14无穷小量与无穷大量

合集下载

无穷小量与无穷大量

无穷小量与无穷大量

§1.3 无穷小量与无穷大量一、无穷小量与无穷大量的概念在实际问题中,经常会遇到以零为极限的变量。

例单摆离开铅直位置并摆动, 由于受到空气阻力和机械摩擦力作用, 它的振幅随时间增加而逐渐减少并趋近于零; 又如在电容器放电时, 电压也是随时间的增加而逐渐减少趋近于零.还有一些变量在变化过程中, 绝对值无限增大. 下面我们给出这两种变量的定义: 【定义1】如果lim ()0x Xf x →=,则称函数()f x 是当x X →时的无穷小量,简称无穷小.若lim ()x Xf x →=∞,则称()f x 为当x X →时的无穷大量,简称无穷大.也就是说, 无穷小是以0为极限的函数,无穷大是绝对值无限增大的函数.例如, 当0x →时,2,sin x x , 当1x →时,2(1),ln x x -是无穷小,当x →∞时,1x 是无穷小. 当0x →时,1x是无穷大, 当x →∞时,2x 是无穷大.“x X →”表示自变量的某个变化过程,可以是“x →∞、x →-∞、x →+∞、0x x →、0x x -→、0x x +→”中的任何一种.在自变量的同一变化过程中的无穷小具有如下性质: 【性质1】有限个无穷小的代数和是无穷小. 【性质2】有界函数与无穷小的乘积是无穷小. 由以上两个性质立得以下两性质: 【性质3】常数与无穷小的乘积是无穷小. 【性质4】有限个无穷小的乘积是无穷小.【例1】求 01lim sin.x x x→ 【分析】当0x →时,1x →∞, 1sin x的取值在区间[1,1]-上波动, 无极限, 不能用积的极限法则计算, 应考虑无穷小的性质.【解】当0x →时,x 是无穷小量, 又因为1sin1x≤,所以1sin x 是有界变量;.根据性质2有01lim sin0.x x x→= 二、无穷大量与无穷小量的关系无穷小与无穷大有如下关系:【定理1】在自变量的同一变化过程中, 如果()f x 为无穷大, 则1()f x 为无穷小;反之, 如果()f x 为无穷小, 且()0f x ≠, 则1()f x 为无穷大. 简言之, 同一过程中的无穷大的倒数为无穷小, 非零无穷小的倒数是无穷大. 【例2】求 11lim1x x x →+-. 【解】当1x →时, 10x -→, 12x +→, 不能用商的极限法则. 考虑其倒数的极限, 有11lim01x x x →-=+, 即当1x →时, 11x x -+是无穷小, 由定理1, 11x x +-是无穷大, 因此 11lim1x x x →+=∞-. 三、无穷小量的比较我们通常用速度来描述及比较物体运动的快慢, 那么, 怎样描述及比较无穷小量收敛速度的快慢呢? 例如,当0x →时,3x 、2x 、2x 都是无穷小,而它们的比值的极限有各种不同情况:2200003333lim lim ,lim 0,lim 2223x x x x x x x x x x →→→→====∞这反映了在同一极限过程中,不同的无穷小趋于零的“快慢”程度不一样.从上述例子可看出,在0x →的过程中,30x →与20x →“快慢大致相同”, 20x →比30x →“快些”,而20x →比20x →“慢些”.下面我们通过无穷小之商的极限来说明两个无穷小之间的比较, 给出无穷小的阶的定义.【定义2】设,αβ是同一变化过程中的无穷小, 且0β≠,(1)若lim 0βα=,就说β是比α高阶的无穷小,记作)(αβo =; (2)若lim βα=∞,就说β是比α低阶的无穷小;(3)若lim 0c βα=≠,就说β是与α同阶无穷小;特别地, 若lim1βα=,就说β与α是等价无穷小,记作~αβ. 显然, 如果β是比α高阶的无穷小, 则α是比β低阶的无穷小, 这时β比α收敛到0的速度“快些”. 如果β是与α同阶无穷小, 那么它们收敛到0的“快慢大致相同”.例如,当0x →时,2x 是比3x 高阶的无穷小,因为20lim 03x x x→=,即2(3) (0)x o x x =→;此时203limx xx→=∞, 因此3x 是比2x 低阶的无穷小; 当0x →时,2x 与3x 是同阶无穷小,因为022lim33x x x →=;当0x →时,sin x 与x 是等价无穷小,即sin ~(0)x x x →, 因为0sin lim 1x xx→=, 这是第一重要极限, 我们将在下一节加以介绍.【例3】当0x →时,试比较下列无穷小的阶.(1) 22,x x x αβ=+=; (2) cos ,x x x αβ==.【解】(1)因为2002lim lim 2x x x xxαβ→→+==,所以当0x →时,22x x +与x 是同阶无穷小.(2)因为00cos limlim 1x x x x xαβ→→==,所以当0x →时,cos x x 与x 是等价无穷小. 四、具有极限的函数与无穷小量的关系关于等价无穷小,有下面的重要性质:【定理2】(无穷小与极限的关系) β与α是等价无穷小当且仅当()o βαα=+. 这个定理是说, 两个无穷小等价, 当且仅当它们的差是比其中一个更高阶的无穷小. 例如, 22~2(0)x x x x +→, 因为它们的差2x 是比2x 高阶的无穷小, 即2(2)(0)x o x x =→.【定理3】(等价无穷小代换原理) 设~'αα , ~'ββ,且'lim'βα存在,则 'limlim 'ββαα=. 这个定理告诉我们一种求极限的方法---等价无穷小代换法.求两个无穷小的商的极限时, 分子和分母都可以用等价的无穷小来代替.通常, 我们用形式较简单的无穷小代替较复杂的无穷小,以达到简化计算的目的. 进一步, 分子和分母中的无穷小乘积因子也可以用等价无穷小代替.下面先给出一些常用的等价无穷小:当0x →时, 有sin ~,x x tan ~,x x 211cos ~,2x x - arcsin ~,x x arctan ~,x x (1)1~ (),x x R ααα+-∈ 1~,x e x - ln(1)~.x x +【例4】求下列极限:(1) 0tan 2lim sin5x x x →; (2) 20sin 3lim sin 2x xx x →; (3) 30tan sin lim sin x x x x→-. 【解】(1) 当0x →时, tan 2~2x x , sin5~5x x , 所以00tan 222limlim sin555x x x x x x →→==.(2) 当0x →时, sin3~3x x , sin 2~2x x , 所以2200sin 3(3)9lim lim sin 222x x x x x x x x →→==⋅. (3) 当0x →时, tan ~x x , sin ~x x , 但3300tan sin limlim 0sin x x x x x xx x→→--≠=. 为什么? 因为只有当分子或分母是函数的乘积时, 对于乘积因子才可以用等价无穷小代换. 对于和或差中的函数, 一般不能用等价无穷小代换! 这是用等价无穷小代换法求极限的易错点, 需要特别注意!正确解法为3300tan sin tan (1cos )limlim sin sin x x x x x x x x→→--=, 当0x →时, tan ~x x , sin ~x x , 211cos ~,2x x - 因此 2123300()tan sin 1lim lim sin 2x x x x x x x x →→⋅-==.结合定理2, 我们介绍等价无穷小代换法中的一种特殊的技巧---舍去高阶无穷小. 根据定理2, 对于能用等价无穷小代换的分母或分子(或乘积因子), 若是两个不同阶的无穷小的和, 则可以把其中较高阶的无穷小舍去, 即以其中较低阶的无穷小作代换. 以下举例说明:【例5】求下列极限:(1) 30sin lim x x x x →+; (2) 2303sin lim tan 2x x xx x →+-;【解】(1) 当0x →时, sin ~x x , 又3()x o x =, 故3~x x x +, 所以300sin limlim 1x x x xx x x→→==+.(2) 当0x →时, 22sin ~,x x 而2(3)x o x =, 故2sin (3)x o x =, 由定理223sin ~3x x x +; 类似有3tan 2~2x x x -, 所以23003sin 33lim lim tan 222x x x x x x x x →→+==-. 习题1.31.下列函数中, 哪些是无穷小, 哪些是无穷大?(1) 23(0)y x x x =+→; (2) 1()2y x x =→∞-; (3) 1(2)2y x x =→-; (4) 2log (0)y x x +=→. 2. 函数1xy x =+在什么条件下是无穷小, 什么条件下是无穷大? 3. 当0x →时, 22x x +与323x x +相比较, 哪个是较高阶的无穷小?4. 当0x →时, 有0lim11xx e x→=+, 能否说函数x e 与1x +是0x →时的等价无穷小? 5. 求下列极限: (1) sin limx x x →∞; (2) 211lim(1)sin 1x x x →--;(3) 02arcsin lim3x x x →; (4) 01lim 2x x→;(5) 20ln(123)lim 4x x x x →+-; (6) 2320sin tan lim sin52x x x x x x →+++.§1.4 两个重要极限本节介绍两个重要极限:0sin lim1x x x →=及1lim(1)x x e x→∞+=.一、0sin lim1x xx→=在物理学中, 我们有一个近似计算的公式: 当x 的绝对值||x 很小时, sin x x ≈. 从无穷小收敛到0快慢的角度看, 这个近似式就是说当0x →时, sin x 和x 收敛到0的“速度相同”, 换句话说, sin x 与x 是等价无穷小, 即0sin lim1x xx→=, 或记为sin ~(0)x x x →.对这个结果, 我们列出当0x →时, 函数sin xx的数值表加以说明: 表1.5sin xx当0x →时的数值表由表1.5可知, 当0x →时,sin 1x x→, 即0sin lim 1x xx →=.【例1】证明当0x →时, 下列各对无穷小等价: (1) tan ,x x ; (2) 211cos ,2x x -; (3) arcsin ,x x . 【证】(1) 因为0000tan sin 11sin limlim lim lim 111cos cos cos x x x x x x xxx x x x →→→→=⋅==⋅=,所以tan ~(0)x x x →.(2) 因为222200002222sin sin sin1cos 222lim lim lim (lim )1111()2222x x x x x x xx x xx x →→→→-=====, 所以211cos ~(0)2x x x -→. (3) 令arcsin x t =, 则sin x t =, 当0x →时, 0t →, 我们有000arcsin 11limlim 1sin sin 1limx t t x t t x t t→→→====,所以arcsin ~(0)x x x →. 【例2】求下列极限. (1) 0sin lim(0)x kx k x→≠; (2) 0sin lim (,0)sin x mxm n nx →≠.【解】(1) 000sin sin sin limlim lim x x x kx kx kxk k k x kx kx→→→=⋅==.(2) 00sin sin lim lim sin sin x x mx mx mx nx nx nx→→==.说明: 例2还可以用等价无穷小代换法, 解法如下: 由sin ~(0)kx kx x →, 有00sin limlim x x kx kxk x x →→==, 类似有00sin limlim sin x x mx mx mnx nx n→→==.显然, 用等价无穷小代换法更加简洁, 读者可见这种方法的巧妙之处.二、1lim(1)x x e x→∞+=首先讨论以下数列极限 1lim 1nn n →∞⎫⎛+ ⎪⎝⎭.考察数列1{1}nn x n ⎫⎛=+ ⎪⎝⎭当n 无限增大时的变化趋势, 如表1.6:表1.6 11nn ⎫⎛+ ⎪⎝⎭当n →∞时的数值表由上表可见, 当n →∞时, 数列11n n ⎫⎛+ ⎪⎝⎭的值大约于2.718, 极限1lim 1nn n →∞⎫⎛+ ⎪⎝⎭存在. 可以证明当x →∞时(包括,+∞-∞), 函数1()(1)xf x x=+也和上述数列收敛到同一个极限. 我们把这个极限值用e 表示, 即1lim(1)x x e x→∞+=. 这就是我们高中学过的自然对数的底e , 它是个无理数, 其值 2.718281828459...e = 若令1u x=, 则当x →∞时, 0u →, 这样便得到该极限的另一种形式: 10lim(1)uu u e →+=.【例3】求下列极限. (1) 2lim(1)x x x →∞+; (2) 1lim(1)x x x →∞-; (3) 431lim(1)2x x x+→∞+.【解】(1) 22222222lim(1)lim[(1)][lim(1)]x x x x x x e x x x→∞→∞→∞+=+=+=.(2) 111111lim(1)lim[(1)][lim(1)]x x x x x x e x x x -----→∞→∞→∞-=-=-=.(3) 432232231111lim(1)lim(1)lim[(1)](1)2222x x x x x x x x x x+⋅+→∞→∞→∞+=+=++2232211lim[(1)]lim(1)122x x x e e x x→∞→∞=++=⋅=.一般地, 有lim(1)bx c ab x ae x+→∞+=. 【例4】求 1lim 1xx x x →∞+⎫⎛ ⎪-⎝⎭. 【解】法一: 2111lim(1)1lim lim 111lim(1)xxxx x x x x x x e x x e x x e x x→∞-→∞→∞→∞+⎫⎛+⎪ +⎫⎛====⎪ ⎪--⎝⎭⎪-⎝⎭.法二: 121222122lim lim 1lim 11111x x xx x x x e e x x x -⋅+→∞→∞→∞+⎫⎫⎫⎛⎛⎛=+=+=⋅=⎪ ⎪ ⎪---⎝⎝⎝⎭⎭⎭.作为第二重要极限的应用, 我们介绍连续复利模型. 所谓复利计息, 就是把第一期的本金与利息之和作为第二期的本金, 反复计算利息, 俗称“利滚利”. 设本金为0A , 年利率为r , 一年后的本利和为1000(1)A A A r A r =+=+,把1A 作为新的本金存入, 第二年末的本利和为221110(1)(1)A A Ar A r A r =+=+=+.以此类推, 得到t 年后的本利和0(1)t t A A r =+.若把一年均分为n 期结算, 则每期利率为r n , 例如取12n =, 则得月利率12r. 这样, 一年后的本利和为10(1)n r A A n =+, t 年后的本利和为0(1)ntt r A A n=+.不难证明, 上述t A 作为以n 为自变量的数列单调上升, 即随着n 的增加而增大. 这也就能解释, 为什么在同样的年利率与存(贷)款年限下, 利滚利的频度越大, 本利和越大. 这是高利贷牟取暴利的主要手段, 据说, 香港的高利贷每天结算一次利息, 澳门的高利贷则是每12小时结算一次.若采取瞬时结算法, 即随时生息随时结算, 也就是当n →∞时, 得t 年后的本利和为000lim (1)lim[(1)]nnt rt rt r t n n r r A A A A e n n→∞→∞=+=+=这就是我们的连续复利模型. 可能有读者会质疑: 再贪婪的高利贷也不可能每时每刻都在利滚利, 这样的模型有什么实际用途? 我们指出, 在自然界里有许多客观现象都符合上述变化规律, 例如树木高度的增长, 在开始阶段的速度正比于当前的高度, 相当于高度时时刻刻都在“利滚利”,即每时每刻增长的高度都会加到原来的高度上作为“本利和”来计算高度的“利息”, 其中0A 为树木的初始高度, r 为增长率. 细菌的繁殖, 人口的指数增长, 放射性元素的衰变等, 都符合类似的规律.习题1.41. 求下列极限. (1) 02sin 3lim x x x→; (2) 1lim sin x x x →∞; (3) sin sin lim x a x a x a→--; (4) 0sin lim sin x x x x x →-+; (5) 201cos5lim x x x →-; (6) 01lim sin x x e x →-. 2. 求下列极限. (1) 3lim(1)x x x →∞+ ; (2) 251lim(1)x x x+→∞-; (3) 3lim()5x x x x →∞+- ; (4) 123lim()21x x x x +→∞++; (5) 110lim(1)2x x x -→+ ; (6) 111lim x x x -→. 3. 已知2lim 8x x x a x a →∞+⎛⎫= ⎪-⎝⎭, 求a 的值.。

无穷大量与无穷小量

无穷大量与无穷小量
故当 x → +∞ 时 f ( x ) 和 g ( x ) 不能比较 不能比较.
例1 证明 : 当x → 0时,4 x tan 3 x为x的四阶无穷小 .
4 x tan 3 x tan x 3 解 lim ) = 4, = 4 lim( 4 x→0 x→0 x x
故当 x → 0时,4 x tan 3 x为x的四阶无穷小 .
性质2 有限个无穷小量之积仍为无穷小量. 性质 : 有限个无穷小量之积仍为无穷小量 注:无穷多个无穷小量之积不一定是无穷小量. 无穷多个无穷小量之积不一定是无穷小量.
性质3: 无穷小量与有界变量之积仍为无穷小量. 性质 : 无穷小量与有界变量之积仍为无穷小量 证 设函数 u( x )在0 < x − x 0 < δ 1内有界, 内有界,
2 2
, .

零的 快

定义: 定义:
设α , β 是同一过程中的两个无 穷小, 且β ≠ 0.
α (1) 如果 lim = 0, 就说α是比β 高阶的无穷小, β 记作 α = o( β );
(2) 如果 lim
记作α 记作α=O(β)或 β=O(α) β)或 α α 特别地: 如果 lim = 1, 称α与β是等价的无穷小; β 记作 α ~ β ; α 此外, 如果 lim k = A ( A ≠ 0, k > 0), 称α是β的k阶无穷小. β α (3) 如果 lim = ∞, 称α是比β低阶的无穷小. β
π 无界, y( xn ) = 2nπ + , 当n充分大时, y( xn ) > M . 无界, 2 1 ′ ( 2) 取 x n = ( n = 0,1,2,3,L) 2 nπ
当n充分大时 , x ′ 可以任意小 , n

高教社2024高等数学第五版教学课件-1.4 无穷小与无穷大

高教社2024高等数学第五版教学课件-1.4 无穷小与无穷大
是无穷小.
1
因为
→∞
=0
2.无穷大量
定义2
如果函数 = ()的绝对值在自变量的某一变化过
程中无限增大,则称函数 = ()为无穷大量,记作 () = ∞.
例如,因为 = ∞,所以 是 → ∞时的无穷大;因为
→+∞
1

→0
=
1
示()的绝对值无限变大且都是负值,而后者表示()的绝对值无限
变小,趋于零.
3.无穷小与无穷大的关系
定理1
1
在自变量的同一变化过程中,如果()是无穷大,则

()
无穷小;反之,如果()是无穷小,且() ≠
例如,当 →
1时, 2
1
0,则
是无穷大.
()
1
− 1是无穷小,而 2 是无穷大.
⑴称一个函数()是无穷小,必须指明自变量的变化趋势,如
3 + 1是当 → −1时的无穷小,但当 → 0时就不是无穷小.
⑵ 不要把一个绝对值很小的非零常数(如10−100 )说成是无穷小,
因为这个数的极限不为0.
⑶ 数“0”可以看成无穷小.(是唯一可作为无穷小的常数)
1

⑷ 无穷小的定义对数列也适用,例如数列{ },当 → ∞时,就
∞,所以 是

→ 0时的无穷大.
这里,虽然使用了极限的符号 () = ∞,但并不意味着
()有极限. 因为,根据极限的定义,极限值必须是常数. 然而∞不
是常数,它只表示()的绝对值无限变大的一种变化趋势.
注意:⑴ 称一个函数()是无穷大,必须指明自变量的变化趋势,
1
是当



无穷小与无穷大(14)

无穷小与无穷大(14)

图形的垂直渐近线.函Fra bibliotek与极限13
注意 无穷大是变量,不能与很大的数混淆;
不可认为 lim f ( x极) 限存在; x •
无穷大是一种特殊的无界变量, 但
是无界变量未必是无穷大.
概 有界
念 回
无界
M 0, x Df , | f ( x) | M . M 0, xM Df , | f ( x) | M .
则 lim[ f ( x) A] lim ( x) 0.
x x0
x x0
于是,对 0, 0,当| x x0 | 时,
| f ( x) A 0 || f ( x) A | .
lim f ( x) A.
x x0
® 定理说明:
(1) 若
lim
x x0
f ( x) A,
则 f ( x) A 当 x x0是无穷小量;

lim ex ,
x
1
lim
x0
x2
.
lim ln x ,
x0
函数与极限
10
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
传统机械按键结构层图:
按键
PCBA
开关键
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
恒有 f ( x) 1 . 于是 1 .
f (x)
这已说明当 x x0 ,
1 f (x)
是无穷小量.
函数与极限
15
反之,设 lim f ( x) 0,且 f ( x) 0. x x0
M 0, 0, 使当 0 x x0 ,

无穷小量与无穷大量

无穷小量与无穷大量

2012年5月19日星期六
1
目录
上页
下页
返回
一、无穷小量
定义1 定义 若 为
(或x → ∞)
时 , 函数
则称函数
(或x → ∞)
例如 :
时的无穷小 时的无穷小 . 函数 函数 当 当 时为无穷小; 时为无穷小 时为无穷小; 时为无穷小;
需要指出的是, 需要指出的是, (1)不要认为无穷小量是一个很小很小的数; )不要认为无穷小量是一个很小很小的数; 以外任何很小的常数 很小的常数都 (2)除 0 以外任何很小的常数都不是无穷小 ! ; ) (3)一个函数是无穷小量,必须指明自变量的变化趋势 )一个函数是无穷小量,
第一章
第四节 无穷小量与无穷大量
到目前为止, 我们已经阐明了数列与函数的极限. 下面我们再来研究一类比较简单但十分重要的函 数, 即所谓的无穷小量 无穷小量. 无穷小量
一、无穷小量(Infinitely Small Quantity) ) 二、无穷大量(Infinitely Large
Quantity) )
说明: 说明 据此定理 , 关于无穷大的问题都可转化为 无穷小来讨论. 无穷小来讨论
2012年5月19日星期六
7
目录
上页
下页
返回
内容小结
无穷小与无穷大是相对于过程而言的. 无穷小与无穷大是相对于过程而言的. 1、主要内容 两个定义;两个定理. 、主要内容: 两个定义;两个定理. 2、几点注意: 、几点注意 (1) 无穷小( 大)是变量 不能与很小(大)的数 是变量,不能与很小 不能与很小( ) 无穷小( 混淆,零是唯一的无穷小的数; 混淆,零是唯一的无穷小的数; (2)无穷多个无穷小的代数和(乘积)未必是无穷小 )无穷多个无穷小的代数和(乘积)未必是无穷小. (3) 无界变量未必是无穷大 ) 无界变量未必是无穷大.

无穷小量与无穷大量

无穷小量与无穷大量

x → 0 时, x ∼ sin x ∼ tan x ,1− cos x = 2(sin x )2 ∼ 2( x )2 = 1 x2 。
2
22
我们指出 lim arcsin x = 0 。事实上,对任意 0 < ε ≤ π ,只要 0 < x < sin ε ,就
x→0
2
有 0 < arcsin x < arcsin(sin ε ) = ε ,因此, lim arcsin x = 0 。由于 arcsin x 为奇函数, x→0+
x→
5
lim[ f (x)g(x)] = ∞ 。
x→
⑤ lim f (x) = ∞ , lim g(x) = a ( a ≠ 0 ,但可以 a = ∞ ),则 lim[ f (x)g(x)] = ∞ 。
x→
x→
x→
【备注 4.5】
(i) ①的结论要注意无穷大量的方向。
(ii)②的结论显然。我们可以形象地理解为给大海增添一滴水或减少一滴水,对
x − x0
< δ1 时,
f (x)
>
M K

存在 δ2 > 0 ,当 0 < x − x0 < δ2 时, g(x) > K 。取 δ = min(δ1, δ2 ) ,则当
0<
x − x0
< δ 时,
f (x)g(x)
>
M K
K
= M 。因此, lim [ f (x)g(x)] = ∞ 。 x → x0
x
x→0
β ,α (x) 与 β (x) 无法比较。
④ 无穷小量的等价关系是一种等价关系。也就是说:设

14无穷小与无穷大

14无穷小与无穷大
以上定义如何修改?
lim f (x)
x
M 0 , X 0 , x :x X f() x M
见 p.41, 题 5
定理 2 (无穷大与无穷小的关系) 无穷大与无穷小有倒数关系。
1 0 l i m f( x ) lim f ( x)
1 limf (x )0 lim f ( x) f ( x) 0
x x 0
0
不存在。但为了方便,我们说函数的极限是 无穷大。 注意: (1) 任何常数(无论其绝对值多么大)都不是无 穷大。 (2) 无穷大必须与自变量的变化过程联系起来, 不能孤立地说一个变量是无穷大。
x 1 例2 证明: lim x 1 x 1
分析 M 0 要 x 1 M
1.4 无穷小与无穷大
Infinitesimal and Infinity
一、无穷小 (Infinitesimal)
l i m f(x )A
f( x ) A ( 0 )
limf (x )A0 l i m [ f( x ) A ] 0 lim (x )0 ( x ) f( x ) A
无穷小的例子 下列函数何时为无穷小?
( x 1) ( x 1)
2
l im (x 1 ) 0
2 x 1
1 x
e
x
(x )
(x )
1 lim 0 x x
x
lim e 0
x
ye
x
下列函数何时为无穷小?
2
1 x
(x 0 )

1 x 0 x
|f(x) | > M 。
δ 用来表示当自变量 x 与 x0 的距离充分接近时

无穷小量和无穷大量

无穷小量和无穷大量

课堂练习
n2 1 n2 1 3.求 lim n 1 n sin 2 n
3 4.求 lim ( x 1 x sin 2 ) x x
2
e tan x esin x 5.求 lim 3 x 0 8 x3 2
6.求 lim n ( a
2 n n
时的无穷小量 .
x x0
lim f ( x) A
0 , 0 , 当 0 x x0 时,有 f ( x) A
f ( x) A
x x0
lim 0
对自变量的其它变化过程类似可证 .
定理4. 2 在自变量的同一变化过程中, (1) 有限个无穷小量的代数和仍是无穷小量; (2) 无穷小量与有界变量的乘积是无穷小量;
( f ( x) M ) ,
( lim f ( x) )
注意:
1. 无穷大不是很大的数, 它是描述函数的一种状态.
2. 函数为无穷大 , 必定无界 . 但反之不真 !
例如, 函数


所以
时,
不是无穷大 !
例 . 证明
证: 任给正数 M , 要使 即
1 只要取 , 则对满足 M
设 , 对同一自变量的变化过程为无穷小, 且 0
是 的高阶无穷小 是 的低阶无穷小 是 的同阶无穷小 是 的等价无穷小 是 的 k 阶无穷小
常用等价无穷小 :


~ ~ ~ ~



2. 等价无穷小替换定理
作业:p-69 习题1.4 1; 2; 3; 4 (1), (2) ,(3); B组-1
arcsin x ~ x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x
2
∴ lim arctanx 0 。 x x
1.4.2 无穷大量
1.无穷大的定义
定义 1 设 f (x) 在N (x ) 内有定义,若G 0 , 0 , 0 x x 时,恒有 f (x) G ,则称当x x 时, f (x) 为无穷大量,记为 lim f (x) ,或 f (x) (x x ) 。
(1) lim xsin 1 ; (2) lim arctanx 。
x0 x
x x
错!
错!
(1)误正解解::li∵m lximsinx10 l,im而x lsimin 1sin11, 0 ; x0x0 x x0 x0x x ∴ lim xsin 1 0 。 x0 x
(2) 解: ∵ lim 1 0 ,而arctan x ,
例如, lim ex , lim ex 0 ;
x
x
lim sin x 0 , lim 1 。
x0
x0 sin x
例2.求下列极限
(1) lim x2 3x
x2 x2
误解: limLeabharlann x23xlim (
x2
x2
3x)
10

x2 x2 lim (x2) 0
x2
正解:∵
lim
x2
x2 x2 3x
lim (x2)
xx
若将上述定义中的不等式 f (x) G 改为f (x) G
或 f (x) G ,则称当x x 时,f (x) 为正无穷大量 或负无穷大量,记作
lim f (x) 或 f (x) (x x ) ;
xx
lim f (x) 或 f (x) (x x ) 。
xx
对于自变量的其他几种变化趋势(x x ,x x , x , x , x ,n ), 同样可以定义无 穷大量。
注意:无限个无穷小量的和与积不一定是无穷小量。
n个
例如: lim (1 1 1 ) 1。
n n n
n
性质 2 若X 是无穷小量,Y 是有界变量,则XY 是无穷小量。
即有界变量与无穷小量的积是无穷小量。
3.函数的极限与无穷小量的关系
定理 1 lim X A X A ,其中lim0 ,A 为常数。
必要性 若 lim f (x) A ,则 lim [ f (x) A]0 ,
xx
xx
令 f (x) A ,
则 lim 0 ,且 f (x) A 。
xx
充分性 若 f (x) A , lim 0 ,则
xx
lim f (x) lim (A) A lim A 。
xx
xx
xx
例 1.求下列极限
lim f (x) , lim g(x) ,它们都是无穷大量,
x
x
但 lim [ f (x) g(x)] lim cosx 不存在。
x
x
3.无穷小量与无穷大量的关系
性质 6 若lim X ,则lim 1 0 ; X
反之,若lim X 0 ( X 0) ,则lim 1 。 X
例注如意,当 x 时,tan x 是无穷大,记作 lim tan x ;
2 ①说一个函数
f
(x)
是无穷大,必须指x明自2变量 x
的当变x化趋势 时 。,如e1x
是正无穷大,记作 lim ex ; 是当x 0 时的无穷x大, 但当

x
0
x 时,ln
x
是负无穷大,记作
lim
ln x 。
x ,1 就不是无穷大,而是无穷小x了0。 x
②无穷大是指绝对值可以无限变大的变量,绝不
能与任何一个绝对值很大的常数如101000 ,
10001000 等混为一谈。
2.无穷大量的性质
性质 1 若lim X L 0 ,lim Y ,则lim X Y ;
性质 2 若lim X L ,limY ,则lim (X Y ) ;
性质 3 若lim X ,limY ,则lim (X Y ) ; 性质 4 若 X Y ,lim X ,则limY ; 性质 5 若lim X ,则lim (X ) 。
问:两个无穷大量的和是否是无穷大量?
答:不一定。
例如: f (x) 2x 1 , g(x) 2x ,
2x
lim f (x) , lim g(x) ,它们都是无穷大量,
x
x
但 lim [ f (x) g(x)] lim 1 0 是无穷小量。
x
x 2x
又如: f (x) 2x cosx , g(x) 2x ,
x2
lim (x2 3x)
0 10
0

x2
∴ lim x2 3x 。 x2 x2
(2)
xlim1(13x3
1 1 x
)
.
误解: lim ( 3 1 ) lim 3 lim 1 0 。 x1 1 x3 1 x x11 x3 x11 x
正解:
xlim1(13x3
1 1 x
)
lim 2 x x1 1
x2 x3
xlim1(1(1x)x(1)(2xxx)2) xlim112xxx2 1.
例2.求下列极限
(1) lim 3x2 4x2 x 7x3 5x3
( 型)
解:
注意 ① 无穷小量是以0为极限的变量;
② 无穷小量不一定是零,零作为函数来讲是 无穷小量;
③ 讲一个函数是无穷小量,必须指出自变量 的变化趋向;
④ 任何非零常数,不论其绝对值如何小,都 不是无穷小量。因为非零常数的极限是其本身, 并不是零。
2.无穷小量的性质
性质 1:若 X , Y 都是无穷小量,则X Y , X Y 也是无穷小量; 有限个无穷小量的代数和是无穷小量; 有限个无穷小量的乘积是无穷小量。
无穷大量、正无穷大量和负无穷大量列表对比如下:
lim
xx
f (x) G
0, 0, 0
x x
, 恒有
f (x)
G.
lim
xx
f (x) G 0, 0, 0
x x
, 恒有f (x) G.
lim
xx
f (x) G 0, 0, 0
x x
, 恒有f (x) G.
§1.4 无穷小量和无穷大量
1.4.1 无穷小量
1.无穷小量的定义 定义 1 若lim X 0 ,则称X 为该极限过程中的无穷小量,
简称无穷小。 例如:当x0 时,sin x 和tanx 是无穷小量;
当 x x 时,xx 是无穷小量;
当x 时, ax (a 1) 是无穷小量;
当 x 时, 1 是无穷小量。 x2
相关文档
最新文档