第二章光辐射和光源

合集下载

打印 第二章 光度与辐射度基础

打印 第二章 光度与辐射度基础

MP
E E
P A P EP A
2 L A cos M A E A
34
I
——红外技术及应用
注:
1. 光度量的定义和辐射度量的定义只一字之差, “辐射”——“光”。 2. 下角标有e、λ、p、ν,辐射量在与其它量同用时 标e。 3. 从表达式可直接说出定义及物理意义 4. 从表达式可直接说出单位 5. 出射度和照度的表达式相同、单位也相同,注意 一个是发射,一个是接收。
面积为大球面积减去小球面积
2R 2 (cos 1 cos 2 ) 2 (cos 1 cos 2 ) 2 R
10
——红外技术及应用
3、用球坐标表示立体角
11
——红外技术及应用
3、用球坐标表示立体角 • 微小面积
dS r 2 sin d d
• 则dS对应的立体角为 • 计算某一个立体角时,在一定范围内积分即可。
26
——红外技术及应用
光视效率:
K V Km
(物理意义: 以光视效能最大处的波长为基准来衡量其 波长处引起的视觉。) 在相同的辐射能量下,看到的亮度不同。 具体某个波长上的光视效率称为光谱光视效率: K ( ) V ( ) Km
27
——红外技术及应用
★几点说明:
• • • • 1.对于相同的辐射能量,光视效率不同。 2.“光视效率的最大值在λ=555nm处”是实验证明。 3.绝大部分人眼符合此规律,略有小差异(尤其在可见 光波段两端)。 4.通过这个结论,可知辐射量与光度量的换算关系
16
——红外技术及应用
2.辐射出射度:M
• 数学描述:若辐射源的微小面积△A向半球空间 的辐射功率为△Φ,则△Φ与△A之比的极限值定 义为辐射出射度. 单位:w/㎡ M lim

第2章第2部分辐射温度及辐射源

第2章第2部分辐射温度及辐射源

辐射体的温度 P39
温度和波长是描述黑体热辐射能量的重要参
数,黑体的=1
对于非黑体的辐射体,其发射的热辐射能量 或辐射特性也可以用温度和波长来描述
非黑体分为灰体和选择体,二者发射的辐射
能都比黑体的小,即辐射发射率<1,而且: - 灰体的 =小于1的常数,与波长无关 - 选择体的随波长变化
辐射发射率
折反镜
红外平行光管
差分黑体源与红外平行光管
折反镜
黑体源
双黑体源与红外平行光管
2.4.2 自然辐射源
在自然界中,太阳、月球、地面、行星、恒 星、云层和大气都是热辐射的自然辐射源。
太阳、地球、行星是宇宙空间的点源,可用 于宇宙飞船的定向。
太阳和地球的热辐射可用来确定人造地球卫 星表面的受热温度。
• 在黑体源的实际应用中,往往需要通过红外平行光管将 黑体目标(即靶标形状的黑体辐射)投射到无穷远。
• 红外平行光管一般采用离轴抛物面反射镜。
• 由于靶标与环境温度一致,所以环境温度的波动将影响
到测试结果,只适用于实验室等环境温度波动不大的环
境。
黑体源及靶 标轮
黑体源及 靶标轮
离轴 抛物面
离轴 抛物面
➢ 所谓“和黑体有相近色”并不严格,相近可表示很接 近,也可以是相差甚远但却能找到一个与某温度黑体 的色最近似的相关色温值,因此上图中直线族的长度 是有限度的,约与±15麦克亚当(MacAdam)阈值单位 (表示人眼恰能分辨色差异阈值的单位)相当;
➢ “色差异多大就不能用相关色温表示”也不完全准确, 等相关色温线提供了衡量待测色和黑体色之间近似差 异程度的可能,任意发射体的色坐标离普朗克轨迹越 远,用黑体色来描述发射体色的可能性就越小。

第二章 光电检测中的常用光源

第二章 光电检测中的常用光源

2.3. 1 脉冲灯 这种灯的特点是在极短的时间内发出很强的光辐射,其结构和工作电路原理如图 2− 8 所示。直流电源 电压 U0 经充电电阻 R,使储能电容 C 充电到工作电压 Uc。Uc 一般低于脉冲灯的自击穿电压 Us,而高于灯 的着火电压 U Z。脉冲灯的灯管外绕有触发丝。工作时在触发丝上施加高的脉冲电压,使灯管内产生电离火 花线,火花线大大减小了灯的内阻,使灯“着火” 。电容 C 中储存的大量能量可在极短的时间内通过脉冲 灯,产生极强的闪光。除激光器外,脉冲灯是最亮的光源。
2.2. 3 白炽灯 白炽灯是光电测量中最常用的光源之一。白炽灯发射的是连续光谱,在可见光谱段中部和黑体辐射曲 线相差约 0.5%,而在整个光谱段内和黑体辐射曲线平均相差 2%。此外,它的发光特性稳定,寿命长,使 用和量值复现方便,因而也广泛用作各种辐射度量和光度量的标准光源。 白炽灯有真空钨丝白炽灯、充气钨丝白炽灯和卤钨灯等,光辐射由钨丝通电加热发出。真空钨丝白炽 灯的工作温度为 2 300~ 2 800 K,发光效率约 10 lm/ w。钨的熔点约为 3680 K,进一步增加白炽灯的工作 温度会导致钨的蒸发率急剧上升,从而使寿命骤减。 充气钨丝白炽灯,由于在灯泡中充人和钨不发生化学反应的氩、氮等惰性气体,使由灯丝蒸发出来的 钨原子在和惰性气体原子碰撞时,部分钨原子能返回灯丝。这样可以有效地抑制钨的蒸发,从而使白炽灯 的工作温度可以提高到 2 700~3 000 K,相应的发光效率提 高到 17 lm/ W。 如果在灯泡内充人卤钨循环剂(如氯化碘、溴化硼等), 在一定温度下可以形成卤钨循环, 即蒸发的钨和玻璃壳附近 的卤素合成卤钨化合物, 而该卤钨化合物扩散到温度较高的 灯丝周围时,又分解成卤素和钨。这样,钨就重新沉积在灯 丝上, 而卤素被扩散到温度较低的灯泡壁区域再继续与钨化 合。这一过程称为钨的再生循环,如图 2− 7 所示。卤钨循 环进一步提高了灯的寿命。灯的色温可达 3 200 K,发光效 率也相应提高到 30 lm/W。

第二章_热辐射定律及标准光源

第二章_热辐射定律及标准光源
光束发散角极小 0.1mrad 单色性好 相干长度长 功率密度高 如何实现? 首先要有能实现能级粒子束反转的工作物
质 还必须建立谐振腔 造成连锁反应 雪崩放大
常用的激光器
气体激光器:He-Ne激光器、氩离子激光器、 二氧化碳激光器等
固体激光器:红宝石激光器、玻璃激光器、 YAG激光器等
待测辐射源在温度T时所呈现的颜色与某 一温度Tc时的黑体颜色相同(色品相同)则 称Tc为该辐射体光源的颜色与色温的色温 度。简称色温Tc(单位:K)
2.相关色温:
在均匀色品图中黑体轨迹上与待测辐射体 色品最接近的色温度称之为相关色温用T 表示(单位:K)
各光源的色温
u-v色度图中黑体轨迹和等色温线
第二代同步辐射光源是基于同步辐射专用
储存环的专用机,如合肥国家同步辐射实 验室(HLS);第三代同步辐射光源是基
于性能更高的同步辐射专用储存环的专用 机,如上海光源(SSRF)。
上海光源的先进性
性能价格比高:储存环的能量3.5GeV,在中能区光源中能量最高,性能优化 在用途最广的X射线能区。利用近年来插入件技术的新进展,不仅可在光子能 量为1~5keV产生最高耀度的同步辐射光,而且在5~20keV光谱区间可产生性 能趋近6~8GeV高能量光源所产生的高耀度硬X光;
全波段:波长范围宽,从远红外直到硬X射线,且连续可调。利用不同波长的 单色光,可揭示用其他光源无法得知的科学秘密;
高强度:总功率为600千瓦,是X光机的上万倍。光通量大于1015光子/ (S.10-3bw)。高强度和高通量为缩短实验数据获取时间、进行条件难以 控制的实验以及医学、工业应用提供了可能;
4.光谱辐射本领: Me(,T )
面元s在单位面M积e (,单,T位) 波 d长d范e(d围s) 内辐射量:

《光纤传输技术》第二章 光源与光探测器

《光纤传输技术》第二章 光源与光探测器

高速调制时激光器的输出谱线
动态单纵模激光器
为降低光纤色散,希望光源的谱宽尽可 能窄,要求激光器工作在单纵模状态。 在高速调制下仍然可以工作在单纵模的 半导体激光器称为动态单纵模激光器。 实现动态单纵模的方法很多,应用最为 广泛的是分布反馈式激光器。
分布反馈式激光器
结构与F-P激光器不同,不靠解理面形成 的谐振腔工作,而是依赖沿纵向分布的光栅 工作。
P-I特性
存在阈值电流Ith:当注入电流小于Ith时, 自 发 辐 射 发 光 ; 当 注 入 电 流 超 过 Ith 时 , 受激辐射发光;输出功率与注入电流基 本保持线性关系。
对温度很敏感:随着温度的升高,阈值
电流增大,发光功率降低。需进行温度
控制。有
I th
(T
)
I0
exp
T ( T0
)
LD组件内部结构
半导体PN结光源
发光二极管的工作原理:PN结在正向偏 置时,N区的电子及P区的空穴会克服内建 电场的阻挡作用,穿过结区(扩散运动超过 漂移运动),从P区到N区产生净电流。电子 与空穴在扩散运动中产生复合作用,释放 出光能,实现发光。这种发光是一种自发 辐射,所以发出的是荧光。由于这种发光 是正向偏置把电子注入到结区的,又称为 电致发光。
半导体激光器的光谱
半导体激光器的发光谱线较为复杂,会 随着工作条件的变化而发生变化。
当注入电流低于阈值电流时,激光器发 出的是荧光,光谱较宽;当电流增大到 阈值电流时,光谱突然变窄,强度增强 ,出现激光;当注入电流进一步增大, 主模的增益增加,而边模的增益减小, 振荡模式减少,最后会出现单纵模。
温度升高时激光器的发射谱的峰值波长 向长波长方向移动
调制特性——LD模拟调制

初中物理知识点精细笔记-第二章_光现象(期中考试复习)

初中物理知识点精细笔记-第二章_光现象(期中考试复习)

第二章 光现象第一节 光的传播1. 光现象:包括光的直线传播、光的反射和光的折射。

2. 光源: 的物体叫做光源。

●光源按形成原因分,可以分为 和 。

例如,自然光源有太阳、萤火虫等,人造光源有如蜡烛、霓虹灯、白炽灯等。

● 月亮 光源,月亮本身不发光,只是反射太阳的光。

3. 光的直线传播:光在 是沿直线传播的,光的传播 。

● 光沿直线传播的现象:小孔成像(其光路图见图2-1)、井底之蛙、影子、日食、月食、一叶障目。

● 光沿直线传播的应用: 、 、 、 等。

●在光沿直线传播的现象中,光路是 。

● 小孔成像的特点:在光屏上形成 。

像的形状与 的形状无关。

4. 光线:用一条带有箭头的直线表示光的径迹和方向的直线。

光线是由一小束光抽象而建立的理想物理模型, 是研究物理的常用方法之一。

5. 显示光路的方法:① 让光线通过烟雾。

② 让光线通过加牛奶的水。

③ 让光线沿着某一物体的表面射出。

6. 光速: ● 真空中的光速通常取c =3×108m/s =3×105km/s 。

● 真空中的光速是宇宙间最快的速度。

● 空气中的光速略小于真空中的光速。

● 光在水中的速度约为真空中光速的3/4。

●光在玻璃中的速度约为真空中光速的2/3。

● 介质的密度越大,光速越小。

(了解)7. 光年:光年等于光在1年内传播的距离。

第二节 光的反射1. 反射:光从一种介质射向另一种介质表面时,一部分光被反射回原来介质的现象叫光的反射。

*我们能够看见不发光的物体,是因为物体反射的光进入了我们的眼睛。

2. 探究实验:探究光的反射规律【设计实验】把一个平面镜放在水平桌面上,再把一张纸板ENF 竖直地立在平面镜上,纸板上的直线ON 垂直于镜面,如图2-2所示。

一束光贴着纸板沿着某一个角度射到O 点,经平面镜的反射,沿另一个方向射出,在纸板上用笔描出入射光EO 和反射光OF 的径迹。

改变光束的入射方向,重做一次。

光电技术

光电技术

2.1 黑体辐射
能够在任何温度下全部吸收所有波长辐射的物体叫绝对黑体(以下简称黑体)。它是具
有以下典型特征的物体:对任何波长的入射辐射,它的光谱吸收比 αb (λ,T )=1 ,透射比
tb (λ,T )=0 ,反射比 rb (λ,T )=0 。在热平衡条件下,有关系式:
Meb (λ,T ) = α(λ,T ) ⋅ Eeb (λ,T )
自然辐射源较多。光电探测系统涉及到的自然辐射源,可以分为目标辐射(源)和背景 辐射(源)两类。探测目标或识别对象的辐射称为目标辐射,探测目标或识别对象以外的辐
λmT = hc / 5k = 2897.79(µm ⋅ K)
(2-7)
这就是维恩位移定律。
和 利用维恩位移定律,可以很方便地估算出在给定温度下黑体或近似黑体的物体在什么波
段范围内辐射出度最多。例如,太阳表面的温度约为 5900 K,其λm≈0.49µm,即在可见光波 段 0.49µm 附近太阳辐射的能量最多,这和人眼光谱光视效率最大值所对应的波长 0.55µm 很 近。在光电探测系统中,利用维恩位移定律计算出辐射源(目标)某一温度下的峰值波长, 以确定红外探测器工作的峰值波长,实现“光谱匹配”。
2.1.1 发射率和基尔霍夫定律
在一定温度下,黑体是所有辐射体中吸收辐射最多的物体,根据能量守恒定律,它必然
也是发射辐射最多的物体。定义辐射体的光谱辐射出度 Me (λ,T ) 与黑体在同温度下的光谱辐 射出度 M eb (λ,T ) 的比值为物体的光谱发射率,用 ε (λ,T ) 表示,即
ε (λ,T ) = Me(λ,T ) Meb (λ,T )
著名公式:
Meb (λ,T )
=
c1 λ 5 (ec2 / λT

第二章 光辐射在介质波导中的传播

第二章 光辐射在介质波导中的传播
同理可得 合成磁场:
H1x r, t 2 A sin 1
i t z
1
cos hx e
i t z
H1z r, t i
0
2 A cos 1
称 抗 式 中 ,阻 为 波
1 1
1
sin hx e
arctan
sin 1 n2 n1
2
cos 1
// arctan
sin 1 n2 n1
2
2
n2
n1 cos 1
2
tg / / tgTM
tg tgTE
(n1 / n2 ) 2 sin 2 i (n2 / n1 ) 2 cos i
其中: n 1 > n 2,且θ1 > θ c时, 产生全反射,
n2 c arcsin n1
当 cos 1 i sin 1 n1
2
2
n2 cos 1 i sin 1 n1
2
2
2
exp(i 2 )
即:
k1 sin 1 k1 sin 1 k 2 sin 2
k1 k1 / v1 , k 2 / v2
θ1=θ'1 n 1 sin θ1= n 2 sin θ 2
反射波振幅:菲涅尔(Fresnel)公式:
n1 cos 1 n2 cos 2 r , n1 cos 1 n2 cos 2 n2 cos 1 n1 cos 2 r/ / n1 cos 2 n2 cos 1
光纤: 阶跃折射率光纤: 原理:1854年,英国的Tyndall 石英光纤应用专利: 1927年,英国的Baird与美国的 Hansell申请。 玻璃光纤注光:1930年,德国人 细束光纤设计:1958年,美国的Kapany 第二吸收鞘引入:1958年,美国光学公司,为减少光纤 包层杂散光; 光纤激光器:1961年,美国的Snitzer研制。 渐变折射率光纤 专利:1963年,日本的西呎等人申请 产品:1968年,日本玻璃板公司研制。 1970年,美国Corning公司研制出20dB/km的低损耗光纤, 开始光纤通信产业化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辐射度物理量
对应的光度量
物理量名称 符号 定义或定义式
单位
物理量名 称
符号
定义或定义式
单位
辐射能
Qe
辐射通量 e
辐射出射度 Me
辐射强度
Ie
辐射亮度 Le
辐射照度 Ee
e=dQe/dt Me=dedS Ie=de/d Le=dIe/(dScos) Ee=de/dA
J W W/m2 W/sr W/m2·sr W/m2
(2.2-8)
单位:瓦特·米-2(W/m2)。 ⑺ 单色辐射度量
对于单色光辐射,同样可以采用上述物理量表示,只不过均定 义为单位波长间隔内对应的辐射度量,并且对所有辐射量X来说单 色辐射度量Xe,λ与辐射度量Xe之间均满足
(2.2-9)
2020/8/13
9
2.2.2 光度量
光度单位体系是一套反映视觉亮暗特性的光辐射计量单位,在光频区 域光度学的物理量可以用与辐度学的基本物理量对应的来表示,其定义完 全一一对应,其关系如表2.2-1所示。
2020/8/13
4
2.2.1 辐射量
⑴ 辐射能 辐射能即电磁波场中电场能量和磁场能量的总和;单个光 子的能量取决于波长或频率。辐射能一般用符号Qe表示,其单位 是焦耳(J)。
⑵ 辐射通量 辐射通量e又称为辐射功率,定义为单位时间内流过的
辐射能量,即
(2.2-1)
单位:瓦特(W)或焦耳·秒-1(J·s-1)。
2020/8/13
1
§2.1 电磁波与光辐射
2.1.1 电磁波的性质与电 磁波谱 麦克斯维证明光是电磁波的 一种表现形式。
电磁波包括的范围很广,从 无线电波到光波,从X射线 到 射线,都属于电磁波的 范畴,波长覆盖很宽。光辐 射仅占电波谱的一极小波段 。
2020/8/13
2
2.1.2 光辐射
按辐射波长及人眼的生理视觉效应,光辐射被分成三个 波段:紫外辐射、可见光和红外辐射。一般在可见到紫外波段 波长用nm作单位、在红外波段波长用m作单位。
2020/8/13
5
⑶ 辐射出射度 简称辐出度,从辐射源表面单位面积发射出的辐射通 量,其中单位波长间隔内的辐射出射度称光谱辐出度。辐出度的 定义式 (2.2-2)
单位:瓦特·米-2(W/m2)。 ⑷ 辐射强度 辐射强度定义为:点辐射源在给定方向上发射的在单位
立体角内的辐射通量,用Ie表示,即
(2.2-3)
单位:瓦特·球面度-1(W·sr-1)。
2020/8/13
6
⑸ 辐射亮度 辐射亮度定义为面辐射源在某一给定方向上的辐射通量。 如图2.2-1所示。 (2.2-4)
单位:瓦特/球面度·米2(W/sr·m2)。式中是给定方向和辐射源面
元法线间的夹角。
图2.2-1 辐射亮度示意图
2020/8/13
7
一般,辐射体的辐射强度与空间方向有关。当辐射体的辐射强度 在空间方向上的分布满足式(2-5)时,称之为余弦辐射体或朗伯体
第二章 光辐射与光源
任何一种光电系统或光电子器件的使用和评 价都离不开特定的光辐射源[产生光辐射的物体, 即光源]与光辐射探测器,所以光辐射理论和光电 转换的原理是光电探测技术的基础。光源的描述 参量有谱特征、波长范围、辐射通量、方向性、 时间及空间稳定性,等等。本章将简要介绍光辐 射的基本概念和原理、在光电探测技术应用中比 较典型的光辐射源,以及光源调制技术;光辐射 探测的原理及相应器件的内容安排在第四章。
(2.2-5) 式中Ie(2.2-4),易得余弦辐射体的辐射亮度为
(2.2-6)
可见余弦辐射体的辐射亮度是均匀的,与方向角无关。余弦辐射
体的辐射出射度为 (2.2-7)
2020/8/13
8
⑹ 辐射照度 辐照度定义为投射到接收器面元上的辐射通量与该面元 面积dA之比。即
光量 光通量 光出射度 发光强度 (光)亮度 (光)照度
Qv
Qv=v dt
v
v=Iv d
Mv
Mv=dv/dS
Iv
基本量
Lv Lv=dIv/(dScos)
Ev
Ev=dv/dA
lm·s lm lm/m2 cd cd/m2 lx
2020/8/13
10
光视效能 光视效能是人眼对某一波长下单位辐射通量的产生的光 通量,即光视效能K定义为同一波长下测得的光通量与辐射通量 的比之,即
12
§2.3 黑体辐射
任何0 K温度以上的物体,都会由于其中的分子、 原子受到热激发而产生并向外部发射各种波长的电 磁波,这种现象称为热辐射。热辐射具有连续的辐 射谱,波长自远红外区到紫外区,并且辐射能按波 长的分布主要决定于物体的温度。下面简要介绍热 辐射的一些基本定律。
2020/8/13
13
2.3.1 单色吸收比和单色反射比。
单位长度内,波动重复的次数(一个波动拥有同样相位的次 数),称为波数。在光谱学中,波数即波长的倒数,量纲是[长 度]-1,单位惯常采用cm-1。
可见光 可见光是电磁波谱中人眼可以感知的部分。 390~770 nm范围的范围内;
紫外辐射 紫外辐射比紫光的波长更短,人眼不可感知,波长 范围是10~400 nm。
当辐射从外界入射到“不透明”(不限于可见光不透明) 的物体表面上时,一部分能量被吸收,另一部分能量从表面 反射(如果物体是透明的,则还有一部分能量透射)。需要 强调的是任何物体向周围发射电磁波的同时,也吸收周围物 体发射的辐射能。
红外辐射 是介于可见红光与无线电微波之间的光学辐射,波 长范围为0.77~1000 m。
2020/8/13
3
§2.2 光辐射的度量
为了对光辐射进行定量描述,需要引入计量光 辐射的物理量。而对于光辐射的探测和计量,存 在着辐射度学单位和光度学单位两套不同的体系 (物理量符号标脚标“e”表示辐射度物理量,脚 标“v”表示光度物理量)。后者是考虑到人眼的 主观因素后的相应计量学科,其适用性局限于可 见光波段;前者则是对电磁辐射能量的客观计量, 适用于整个电磁波段。
(2.2-10)
单位:流明/瓦特(lm/W)。 通过对标准光度观察者的实验测定,白天在辐射波长555 nm
(夜晚则为507 nm)处,K有最大值,其数值为Km=683 lm/W。单色光视效率是K用Km归一化的结果,其定义为
(2.2-11)
2020/8/13
11
图2.2-2 光谱光视效率曲线
2020/8/13
相关文档
最新文档