随机信号分析报告基础作业题

合集下载

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

随机信号分析试题

随机信号分析试题

姓名年级学院专业学号密封线内不答题一.填空题(每空3分共33分) 1.随机变量X ,Y 独立的条件是 。

2.若窄带信号()X t 通过一个幅度为A 的宽带系统输出()Y t ,则二者的关系为 。

3.白噪声通过理想带通系统后,其输出功率谱密度为 分布。

4.实信号)(t x 的解析信号是 。

5.随机变量X 服从0,1分布(P x p ==)1()的特征函数()X φυ= 。

6.若信号()X t 与()Y t 恒有12(,)0R t t =,则()X t 与()Y t 彼此 。

7.若信号()X t 与()Y t 无关, 如果 则 ()X t 与()Y t 独立。

8.若信号()X t 与()Y t 都是高斯信号,则()X t 与()Y t 独立的充要条件是 。

9.随机信号的平稳性包括 。

10.白噪声信号的()R τ= 。

11.随机信号()X t 均值各态历经表示 。

二、(12分)设正态分布随机变量),(~2σμN X 的特征函数。

姓名年级学院专业学号密封线内不答题三、(12分)假定三维随机变量),(~),,(321x x C X X X μ⎪⎪⎪⎭⎫ ⎝⎛=321x μ, ⎪⎪⎪⎭⎫ ⎝⎛=820242024x C 求(1)1X 的密度函数;(2)),(21X X 的密度函数;(3)31X X +的密度函数。

姓名年级学院专业学号密封线内不答题四、(14分)已知)()cos()()()(0t N t a t N t S t X ++=+=θω,其中θω,,0a 为常数,白噪声)(t N 的功率谱为2/0N 。

求此RC 电路输入前、后的信噪比?姓名年级学院专业学号密封线内不答题五、(15分) 1. 给出严格平稳随机过程和广义平稳随机过程的定义。

2.给出严格各态历经和广义各态历经的定义。

姓名 年级 学院 专业 学号 密封线内不答题 3.解释等效噪声带宽。

六、(14分)设随机过程()cos()X t A t ωϕ=+,其中ϕ是在(−π, π)中均匀分布的随机变量,A 、ω为常数。

随机信号分析报告(常建平李海林)习题问题详解解析汇报

随机信号分析报告(常建平李海林)习题问题详解解析汇报

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)的概率 ③随机变量X 的分布函数 解:第①问 ()112f x dx k ∞-∞==⎰ 第②问 {}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

随机信号分析基础第五章习题

随机信号分析基础第五章习题

5.2.1.2(1)系统输出的均值
设X(t)是有界的平稳过程,其均值为mX,则
E[Y
(t)]

E


h( )X
(t
)d


h( )E[X (t )]d

mX
h( )d

(5.2.3)
显然,mY
E[Y (t)] mX
h( )d 是与时间无关的常数。
32
RX ( ) FT GX ( )
所以输入的功率谱密度:
GX
()

2
3

()


2
[
(

2
)


(

2
)]
(t)

1

cos 0t

sin(t / 2)
2 t / 2
ea

ea cos 0

1 , 1
这是一个二阶MA过程

2 X

1 ,q
3

2, b0
1,b1

2, b2
1
2, k 0
RZ
(k )


4
3
,
k

1 3
,
k

1 2
0, k 2
可求得功率谱为:
GZ () F[RW (k)]
2
RZ (k)e jk k 2
2 4 (e j e j ) 1 (e j2 e j2 )
式中H(ω )是系统的传输函数,其模(绝对值)的平 方∣H(ω )∣2称之为系统的功率传输函数。

随机信号分析试题

随机信号分析试题

i 一.填空题(每空3分共18分):1.随机信号功率谱的物理意义是。

22.广义各态历经是指。

33.白噪声通过理想低通系统后,功率谱为。

号;4.希尔伯特变换中系统的冲激响应h(t)传递函数;H( ) 。

5 5.随机信号x(t)的解析函信号是。

二.判断题(每小题3分共15分)题小答1.随机变量X, Y独立,则有E(XY) E(X)E(Y)。

() 不内2.理想白噪声过程在不同时刻的两个状态独立。

()封3.一可以成为平稳过程的自相关函数。

曲密()4.功率谱密度S x()是实函数并且是偶函数。

()5.实平稳随机过程X(t)通过线性时不变系统的输出为Y(t),则有S x( )S Y( ) S XY()S YX() ( )三.(12分)若有一随机变量X,其概率密度函数为f(t) -e ax u(t)o2 求:(1) a的值;(2) X的特征函数X v ;第1页共4页(3)随机变量Y 2X 1,求Y的一阶概率密度函数。

.( 15 分) 已知随机相位正弦信号X(t) cos 0t , 0为常数,为在[0, 2兀]内均匀分布的随机变量。

试求:(1) X(t)的数学期望和自相关函数;(2)判定X(t)是否为平稳过程;(3)计算x(t)的功率谱密度。

五.(15分)若输入信号X(t) X。

cos( o t )作用于图XX所示RC电路,其中X。

为[0,1]上均匀分布的随机变量,为[0,2兀]上均匀分布的随机变量,并且X。

与彼此独立。

求输出信号Y(t) 的功率谱与相关函数。

题业答专才不内线密六.(15分)复随机过程Z(t) e j(0t),式中。

为常数,是在。

2):上均匀分布的随机变量。

求:(1)E[Z(t *(5和E[Z(t)Z(t)第3页共4页第4页共4页];:(2)信号的功率谱。

七.(15分)平稳随机过程x(t)作用到冲激响应分别为几代)和卜2代)的 串联系统。

用h i (t)、h 2(t)和X(t)的自相关函数R x ()表示的Y i (t)和丫2⑴ 的互相关函数,并计算丫(t)和Y 2(t)的功率谱。

随机信号分析资料报告习题

随机信号分析资料报告习题

随机信号分析资料报告习题随机信号分析习题一1. 设函数≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数。

并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+?≥≥=?,求{}10,10<<<<="">3. 设二维随机变量),(Y X 的联合密度函数为 ??++-=)52(21ex p 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值(2)确定Y 的分布。

(3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:sin cos ==Y X为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f 。

8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度? 9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X=+?=? 设X ,Y 是相互独立的高斯变量。

随机信号分析 题目及答案

随机信号分析 题目及答案

欢迎共阅1. (10分)随机变量12,X X 彼此独立,且特征函数分别为12(),()v v φφ,求下列随机变量的特征函数:(1) 122X X X =+ (2)12536X X X =++解:(1)()121222()jv X X jvX jv X jvXX v E e E e E e e φ+⎡⎤⎡⎤⎡⎤===⋅⎣⎦⎣⎦⎣⎦(2)()1212536536()jv X X jv X jv X jv X v E e E eee φ++⎡⎤⎡⎤==⋅⋅⎣⎦⎣⎦2. (10号()X t (1) (2) (3) 解:(1)(2) 当t 当t +(3)(X f3. (100ω为常数,Θ(1) 试判断()X t 和()Y t 在同一时刻和不同时刻的独立性、相关性及正交性;(2) 试判断()X t 和()Y t 是否联合广义平稳。

解:(1) 由于X (t )和Y(t )包含同一随机变量θ,因此非独立。

根据题意有12f ()θπ=。

[]001sin()02E[X(t )]E t sin(w t )d ππωθθπ-=+Θ=+=⎰,由于0XY XY R (t,t )C (t,t )==,X (t )和Y(t )在同一时刻正交、线性无关。

除()012w t t k π-=±外的其他不同时刻12120XY XY R (t ,t )C (t ,t )=≠,所以1X (t )和2Y(t )非正交且线性相关。

(2) 由于0E[X(t )]E[Y(t )]==,X (t )和Y(t )均值平稳。

同理可得1212Y X R (t ,t )R (t ,t )=,因此X (t )和Y(t )均广义平稳。

由于121201201122XY XY R (t ,t )C (t ,t )sin[w (t t )]sin(w )τ==-=,因此X (t )和Y(t )联合广义平稳。

4. (10(1)(R τ(2)(R τ(3)(R τ(4)(R 解:(1)不能,因为零点连续,而4/π点不连续。

随机信号分析基础作业题

随机信号分析基础作业题

随机信号分析基础作业题第⼀章1、有朋⾃远⽅来,她乘⽕车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。

如果她乘⽕车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。

如果她迟到了,问她最可能搭乘的是哪种交通⼯具?解:()0.3P A =()0.2P B =()0.1P C =()0.4P D =E -迟到,由已知可得(|)0.25(|)0.4(|)0.1(|)0P E A P E B P E C P E D ====全概率公式: ()()()()(P E P E AP E B P E C P E D=+++ 贝叶斯公式:()(|)()0.075(|)0.455()()0.165(|)()0.08(|)0.485()0.165(|)()0.01(|)0.06()0.165(|)()(|)0()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?====?===?===?==综上:坐轮船3、设随机变量X 服从瑞利分布,其概率密度函数为2222,0()0,0X x x X x e x f x x σσ-??>=??式中,常数0X σ>,求期望()E X 和⽅差()D X 。

考察:已知()x f x ,如何求()E X 和()D X ?222222()()()[()]()()()()()()()x x E X x f x dxD XE X m X m f x dxD XE X E X E X x f x dx∞-∞∞-∞∞-∞=?=-=-=-?=6、已知随机变量X 与Y ,有1,3,()4,()16,0XYEX EY D X D Y ρ=====,令3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。

如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。

如果她迟到了,问她最可能搭乘的是哪种交通工具? 解:()0.3P A = ()0.2P B = ()0.1P C = ()0.4P D =E -迟到,由已知可得(|)0.25(|)0.4(|)0.1(|)0P E A P E B P E C P E D ==== 全概率公式: ()()()()()P E P EA P EB P EC P ED =+++ 贝叶斯公式:()(|)()0.075(|)0.455()()0.165(|)()0.08(|)0.485()0.165(|)()0.01(|)0.06()0.165(|)()(|)0()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ⋅====⋅===⋅===⋅==综上:坐轮船3、设随机变量X 服从瑞利分布,其概率密度函数为2222,0()0,0X x x X x e x f x x σσ-⎧⎪>=⎨⎪<⎩式中,常数0X σ>,求期望()E X 和方差()D X 。

考察: 已知()x f x ,如何求()E X 和()D X ?222222()()()[()]()()()()()()()x x E X x f x dxD XE X m X m f x dxD XE X E X E X x f x dx∞-∞∞-∞∞-∞=⋅=-=-=-⇒=⋅⎰⎰⎰6、已知随机变量X 与Y ,有1,3,()4,()16,0XY EX EY D X D Y ρ=====,令3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。

考察随机变量函数的数字特征思路: 协方差:(,)()()()Cov X Y E XY E X E Y =-⋅ 相关系数:22()()()()()()2(,)XY E aX bY aE X bE Y D aX bY a D X b D Y abCov X Y ρ=+=++=++()6()5()76()52(,)40E U E V D U D V Cov U V ==-===-11、设随机变量X 的均值为3,方差为2。

令新的随机变量622Y X =-+,问:随机变量X 与Y 是否正交、不相关?为什么? 考察正交、不相关的概念()0E XY =⎧⎨≠⎩ 0正交,非0不正交XY ρ=⎧⎨≠⎩ 0不相关,非0相关 ()0E XY = 正交 (,)0Cov X Y ≠ 相关以上四题都是概率论的标准题。

第二章1、已知随机信号0()cos X t A t ω=,其中0ω为常数,随机变量A 服从标准高斯分布,求0020,,33t ππωω=三个时刻()X t 的一维概率密度函数。

解:002200[()][cos ]cos []()[()][cos ]cos []x Xm E X t E A t t E A t D X t D A t t D A ωωσωω===⋅===⋅A 服从标准高斯分布022200[]0,[]1[]cos 0()[]cos cos x X E A D A m E A t t D A t tωσωω∴==∴=⋅==⋅=∴一维高斯概率密度函数22220[()]2cos 2()(,)x X x m t x tt x f x t ωσ---==①当0t =时,22(;0)x x f x -=②当03t πω=时,220(;)3x x f x πω-= ③当023t πω=时,2202(;)3x x f x πω-=3、随机变量X 与Y 相互统计独立,并且服从2(0,)N σ分布。

它们构成随机信号()X t XYt =,试问:(1)信号X(t)的一维概率密度函数(;)x f x t ;(2) t 时刻的随机变量是什么分布,求其均值和方差。

解:(1),X Y 服从2(0,)N σ分布 且()X t X Yt =+()X t ∴也服从正态分布[()][][][]0[()][]E X t E X Yt E X tE Y D X t D X Yt ∴=+=+==+,X Y 相互统计独立()22222221[()][][][](1)(;)x t x D X t D X Yt D X t D Y t f x t σρ-+∴=+=+=+∴=(2)t 时刻,随机变量是高斯分布22[()]0[()](1)E X t D X t t σ==+∴其均值为0,方差为22(1)t σ+4、假定随机正弦幅度信号0()cos()X t A t ωθ=+,其中频率0ω和相位θ为常数,幅度A 是一个服从[]0,1均匀分布的随机变量,试求t 时刻该信号加在1欧姆电阻上的交流功率平均值。

解:t 时刻该信号加在1欧姆上的交流功率为[()]D X t0[()][cos()]D X t D A t ωθ=⋅+频率0ω和相位θ为常数200[cos()]cos ()[]D A t t D A ωθωθ∴⋅+=+⋅A 服从[0,1]均匀分布1,01()0,A a f a other<<⎧∴=⎨⎩ 211222201[][][][]121[]121[()]cos ()12D AE A E A a da a da D A D X t t ωθ∴=-=-⋅=∴=∴=+⎰⎰5、已知随机信号()X t 的均值为()X m t ,协方差函数为12(,)X C t t ,又知道()f t 是确定的时间函数。

试求随机信号()()()Y t X t f t =+的均值以及协方差。

解:[()][()()][()][()]E Y t E X t f t E X t E f t =+=+()f t 是确定信号12121211221212121211221212[()]()()(,)[()()][()][()][()()][()()][()()()()()()()()][()()][()()][()()]()[()](X X E Y t m t f t C t t E Y t Y t E Y t E Y t E X t f t E X t f t E X t X t X t f t f t X t f t f t E X t f t E X t f t E X t X t f t E X t f t ∴=+=⋅-⋅=+⋅+=+++-+⋅+=++211212************)[()]()()[()][()]()[()]()[()]()()[()()][()][()](,)X E X t f t f t E X t E X t f t E X t f t E X t f t f t E X t X t E X t E X t C t t +-⋅---=-= ()Y t ∴的均值为()()X m t f t +其协方差为:12(,)X C t t9、设接收机中频放大器的输出随机信号为()()()X t s t N t =+,其中()N t 是均值为零,方差为2σ的高斯噪声随机信号,而00()cos()s t t ωθ=+为确知信号,求随机信号()X t 在任意时刻1t 的一维概率密度函数。

解:()()()()()()X t S t N t N t X t S t =+=-00()cos()S t t ωθ=+是确知信号[()][()()]()[()]E X t E S t N t S t E N t ∴=+=+()N t 服从均值为0,方差为2nσ的高斯分布2002002[cos()]2[()]0[()]()cos()[()][()()][()](,)nn x t X E X t E X t S t t D X t D S t N t D N t f x t ωθσωθσ-+-∴=∴==+=+==∴=第三章3、设()X t 与()Y t 是统计独立的平稳随机信号。

求证由它们的乘积构成的随机信号()()()Z t X t Y t =也是平稳的。

证:()X t 与()Y t 是统计独立的平稳随机信号∴1212212222[()](,)[()()](),||[()][()]XX X X X E X t m R t t E X t X t R t t E X t D X t ττϕσ====-==同理1212212222[()](,)[()()](),||[()][()]YY Y YY E Y t m R t t E Y t Y t R t t E Y t D Y t ττϕσ====-==1212112212121212121221()()()[()][()()][()][()](,)[()()][()()()()][()()()()][()()][()()](,)(,)()(),||[X Y Z X Y X Y Z t X t Y t E Z t E X t Y t E X t E Y t m m R t t E Z t Z t E X t Y t X t Y t E X t X t Y t Y t E X t X t E Y t Y t R t t R t t R R t t E Z τττ===⋅=⋅==⋅=⋅=⋅=⋅=⋅=-2222222222222()][()()][()][()][()][()()][()][()]X Y X Y X Yt E X t Y t E X t E Y t D Z t D X t Y t E Z t E Z t m m ϕϕϕϕ=⋅=⋅=⋅<∞=⋅=-=⋅-⋅由平稳条件可知()()()Z t X t Y t =也是平稳的随机信号8、设随机信号00()()cos ()sin Z t X t t Y t t ωω=-,其中0ω为常数,()X t 、()Y t 为平稳信号。

试求:(1)()Z t 的自相关函数(,)Z R t t τ+;(2)若()()X Y R R ττ=,()0XY R τ=,求(,)Z R t t τ+。

解: (1)()X t ,()Y t 是平稳的随机信号000000000000(,)[()()][(()cos ()sin )(()cos ()()sin ())][()()cos cos ()()()cos sin ()()()sin cos ()()()sin ()sin ]c Z R t t E Z t Z t E X t t Y t t X t t Y t t E X t X t t t X t Y t t t X t Y t t t Y t Y t t t ττωωτωττωττωωττωωττωωττωτω+=⋅+=-⋅++-++=++-++-+++++=00000000os cos ()()cos sin ()()sin cos ()()sin ()sin ()X XY YX Y t t R t t R t t R t tR ωωττωωττωωττωτωτ+-+-+++(2)000000000()(),()0()()()()()()()()(,)0(,)cos cos ()()sin sin ()()()[cos cos ()sin sin ()]()cos X Y XY YX z X Y X X R R R X t Y t Y t Y t X t Y t Y t X t R t R t t t R t t R R t t t t R τττττττττττωωττωωτττωωτωωττωτ==∴⋅+=⋅+∴⋅+=⋅+∴+=∴+=+++=+++=11、已知随机信号()sin cos X t A t B t =+,式中,A 与B 为彼此独立的零均值随机变量。

相关文档
最新文档