,即()12πZ 2k x x k -=∈,故A 不正确; 对于B ,因为2π3sin π113f ⎛⎫=+= ⎪⎝⎭,所以2π,13⎛⎫⎪⎝⎭是()f x 的对称中心,故B 正确;对于C ,由()πππ2π22πZ 232k x k k -≤-≤+∈解得()π5πππZ 1212k x k k -≤≤+∈, 当0k =时,()f x 在π5π,1212⎡⎤-⎢⎥⎣⎦上单调递增,则()f x 在5π0,12⎡⎤⎢⎥⎣⎦上单调递增,在5ππ,122⎡⎤⎢⎥⎣⎦上单调递减,故C 不正确;对于D ,()y f x =的图象向右平移π12个单位长度后所得图象对应的函数ππ3sin 213cos 21123y x x ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭,x ∈R ()()3cos213cos21()f x x x f x ∴-=--+=-+=3cos 21y x =-+是偶函数,所以图象关于y 轴对称,故D 正确.故选:BD.12.将边长为2的正方形ABCD 沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .存在某个位置,使直线BD 与平面ABC 所成的角为45°B .当二面角D AC B --为23π时,三棱锥D ABC - C .当平面ACD ⊥平面ABC 时,异面直线AB 与CD 的夹角为60°D .O 为AC 的中点,当二面角D AO B --为23π时,三棱锥A OBD -外接球的表面积为10π 【答案】ACD【分析】A.当当平面ACD ⊥平面ABC ,即可判断;B.根据锥体体积公式,即可求解; C.将异面直线所成的角转化为相交直线所成的角,即可求解; D.将三棱锥补体为三棱柱,即可求球心和半径.【详解】A.当平面ACD ⊥平面ABC 时,取AC 的中点O ,连接,BO DO ,DO AC ⊥,DO ∴⊥平面ABC ,DBO ∴∠为直线BD 与平面ABC 所成的角, DBO 是等腰直角三角形,45DBO ∴∠=,故A 正确;B.DO AC ⊥,BO AC ⊥,DO BO O ⋂=,AC ∴⊥平面DBO ,且23DOB π∠=, AC ⊂平面ABC ,∴平面DBO ⊥平面ABC ,且交于BO ,∴点D 在平面ABC 的射影落在BO 上,∴点D 到平面ABC 的距离6sin 602d DO =⋅=,三棱锥D ABC -的体积1166223223V =⨯⨯⨯⨯=,故B 错误;C.取,BC BD 的中点,M N ,连接,,OM ON MN ,则//OM AB ,/MN DC ,所以OMN ∠或其补角是异面直线AB 与CD 的夹角,根据A 的证明可知()()22222BD =+=,112ON BD ==,且1OM MN ==,所以OMN 是等边三角形,60OMN ∠=,故C 正确;D.由条件可知AO ⊥平面DOB ,23DOB π∠=,且DO OB =,所以可以将四棱锥A DOB -补成底面是菱形的直棱柱因为四边形OBCD 是菱形,且23BOD π∠=,所以点C 是底面OBD 外接圆的圆心,取侧棱1CC 的中点E ,则E 是四棱柱外接球的球心,连结OE ,()222221022OE OC CE ⎛⎫=+=+ ⎪ ⎪⎝⎭所以四棱锥A OBD -外接球的半径10R =2410S R ππ==,故D 正确. 故选:ACD三、填空题13.已知向量()3,1a =-,(),2b m =,且()2a a b ⊥+,则+=a b ______. 85 【分析】由向量线性运算及垂直的数量积表示可得方程解出m ,即可由坐标计算向量模. 【详解】()()()23,12,223,5a b m m +=-+=-,由()2a a b ⊥+得()()()23,123,5a a b m ⋅+=-⋅-6950m =-++=,解得73m =. 则()723,1,2,333a b ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭,故2228533a b ⎛⎫+=-+= ⎪⎝⎭85. 14.63x x ⎛⎝展开式的常数项为______.【答案】2160【分析】根据给定条件,求出二项式展开式的通项公式,再求出常数项作答.【详解】6(3x展开式的通项公式为36662166C (3)(3(2)C ,N,6r r r r r r rr T x x r r ---+==⋅-∈≤, 令3602r -=,解得4r =,则244563(2)C 916152160T =⋅-=⨯⨯=, 所以展开式的常数项为2160. 故答案为:216015.已知函数()()()10 ln f x x x =+≥,将()f x 的图象绕原点逆时针旋转(]()0,ααθ∈角后得到曲线C ,若曲线C 仍是某个函数的图象,则θ的最大值为______.【答案】π4##1π4【分析】求得()f x 在点()0,0处的切线方程,从而求得正确答案. 【详解】依题意0x ≥, ()11f x x '=+,所以()01f '=,故函数()f x 的图象在()()0,0f 处的切线为y x =, 切线向上的方向与y 轴正方向的夹角为π4,函数()f x 的图象绕原点旋转不超过π4时,仍为某函数图象,若超过π4,y 轴与图象有两个公共点,与函数定义不符,故θ的最大值为π4.故答案为:π416.有一种投掷骰子走跳棋的游戏:棋盘上标有第1站、第2站、第3站、…、第10站,共10站,设棋子跳到第n 站的概率为n P ,若一枚棋子开始在第1站,棋手每次投掷骰子一次,棋子向前跳动一次.若骰子点数小于等于3,棋子向前跳一站;否则,棋子向前跳两站,直到棋子跳到第9站(失败)或者第10站(获胜)时,游戏结束.则3P =_________;该棋手获胜的概率为__________. 【答案】34##0.75 85256【分析】根据题意找出(38)n P n ≤≤与21,n n P P --的关系即可求解. 【详解】由题311132224P =+⨯=,因为2111(38)22n n n P P P n --=+≤≤,故11112n n n n P P P P ----=--,由2112P P -=-,所以111,22n n n P P n --⎛⎫-=-≥ ⎪⎝⎭,累加可得:2878108111118518521,1222128225612P P P ⎛⎫-- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=+-+-+⋅⋅⋅+-==== ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭-- ⎪⎝⎭.故答案为:34;85256.四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,()22214cos a b B ab +-=-,且2cos c b B =.(1)求B ;(2)若ABC 的周长为423+,求BC 边上中线的长. 【答案】(1)π6B = (2)7.【分析】(1)已知条件结合余弦定理求得2π3C =,再由正弦定理求B . (2)由(1)求出角A ,利用三角形周长求出各边的长,再由余弦定理求BC 边上中线的长.【详解】(1)由()22214cos a b B ab +-=-,有22224cos a b b B ab +-=-,又2cos c b B =,所以2224cos c b B =,即222a b c ab +-=-, 由余弦定理,得2221cos 222a b c ab C ab ab +--===-. 又()0,πC ∈,所以2π3C =,由2cos c b B =及正弦定理,得sin 2sin cos C B B =,所以3sin 22B =, 由π0,3B ⎛⎫∈ ⎪⎝⎭,得2π20,3B ⎛⎫∈ ⎪⎝⎭,所以π23B =,解得π6B =.(2)由(1)可知π6B =,2π3C =,所以π2πππ636A =--=, 所以a b =,由2cos c b B =,得3c a =. 因为ABC 的周长为423+,所以3423a a a ++=+,解得2a =. 设BC 的中点为D ,则112CD BC ==,如图所示:AD==,所以BC.18.已知数列{}n a的前项和为n S,若()12n nnS n S+=+,且11a=.(1)求{}n a的通项公式;(2)设()2112nn nb na a-=≥,11b=,数列{}n b的前n项和为n T,求证32nT<.【答案】(1)n a n=(2)证明见解析【分析】(1)由已知等式可得12nnS nS n++=,采用累乘法可求得当2n≥时的nS,利用1n n na S S-=-可求得n a,检验首项后可得结论;(2)由(1)可得2n≥时nb的通项,由()()112122nbn n n n=<--,采用裂项相消法可求得11112nTn⎛⎫<+-⎪⎝⎭,由1n>可得结论.【详解】(1)由()12n nnS n S+=+得:12nnS nS n++=,则当2n≥时,()123211232111143123212n n n nn n nn nS S S S S S n n nS S S S S S n n n-----++-=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=---,又111S a==,()12nn nS+∴=,()()11122n n nn n n na S S n-+-∴=-=-=,经检验:11a=满足na n=;()na n n*∴=∈N.(2)由(1)得:当2n≥时,()()11111212221nbn n n n n n⎛⎫=<=-⎪---⎝⎭;123111111111112223341n n nT b b b b bn n-⎛⎫∴=+++⋅⋅⋅++<+-+-+-+⋅⋅⋅+-⎪-⎝⎭11112n⎛⎫=+-⎪⎝⎭,1n>,111n∴-<,1113111222nTn⎛⎫∴<+-<+=⎪⎝⎭.19.2018年9月10日,全国教育大会在北京召开,习近平总书记在会上提出“培养德智体美劳全面发展的社会主义建设者和接班人”.某学校贯彻大会精神,为学生开设了一门模具加工课,经过一段时间的学习,拟举行一次模具加工大赛,学生小明、小红打算报名参加大赛.(1)赛前,小明进行了一段时间的强化训练,加工完成一个模具的平均速度y (秒)与训练天数x (天)有关,经统计得到如下表数据:经研究发现,可用b y a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过50天训练后,加工完成一个模具的平均速度y 约为多少秒?(2)小明和小红拟先举行一次模拟赛,每局比赛各加工一个模具,先加工完成模具的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为35,已知在前3局中小明胜2局,小红胜1局.若每局不存在平局,请你估计小明最终赢得比赛的概率.参考数据:(其中1i t x =) 参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221n i ii n i i u v nu v unu β==-⋅=-∑∑,v u αβ=-⋅. 【答案】(1)100013ˆ0=+yx;150; (2)513625. 【分析】(1)令1t x =,则可利用最小二乘法估计ˆˆˆy bt a =+,从而得到ˆˆˆb y a x=+,代入x =50即可预测小明经过50天训练后,加工完成一个模具的平均速度;(2)设比赛再继续进行X 局小明最终赢得比赛,最后一局一定是小明获胜,且最多再进行4局就结束比赛分出胜负,则小明赢得比赛得概率P =P (X =2)+P (X =3)+P (X =4).【详解】(1)由题意,()19909904503203002402105007y =++++++=,令1t x =,设y 关于t 的线性回归方程为ˆˆˆy bt a =+, 则7172217184570.37500ˆ10000.557i ii i i t y t y b tt ==-⋅-⨯⨯===-∑∑, 则ˆ50010000.37130=-⨯=a, ∴100013ˆ0=+yt , ∴y 关于x 的回归方程为100013ˆ0=+y x, 当50x =时,ˆ150=y, ∴预测小明经过50天训练后,加工完成一个模具的平均速度y 约为150秒;(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜,由题意知,最多再进行4局就有胜负,X 的可能取值为2、3、4.当2X =时,小明4∶1胜,∴()33925525P X ==⨯=; 当3X =时,小明4∶2胜,∴()12333363C 1555125P X ⎛⎫==⨯⨯-⨯= ⎪⎝⎭; 当4X =时,小明4∶3胜,∴()2133331084C 1555625P X ⎛⎫==⨯⨯-⨯= ⎪⎝⎭. ∴小明最终赢得比赛的概率为93610851325125625625++=. 20.如图,圆台下底面圆O 的直径为AB , C 是圆O 上异于,A B 的点,且30BAC ∠=,MN 为上底面圆O '的一条直径,MAC △是边长为23的等边三角形,4MB =.(1)证明:BC ⊥平面MAC ;(2)求平面MAC 和平面NAB 夹角的余弦值.【答案】(1)证明见解析313【分析】(1)线线垂直从而证明线面垂直.(2)利用向量法,即可求二面角的余弦值.【详解】(1)∵AB 为圆台下底面圆O 的直径,C 是圆O 上异于,A B 的点,故=90ACB ︒∠又∵=30BAC ︒∠,23AC =,∴4AB MB ==∵AC MC =,BC BC =∴ABC MBC ≅,∴=90BCM ︒∠∴BC MC ⊥,又∵BC AC ⊥,AC MCC ,,AC MC ⊂平面MAC ∴BC ⊥平面MAC(2)取AC 的中点,连接,DM DO ,则MD AC ⊥,由(1)可知,BC DM ⊥∵AC BC C =,∴DM ⊥平面ABC , 又∵OD AC ⊥∴以D 为原点,DA 为x 轴,DO 为y 轴,DM 为z 轴,建立如下图所示的空间直角坐标系,由题意可得(3,0,0)A ,(3,2,0)B -,∵OO '⊥平面ABC ,∴//'DM OO ,四边形ODMO '为矩形,∴(0,2,3)N平面MAC 的一个法向量为1(0,1,0)n =.设平面NAB 的一条法向量为2(,,)n x y z =,(23,2,0)AB =-,(3,2,3)AN =-由2200n AB n AN ⎧⋅=⎪⎨⋅=⎪⎩ 得23203230x y x y z ⎧-+=⎪⎨++=⎪⎩ 令3x =3y =,1z =-平面NAB 的一个法向量为2(3,3,1)n =-则平面MAC 与平面NAB的夹角的余弦值为1212·3nn n n ==∴平面MAC 和平面NAB 21.已知抛物线2:2(0)C x py p =>在点()01,M y 处的切线斜率为12. (1)求抛物线C 的方程;(2)若抛物线C 上存在不同的两点关于直线:2l y x m =+对称,求实数m 的取值范围.【答案】(1)24x y =;(2)94m >.【分析】(1)根据给定条件,求出切线方程,再与抛物线C 的方程联立,借助判别式计算作答.(2)设出抛物线C 上关于l 对称的两点A ,B 的坐标,并设出直线AB 的方程,再与抛物线C 的方程联立,借助判别式及韦达定理计算作答.【详解】(1)点1(1,)2M p ,则切线方程为:11(1)22y x p -=-,由221(1)2py p x x py -=-⎧⎨=⎩消去y 并整理得: 210x px p -+-=,依题意,24(1)0p p ∆=--=,解得2p =,所以抛物线C 的方程是24x y =.(2)设抛物线C 上关于l 对称的两点为1122(,),(,)A x y B x y ,则设直线AB 方程为:12y x t =-+, 由2124y x t x y⎧=-+⎪⎨⎪=⎩消去y 并整理得:2240x x t +-=,则有4160t '∆=+>,解得14t >-, 122x x +=-,12121()2212y y x x t t +=-++=+,显然线段AB 的中点1(1,)2t -+在直线l 上, 于是得122t m +=-+,即有52t m =-,而14t >-,因此,5124m ->-,解得94m >, 所以实数m 的取值范围是94m >. 【点睛】结论点睛:抛物线22(0)x py p =≠在点200(,)2x x p 处的切线斜率0x k p =; 抛物线22(0)y px p =≠在点2000(,)(0)2y y y p ≠处的切线斜率0p k y =. 22.某品牌轿车经销商组织促销活动,给出两种优惠方案,顾客只能选择其中的一种. 方案一:每满6万元,可减6千元;方案二:金额超过6万元(含6万元),可摇号三次,其规则是依次从装有2个幸运号、2个吉祥号的一号摇号机,装有2个幸运号、2个吉祥号的二号摇号机,装有1个幸运号、3个吉祥号的三号摇号机各摇号一次,每次摇出一个号. 其优惠情况为:若摇出3个幸运号打6折;若摇出2个幸运号打7折;若摇出1个幸运号打8折;若没摇出幸运号不打折.(1)若某型号的车正好6万元,两名顾客都选方案二,求至少有一名顾客比选方案一更优惠的概率;(2)若你朋友看中一款价格为10万元的轿车,请用所学知识帮助你朋友分析一下应选择哪种优惠方案.【答案】(1)247256(2)方案二【分析】(1)设顾客三次没摇出幸运号为事件A ,由独立事件概率乘法公式求得()P A ,则利用对立事件概率得所求概率为()21P A -; (2)方案二,设付款金额为X 万元,则{}6,7,8,10X ∈,求出X 的分布列,期望与方案一比较即可.【详解】(1)方案一相当于打9折,要使选择方案二比选择方案一更优惠,则需要至少摇出1个幸运号,设顾客不打折即三次没摇出幸运号为事件A ,则()223344416P A =⨯⨯=, 故所求的概率()2232471116256P P A ⎛⎫=-=-= ⎪⎝⎭. (2)若选择方案一,则需要付款100.69.4-=(万元)若选择方案二,设付款金额为X 万元,则{}6,7,8,10X ∈, ()322116416P X ⨯⨯===,()322322122157416P X ⨯⨯+⨯⨯+⨯⨯===, ()322322322178416P X ⨯⨯+⨯⨯+⨯⨯===,()31016P X ==, 故X 的分布列为所以()1573678107.93759.416161616E X =⨯+⨯+⨯+⨯=<(万元),所以选方案二划算.。

河北省金科大联考2023-2024学年高三上学期12月月考数学试题

河北省金科大联考2023-2024学年高三上学期12月月考数学试题

金科大联考·2024届高三12月质量检测数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区城内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2430,21xA x x xB y y =-+≤==+,则A B =( )A .()1,+∞B .[)1,+∞C .()1,3D .[)1,32.已知()i 11z z -=+,则z =( ) A .i -B .1i -C .iD .1i +3.已知,a b 为单位向举,若()()23a b a b +⊥-,则cos ,a b =( )A .35B .35-C .15D .15-4.若函数()sin sin 1exa xf x x =-+为偶函数,则实数a =( ) A .1B .0C .1-D .25.刍薨是《九章算术》中出现的一种几何体,如图所示,其底面ABCD 为矩形,顶棱PQ 和底面平行,书中描述了刍薨的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()126V AB PQ BC h =+⋅(其中h 是刍薨的高,即顶棱PQ 到底面ABCD 的距离),已知24,AB BC PAD ==△和QBC △均为等边三角形,若二面角P AD B --和Q BC A --的大小均为150︒,则该刍薨的体积为( )A .2B .C .2D .6.若tan 3,tan 34παβ⎛⎫+=-= ⎪⎝⎭,则()()cos sin αβαβ-=+( ) A .1-B .75C .35D .457.设等比数列{}n a 的公比为1,0q a >,设甲:1q >;乙:2n n a a +>,则( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知双曲线222:1(0)y C x b b-=>,点()()2,0,3,0P Q ,若C 上存在三个不同的点M 满足2MQ MP =,则C 的离心率的取值范围为( )A .1,3⎛ ⎝⎭B .1,3⎛⎫⎪⎝⎭C .3⎛⎫+∞ ⎪⎝⎭ D .,3⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆221:(2)1C x y ++=,圆222:()9C x y a +-=,则下列结论正确的是( )A .若1C 和2C 外离,则a >a <-B .若1C 和2C 外切,则a =±C .当0a =时,有且仅有一条直线与1C 和2C 均相切D .当2a =时,1C 和2C 内含10.已知正实数,x y 满足4x y xy +=,则( ) A .16xy ≤B .9x y +≥C .116yx -的最大值为0 D .44xy+的最小值为10211.已知()()2log ,2x f x x x g x x =+=+,若()()2f a g b ==,则( ) A .2ba =B .2a b +=C .1a b -> D.324ab << 12.在三棱锥1A ABC -中,1A A ⊥平面1,,3,ABC AB AC AA AB AC P ⊥===为1A BC △内的一个动点(他括边界),AP 与平面1A BC 所成的角为45︒,则( ) A .1A PB .1A PC .有且仅有一个点P ,使得1A P BC ⊥D .所有满足条件的线段AP形成的曲面面积为4三、填空题:本题共4小题,每小题5分,共20分.13.设n S 是公差不为0的等差数列{}n a 的前n 项和,若243a a =,则20232023S a =______. 14.已知函数()()ln 1f x ax =+,且2y x =为曲线()y f x =的一条切线,则a =______.15.设12,F F 是椭圆2222:1(0)x y C a b a b +=>>的左、右焦点,O 为坐标原点,M 为C 上一个动点,且21112MF MF FO +⋅的取值范围为[]1,3,则椭圆C 的长轴长为______. 16.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭,花()6f x f π⎛⎫≤⎪⎝⎭,且()2003f f π⎛⎫+=⎪⎝⎭,则3f π⎛⎫= ⎪⎝⎭______. 四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)记ABC △的内角,,A B C 的对边分别为,,a b c ,面积为S ,且4abcS =. (1)求ABC △的外接圆的半径; (2)若2b c +=,且23A π=,求BC 边上的高. 18.(本小题满分12分)设n S 为数列{}n a 的前n 项和,122112n n S S Sn++⋅⋅⋅+=-. (1)求数列{}n a 的通项公式;(2)设2n nn b na +=,证明:124n b b b ++⋅⋅⋅+<. 19.(本小题满分12分)已知函数()()2e ,xf x xax a a =--∈R .(1)讨论()f x 的单调性;(2)当0a ≥时,设12,x x 分别为()f x 的极大值点、极小值点,求()()12f x f x -的取值范围.20.(木小题满分12分)如图,在四棱锥P ABCD -中,,,22AB CD AB BC AB BC CD PD PC ⊥====∥,设,,E F M 分列为棱,,AB PC CD 的中点.(1)证明:EF ∥平面PAM ;(2)若PA PM =,求EF 与平面PCD 所成角的正弦值. 21.(本小题满分12分)已知函数()221ln 2ln ,2f x x x x ax a =-+-∈R . (1)证明:()f x 有唯一的极值点; (2)若()0f x ≥,求a 的取值范围.22.(本小题满分12分)已知抛物线2:2(0),C y px p F =>为C 的焦点,()()004,0P y y >在C 上,且5PF =. (1)求抛物线C 的方程;(2)若直线l 与C 交于,A B 两点(,A B 分别位于直线4x =的两侧),且直线,PA PB 的斜率之和为0, (ⅰ)求直线l 的斜率;(ⅱ)求PAB △的面积的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省武城县第二中学2017届高三数学12月月考试题 理一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2{1,0,1,2},{|20}M N x x x =-=--<,则MN =( )A.{0,1}B.{1,0}-C.{1,2}D.{1,2}-2.设命题 2:0,1,p x x ∃<≥则p ⌝为( )A.20,1x x ∀≥< B.20,1x x ∀<< C.20,1x x ∃≥<D.20,1x x ∃<<3.为了得到函数sin 2y x =的图象,只需将函数sin(2)4y x π=-的图象。

( ) A.向左平移8π个单位 B.向右平移8π个单位 C.向左平移4π个单位D.向右平移4π个单位4.函数(x)1ln(52)x f e x =+--的定义域为( )A.[0,)+∞B.(,2]-∞C.[0,2]D.[0,2)5.直线cos +320x y α+=的倾斜角的范围是( )A.5[,](,]6226ππππ B.5[0,][,)66πππ C.5[0,]6πD.5[,]66ππ6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还。

”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每一走的路程为前一天的一半,走了6天后到达目的地。

”问此第4天和第5天共走了( )A.60里B.48里C.36里D.24里7.若圆心在x 轴上,半径为5的圆位于y 轴左侧,且被直线20x y +=,截得的弦长为4,则圆C 的方程是( )A 22(5)5x y -+=.B.22(x 5)5y ++=C.22(5)5x y -+=D.22(5)5x y ++=8.函数()f x 的图象关于y 轴对称,且对任意x R ∈都有(3)()f x f x +=-,若当35(,)22x ∈时,1()()2x f x =,则(2017)f =( )A.14-B.14C.-4D.49.如图,在ABCD 中,M ,N 分别为AB,AD 上的点,且32,,43AM AB AN AD == 连接AC,MN交于P 点,若AP AC λ=,则λ的值为( )A.35B.37C.613D.61710.函数()(4)ln (1),f x kx x x x =+->若()0f x >的解集为(,)s t ,且(,)s t 中只有一个整数,则实数k 的取值范围为( )A.114(2,)ln 2ln 33--B.114(2,]ln 2ln 33-- C.141(,1]ln 332ln 2--D.141(,1ln 332ln 2--) 二、填空题:本大题 共5个小题,每小题5分,共25分 11.定积分120(31)x x e dx ++⎰的值为 12.不等式|2||21|0x x --->的解集为13.已知4cos(),(0,)454ππαα-=∈,则cos 2sin()4απα+=DABCMNP14.一艘海警船从港口A 出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B 处,这时候接到从C 处发出的一求救信号,已知C 在B 的北偏东65°,港口A 的东偏南20°处,那么B ,C 两点的距离是海里。

15.已知自然数()()y f x x R =∈图象过点(e,0),(x)f '为函数(x)f 的导函数,e 为自然对数的底数,若0x >时,(x)2xf '<恒成立,则不等式(x)22ln f x +≥解集为。

三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)设函数23()sin cos 3cos (0)f x x x x ωωωω=⋅- +>的图象上相邻最高点与最低点的距离为24π+。

(I )求ω的值;(II )若函数()(0)2y f x πϕϕ=+<<是奇函数,求函数(x)cos(2x )g ϕ=-在[0,2]π上的单调递减区间。

17.(本小题满分12分)已知在ABC △中,内角A,B,C 的对边分别为,,a b c ,向量(,sin sin )m a b A C =-+与向量(a c,sin(A C))n =-+共线。

(1) 求角C 的值;(2) 求27,AC CB ⋅=-求||AB 的最小值18.(本小题满分12分)已知,m R ∈设22:[1,1],24820P x x x m m ∀∈---+-≥成立;212:[1,2],log (1)1q x x mx ∃∈-+<-成立,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围.19.数列{}n a 的前n 项和为n S ,对于任意的正整数n 都有0n a >,24(1)n n S a =+①求数列{a }n 的通项公式 ②设123nn n na b T b b ==++…n b 求n T20.(本小题满分13分)在某次下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为3()110v +(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为2v(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升) (I ) 求y 关于v 的函数关系式; (II ) 若15(c 0)c v ≤≤>,求当下潜速度v 取什么值,总用氧量最少。

21.(本小题满分14分) 已知函数ln ()1xf x x =+ (I ) 求曲线()y f x =在点(1,(1))f 处的切线方程; (II ) 对函数定义域内每一个实数x ,2()1t f x x x +≥+恒成立。

(1) 求t 的最小值(2)证明不等式11ln23n>++…1(n Nn*+∈且2)n≥高三年级第三次月考试题数学(理)答案一、选择题(每小题5分,共50分) 1-5 ABAD B6-10 CBADB二、填空题(每小题5分,共25分) 11.1e +12.(1,1)-13.6514.2 15.(0,]e三、解答题(本大题共6小题,共75分) 16.解:(I )23()sin cos 3f x x x x ωωω=⋅+=13(1cos 2)3sin 2222x x ωω+-+=sin(2)3x πω-………………………………………………………………………3分设T 为()f x 的最小正周期,由()f x 24π+222max ()[2()]42T f x π∴+=+,因为max ()1f x =,所以22()442Tπ+=+,整理得2T π=,…………………………………………………………………………(5分) 又因为20,22T πωπω>==,所以12ω=…………………………………………(6分) (II )由(I )可知()sin(),()sin()33f x x f x x ππϕϕ=-∴+=+-,()y f x ϕ=+是奇函数,则sin()0,3x π-=又02πϕ<<,3πϕ∴=,………………………………………………………………………(8分)()cos(2)cos(2)3g x x x πϕ∴=-=-, 令222,()3k x k k Z ππππ≤-≤+∈则2,63k x k k Z ππππ+≤≤+∈…………………………………………(10分)∴单调递减区间是2[],63k k k Z ππππ++∈,, 又[0,2]x π∈∴当0k =时,递减区间为2[,]63ππ;当1k =时,递减区间为75[,]63ππ.∴函数()g x 在[0,2]π上的单调递减区间是275[,],[,]6363ππππ.………………(12分)17.解(I)向量m 与向量n 共线,()sin()()(sin sin )a b A C a c A C ∴-⋅+=-+,…………………………………(2分)由正弦定理可得:()()()a b b a c a c -=-+,222,c a b ab ∴=+-2221cos 22a b c C ab +-∴==,………………………………………………………(4分)0,3C C ππ<<∴=………………………………………………………………(6分)(II )27,27AC CB CA CB ⋅=-∴⋅=,………………………………………(7分)1||||cos ||||272CA CB CA CB C CA CB ∴⋅=⋅=⋅= ||||54,CA CB ∴⋅=…………………………………………………………………(8分) 2222||||||||2AB CB CA CB CA CB CA =-=+-⋅2||2||||227AB CB CA ∴≥⋅-⨯2545454=⨯-=,……………………………………………………………(10分)||36,AB ∴≥(当且仅当||||36CA CB ==时,取“=”)||AB ∴的最小值为6…………………………………………………………(12分)18.解:若p 为真:对22[1,1],4822x m m x x ∀∈--≤--恒成立,……………(1分)设2()22,f x x x =--配方得2()(1)3f x x =--………………………………(2分)()f x ∴在[-1,1]上最小值为-3,2483m m ∴-≤-,解得1322m ≤≤, p ∴为真时:1322m ≤≤;……………………………………………………………(4分)若q 为真:2[1,2],12x xmx ∃∈-+>成立,∴21x m x -<成立.……………………………………………………………………(6分)设211()x g x x x x-==-,易知()g x 在[1,2]上是增函数,∴()g x 的最大值为3(2)2g =,∴32m<, ∴q 为真时,32m <.…………………………………………………………(8分)∵“p q ∨”为真,“p q ∧”为假,∴p 与q 一真一假,………………(9分) 当p 真q 假时132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩,∴32m =,……………………………………(10分)当p 假q 真时132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或,∴12m <,………………………………(11分)综上所述,m 的取值范围为12m <或32m =. 19.解:(1)24(1)n n S a =+①2114(1)n n S a --=+ 2n ≥ ②①-②2211422nn n n n a a a a a --=-+-11()(2)0n n n n a a a a --+--=2n ≥……………………………………2分∵0n a > 10n n a a -+>,∴12nn a a -=+……………………………………………………………………4分又211144(1)S a a ==+即11a =………………………………………………………………………………5分 ∴21na n =-………………………………………………………………………6分(2)1(21)()3n nb n =-⋅23111113()5()(21)()3333n n T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ ①231111111()3()(23)()(21)()33333n n n T n n +=⋅+⋅+⋅⋅⋅+-⋅+-⋅ ②①-②2312111112()2()2()(21)()333333n n n T n +=+⋅+⋅+⋅⋅⋅+⋅--⋅ 1111()11332(21)()13313n n n ++-=⨯---⋅-…………………………………………8分22(1)1()333n n +=-⋅…………………………………………………………………10分 ∴11(1)3n nT n =-+⋅………………………………………………………………12分20.解:(I )由题意,下潜用时60v(单位时间),用氧量为2360360[()1]1050v v v v+⨯=+(升),………………………………………………………………………………1分 水底作业时的用氧量为100.99⨯=(升),……………………………………2分返回水面用时601202v v =(单位时间),用氧量为1201801.5v v ⨯=(升),……3分 ∴总用氧量232409(0)50v y v v =++>.…………………………………………4分(II )32262403(2000)5025v v y v v-'=-=, 令0y '=得3102v =,…………………………………………………………6分在30102v <<时,0y '<,函数单调递减,在3102v >时,0y '>,函数单调递增,……………………………………8分∴当3102c <时,函数在3(,102)c 上递减,在3(102,15)上递增,∴此时3102v =时总用氧量最少.………………………………………………11分当3102c ≥时,y 在[,15]c 上递增,∴此时v c =时,总用氧量最少.……………………………………………………13分21.解:(I )由题意(0,)x ∈+∞且221(1)ln 1ln ()(1)(1)x xx x xx f x x x x +-+-'==++, ………………………………………………………………………………………………1分 ∴201(1)42f -'==, 又(1)02f ==,………………………………………………………………3分 ∴()f x 在点(1,(1))f 处的切线方程为10(1)2y x -=-即210x y --=.……4分(II )①解:0x ∀>,2()1t f x x x +≥+恒成立即ln 211x t x x x +≥++, 即2ln 1x x x t x -≥+……………………………………………………………………5分 令2ln ()1x x x g x x -=+ 21ln ()(1)x x g x x --'=+………………………………………………………………6分 令()0g x '=,则1x =∴(0,1) ()0g x '>,()g x 为增函数(1,)+∞ ()0g x '<,()g x 为减函数………………………………………………8分 ∴max()(1)1g x g == ∴1t ≥,即t 的最小值为1…………………………………………………………9分②证明:由①知1t=时, ln 1211x x x x +≥++恒成立…………………………………………………………10分 即1ln 1x x≥-,1x =取“=” 当2n ≥时,令1n xn =-,则111x n -= ∴1ln 1n n n>-……………………………………………………………………12分 21ln 12> 31ln 23>……1ln 1n n n>- 以上1n -个式子相加3111ln 2ln ln 2123n n n++⋅⋅⋅+>++⋅⋅⋅+-即111ln23nn>++⋅⋅⋅+………………………………………………………………14分(3)。

相关文档
最新文档