等边三角形经典习题.doc
等边三角形的判定和性质习题及答案

等边三角形的判定和性质(参考用时:30分钟)1.下列三角形,①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③一腰上的中线也是这条腰上的高的等腰三角形.其中能判定是等边三角形的个数是( A )(A)3个(B)2个(C)1个(D)0个2.如图,在 Rt△ABC 中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC.若AN=1,则BC的长为( B )(A)4 (B)6 (C)4(D)8第2题图3.如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.第3题图4.如图,已知∠AOB=30°,点P在边OA上,点M,N在边OB上,且PM=PN=10,MN=12,则OP= 16 .第4题图5.如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是120,150 度.第5题图6. 如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.证明:在等边△ABC中,∠BAC=∠ACB=60°,AB=AC,所以∠BAE=∠ACD=120°.因为AE=CD,所以△ABE≌△CAD.所以AD=BE.7. 已知:如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,FE=FD.求证:AD=CE.证明: 过点D作DM∥BE交AC于点M,则有∠MDF=∠E.在△MDF与△CEF中,因为∠MFD=∠CFE,FD=FE,∠MDF=∠E,所以△MDF≌△CEF,所以DM=CE.因为△ABC为等边三角形,所以∠A=∠B=60°.因为DM∥BE,所以∠ADM=∠B=60°,∠ADM=∠A=60°,所以△ADM为等边三角形,所以DM=AD,所以AD=CE.8. 如图所示,已知a∥b,c∥b,试用反证法证明:a∥c.证明:假设a与c不平行,即a与c相交,不妨设交点为P,由于a∥b,c ∥b,于是可得经过P点有两条直线a,c与直线b平行,这与“经过直线外一点有且只有一条直线与这条直线平行”相矛盾,故假设不成立.所以a∥c.9. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=3,AD是△ABC的角平分线,DE⊥AB于点E,连接CE,求CE的长.解:因为AD是△ABC的角平分线,所以∠EAD=∠CAD.因为∠ACB=90°,DE⊥AB,所以∠ACD=∠AED.在△ACD与△AED中,∠ACD=∠AED=90°,∠EAD=∠CAD,AD=AD,所以△ACD≌△AED,所以AE=AC.因为∠B=30°,所以∠BAC=60°,所以△ACE是等边三角形,所以CE=AC=3.10. (核心素养—逻辑推理)(2018荆门)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.(1)证明:在Rt△ABC中,∠BCA=90°,∠BAC=30°,所以BC=AB,E为AB边的中点,所以BE=AB,所以BC=EA,∠ABC=60°.因为△DEB是等边三角形,所以DB=DE,∠DEB=∠DBE=60°.所以∠DEA=∠DBC=120°,所以△ADE≌△CDB.(2)解:作点B关于AC的对称点B′,连接EB′交AC于点H,则点H即为所求.连接CE,则△CBE是等边三角形.所以CE=CB=CB′.所以∠BEB′=90°.所以BH+EH的最小值为EB′==3.。
人教版八年级数学上册13.3.2.1《 等边三角形的性质》同步训练习题

人教版八年级数学上册13.3.2.1 《等边三角形的性质》同步训练习题(学生版)一.选择题1.(2013•吉安模拟)如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是()A.100°B.80°C.60°D.40°2.(2014秋•贵港期末)如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且ED=EC,则BD的长为()A.3 B.4 C.5 D.63.(2014秋•岑溪市期中)在等边△ABC中,已知BC边上的中线AD=16,则∠BAC的平分线长等于()A.4 B.8 C.16 D.324.(2015•港南区二模)如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC 于E,若AB=1,则DB的长为()A.B.C.D.5.(2015春•张家港市期末)如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30 B.20 C.25 D.156.(2014•路南区一模)已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A.60°B.45°C.40°D.30°7.(2013秋•沈丘县校级期末)如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个8.(2014春•赛罕区校级月考)如图.阴影部分是边长为1的小正三角形,A,B,C,D,E,F,G,H分别是8个正三角形,则A和B的边长分别是()A.2,4 B.2.5,5 C.3,6 D.4,8二.填空题9.(2015•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.10.(2015•滕州市校级模拟)如图,△ABC为等边三角形,点E在BA的延长线上,点D 在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为.11.(2015春•扬中市期末)三个等边三角形的位置如图所示,若∠3=40°,则∠1+∠2=°.12.(2015秋•湖南校级月考)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为5,则OE+OF的值为.13.(2014•武侯区校级模拟)如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2010次,点P依次落在点P1,P2,P3,…,P2010的位置,则点P2010的坐标为.三.解答题14.(2014秋•上蔡县校级期末)如图,在等边三角形ABC中,BD⊥AC于D,延长BC到E,使CE=CD,AB=6cm.(1)求BE的长;(2)判断△BDE的形状,并说明理由.15.(2014秋•维扬区校级期中)如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.(1)求∠E的度数.(2)求证:M是BE的中点.16.(2013秋•宜春期末)△ABC为等边三角形,点M是线段BC上一点,点N是线段CA 上一点,且BM=CN,BN与AM相交于Q点,(1)求证:△ABM≌△BCN;(2)求证:∠AQN=60°.17.(2014秋•北京校级期中)如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.人教版八年级数学上册13.3.2.1 《等边三角形的性质》同步训练习题(教师版)一.选择题1.(2013•吉安模拟)如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是()A.100°B.80°C.60°D.40°选A点评:此题考查了等边三角形的性质,用到的知识点是三角形内角和定理,此题较简单,是一道基础题.2.(2014秋•贵港期末)如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且ED=EC,则BD的长为()A.3 B.4 C.5 D.6考点:等边三角形的性质;等腰三角形的性质;含30度角的直角三角形.分析:过点E作EF⊥BC于F,先根据含30°的直角三角形的性质求出BF,再根据等腰三角形的三线合一性质求出DF,即可得出BD.解答:解:过点E作EF⊥BC于F;如图所示:则∠BFE=90°,∵△ABC是等边三角形,∠B=60°,∴∠FEB=90°﹣60°=30°,∵BE=AB+AE=8+4=12,∴BF=BE=6,∴CF=BC﹣BF=2,∵ED=EC,EF⊥BC,∴DF=CF=2,∴BD=BF﹣DF=4;故选:B.点评:本题考查了等边三角形的性质、等腰三角形的性质以及含30°的直角三角形的性质;培养学生综合运用定理进行推理和计算的能力.3.(2014秋•岑溪市期中)在等边△ABC中,已知BC边上的中线AD=16,则∠BAC的平分线长等于()A.4 B.8 C.16 D.32考点:等边三角形的性质.分析:根据等边三角形三线合一可知AD就是∠BAC的平分线,从而求得∠BAC的平分线长.解答:解:∵在等边△ABC中,AD是BC边上的中线,∴AD是∠BAC的平分线,∴∠BAC的平分线长为16.故选C.点评:本题主要考查了等边三角形三线合一的性质.4.(2015•港南区二模)如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC 于E,若AB=1,则DB的长为()A.B.C.D.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.分析:根据等边三角形性质,直角三角形性质求△BDE≌△AFD,得BE=AD,再求得BD 的长.解答:解:∵∠DEB=90°∴∠BDE=90°﹣60°=30°∴∠ADF=180﹣30°﹣90°=90°同理∠EFC=90°又∵∠A=∠B=∠C,DE=DF=EF∴△BED≌△ADF≌△CFE∴AD=BE设BE=x,则BD=2x,∴由勾股定理得BE=,∴BD=.故选C.点评:本题利用了:1、等边三角形的性质,2、勾股定理,3、全等三角形的判定和性质.5.(2015春•张家港市期末)如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30 B.20 C.25 D.15考点:等边三角形的性质.分析:由AD是等边三角形ABC的中线,根据三线合一与等边三角形的性质,即可求得∠ADC与∠DAC的度数,又由AE=AD,根据等边对等角的性质,即可求得∠ADE的度数,继而求得∠EDC的度数.解答:解:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故选D.点评:此题考查了等边三角形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.6.(2014•路南区一模)已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A.60°B.45°C.40°D.30°考点:等边三角形的性质;平行公理及推论;平行线的性质.专题:计算题.分析:过C作CE∥直线m,由l∥m,推出l∥m∥CE,根据平行线的性质得到∠ACE=∠α,∠BCE=∠CBF=20°,即∠α+∠CBF=∠ACB=60°,即可求出答案.解答:解:过C作CE∥直线m∵l∥m,∴l∥m∥CE,∴∠ACE=∠α,∠BCE=∠CBF=20°,∵等边△ABC,∴∠ACB=60°,∴∠α+∠CBF=∠ACB=60°,∴∠α=40°.故选C.点评:本题主要考查对平行线的性质,等边三角形的性质,平行公理及推论等知识点的理解和掌握,此题是一个比较典型的题目,题型较好.7.(2013秋•沈丘县校级期末)如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个考点:等边三角形的性质;等腰三角形的判定与性质.分析:因为△ABC是等边三角形,又BD是AC上的中线,所以有,AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.解答:解:∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,又CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°所以这四项都是正确的.故选:D.点评:此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.8.(2014春•赛罕区校级月考)如图.阴影部分是边长为1的小正三角形,A,B,C,D,E,F,G,H分别是8个正三角形,则A和B的边长分别是()A.2,4 B.2.5,5 C.3,6 D.4,8考点:等边三角形的性质.专题:数形结合.分析:设A的边长为x,根据等边三角形的性质和已知图形得到H和G的边长都为x,B 的边长为2x,由于阴影部分是边长为1的小正三角形,易得C的边长为2x﹣1,F和E的边长为x+1,所以D的边长可表示为2x﹣1或x+2,则2x﹣1=x+2,然后解方程求出x即可得到A和B的边长.解答:解:如图,设A的边长为x,则H和G的边长都为x,B的边长为2x,∵阴影部分是边长为1的小正三角形,∴C的边长为2x﹣1,F和E的边长为x+1,∴D的边长为2x﹣1或x+2,∴2x﹣1=x+2,解得x=3,∴A和B的边长分别3和6.故选C.点评:本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了观察图形的能力.二.填空题9.(2015•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.10.(2015•滕州市校级模拟)如图,△ABC为等边三角形,点E在BA的延长线上,点D 在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为2.考点:等边三角形的性质;等腰三角形的性质.分析:延长BC至F点,使得CF=BD,证得△EBD≌△EFC后即可证得∠B=∠F,然后证得AC∥EF,利用平行线分线段成比例定理证得CF=EA后即可求得BD的长.解答:解:延长BC至F点,使得CF=BD,∵ED=EC,∴∠EDC=∠ECD,∴∠EDB=∠ECF,在△EBD和△EFC中,,∴△EBD≌△EFC(SAS),∴∠B=∠F∵△ABC是等边三角形,∴∠B=∠ACB,∴∠ACB=∠F,∴AC∥EF,∴=,∵BA=BC,∴AE=CF=2,∴BD=AE=CF=2,故答案为:2.点评:本题考查了等腰三角形及等边三角形的性质,解题的关键是正确的作出辅助线.11.(2015春•扬中市期末)三个等边三角形的位置如图所示,若∠3=40°,则∠1+∠2=1400.考点:等边三角形的性质.分析:先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.解答:解:∵图中是三个等边三角形,∠3=40°,∴∠ABC=180°﹣60°﹣40°=80°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴80°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=140°.故答案为:140点评:本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.12.(2015秋•湖南校级月考)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为5,则OE+OF的值为5.考点:等边三角形的性质.分析:利用等边三角形的特殊角求出OE与OF的和,可得出其与三角形的高相等,进而可得出结论.解答:解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为5,∴OE+OF=5,故答案为5.点评:本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;三条边都相等.13.(2014•武侯区校级模拟)如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2010次,点P依次落在点P1,P2,P3,…,P2010的位置,则点P2010的坐标为.考点:等边三角形的性质;勾股定理.专题:规律型.分析:做题首先要知道经过连续翻转2010次后P点的位置,然后求出此点坐标.解答:解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,P2005、P2006的横坐标是2005,P2007的横坐标是2006.5,P2008、P2009的横坐标就是2008.∴P2010的纵坐标为,横坐标=2008+1.5=2009.5.∴P2007(2007,).点P2010处于顶点上,∵三角形边长为1,故P2010(2009,).故答案为(2009,).点评:本题主要考查等边三角形的性质和坐标等知识点.三.解答题14.(2014秋•上蔡县校级期末)如图,在等边三角形ABC中,BD⊥AC于D,延长BC到E,使CE=CD,AB=6cm.(1)求BE的长;(2)判断△BDE的形状,并说明理由.考点:等边三角形的性质;等腰三角形的性质.专题:计算题.分析:(1)根据等边三角形的性质得BC=AB=6cm,再根据“三线合一”得AD=CD=AC=3cm,而CD=CE=3cm,所以BE=BC+CE=9cm;(2)根据等边三角形的性质得∠ABC=∠ACB=60°,再根据“三线合一”得∠CBD=∠ABC=30°,而CD=CE,则∠CDE=∠E,接着利用三角形外角性质得∠CDE+∠E=∠ACB=60°,所以∠E=30°,于是得到∠CBD=∠E,然后根据等腰三角形的判定即可得到△BDE为等腰三角形.解答:解:(1)∵△ABC为等边三角形,∴BC=AB=6cm,∵BD⊥AC,∴AD=CD=AC=3cm,∵CD=CE=3cm,∴BE=BC+CE=6cm+3cm=9cm;(2)△BDE为等腰三角形.理由如下:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵BD⊥AC,∴∠CBD=∠ABC=30°,∵CD=CE,∴∠CDE=∠E,而∠CDE+∠E=∠ACB=60°,∴∠E=30°,∴∠CBD=∠E,∴△BDE为等腰三角形.点评:本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.也考查了等腰三角形的判定与性质.15.(2014秋•维扬区校级期中)如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.(1)求∠E的度数.(2)求证:M是BE的中点.考点:等边三角形的性质;含30度角的直角三角形.分析:(1)由等边△ABC的性质可得:∠ACB=∠ABC=60°,然后根据等边对等角可得:∠E=∠CDE,最后根据外角的性质可求∠E的度数;(2)连接BD,由等边三角形的三线合一的性质可得:∠DBC=∠ABC=×60°=30°,结合(1)的结论可得:∠DBC=∠E,然后根据等角对等边,可得:DB=DE,最后根据等腰三角形的三线合一的性质可得:M是BE的中点.解答:(1)解:∵三角形ABC是等边△ABC,∴∠ACB=∠ABC=60°,又∵CE=CD,∴∠E=∠CDE,又∵∠ACB=∠E+∠CDE,∴∠E=∠ACB=30°;(2)证明:连接BD,∵等边△ABC中,D是AC的中点,∴∠DBC=∠ABC=×60°=30°由(1)知∠E=30°∴∠DBC=∠E=30°∴DB=DE又∵DM⊥BC∴M是BE的中点.点评:此题考查了等边三角形的有关性质,重点考查了等边三角形的三线合一的性质.16.(2013秋•宜春期末)△ABC为等边三角形,点M是线段BC上一点,点N是线段CA 上一点,且BM=CN,BN与AM相交于Q点,(1)求证:△ABM≌△BCN;(2)求证:∠AQN=60°.考点:等边三角形的性质;全等三角形的判定与性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据已知条件,利用SAS定理即可证明△ABM≌△BCN.(2)根据△ABM≌△BCN(已证),可得∠AMB=∠BNC,然后利用△BQM∽△BCN即可得出结论.解答:证明;(1)∵△ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)∵△ABM≌△BCN(已证).∴∠AMB=∠BNC,∵∠MBQ=∠NBC(公共角),∴△BQM∽△BCN,∴∠BQM=∠C=60°∵∠BQM和∠AQN是对顶角,∴∠AQN=60°.点评:此题主要考查学生对等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识点的理解和掌握,此题涉及到的知识点较多,有点难度,属于中档题.17.(2014秋•北京校级期中)如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.考点:等边三角形的性质;全等三角形的判定与性质.专题:探究型.分析:(1)EC=BD,理由为:由△ABE和△ACD都为等边三角形,利用等边三角形的性质得到∠EAB=∠DAC=60°,AE=AB,AD=AC,利用等式的性质得到∠EAC=∠BAD,利用SAS可得出△AEC≌△ABD,利用全等三角形的对应边相等即可得证;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:由三角形ADC为等边三角形,得到∠ADC=∠ACD=60°,再由(1)得到△AEC≌△ABD,利用全等三角形的对应角相等得到∠ACE=∠ADB,由∠EOD为三角形OCD的外角,利用三角形的外角性质及等量代换可得出∠EOD=∠ADC+∠ACD,可求出∠EOD的度数,利用邻补角定义求出∠DOC的度数,即为BD与CE的夹角.(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.点评:此题考查了等边三角形的性质,全等三角形的判定与性质,三角形的外角性质,利用了等量代换及转化的思想,熟练掌握判定与性质是解本题的关键.。
专题05等边三角形的性质和判定综合题(原卷版)

专题05 等边三角形的性质和判定(综合题)知识互联网易错点拨知识点1:等边三角形等边三角形定义:叫等边三角形.细节剖析:由定义可知,等边三角形是一种特殊的.也就是说等腰三角形包括.知识点2:等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于.知识点3:等边三角形的判定等边三角形的判定:(1)的三角形是等边三角形;(2)的三角形是等边三角形;(3)是等边三角形.易错题专训一.选择题1.(2021秋•准格尔旗期末)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC =∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个2.(2021•商河县二模)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.163.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.4.(2021秋•新昌县期末)如图,M,A,N是直线l上的三点,AM=3,AN=5,P是直线l外一点,且∠P AN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形一等边三角形一直角三角形一等腰三角形B.直角三角形一等腰三角形一直角三角形一等边三角形C.等腰三角形一直角三角形一等腰三角形一直角三角形D.等腰三角形一直角三角形一等边三角形一直角三角形5.(2021秋•平阳县校级月考)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6,DE=2,则BC的长为()A.2B.4C.6D.86.(2020秋•九龙坡区期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC 于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④二.填空题7.(2022春•保定期末)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为.8.(2020秋•玉州区期末)如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=6cm,DE=4cm,则这个六边形的周长等于cm.9.(2020秋•海淀区校级期中)如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.若BE∥AC,则∠C=.10.(2021秋•海曙区期末)一艘轮船从海平面上A地出发,向北偏东50°的方向行驶60海里到达B地,再由B地向南偏东10°的方向行驶60海里到达C地,则A,C两地相距海里.11.(2019秋•潮南区期中)两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C,如图所示.已知AC=6,则这两块直角三角板顶点A、A′之间的距离等于.12.(2017秋•巢湖市期末)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形ADCP;其中正确的有(填上所有正确结论的序号)13.(2021秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有.(注:把你认为正确的答案序号都写上)三.解答题14.(2021秋•涡阳县期末)“中国海监50”在南海海域B处巡逻,观测到灯塔A在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C处,此时测得灯塔A在其北偏东20°的方向上,求货轮到达C处时与灯塔A的距离AC.15.(2020秋•曾都区期末)学习几何时,要善于对课本例习题中的典型图形进行变式研究.在△ABC中,AB=BC,∠ABC=60°,BD是AC边上的高,点E为直线BC上点,且CE=AD.(1)如图1,当点E在边BC上时,求证:△CDE为等边三角形;(2)如图2,当点E在BC的延长线上时,求证:△BDE为等腰三角形.16.(2021春•城关区校级期中)如图1,已知等边△ABC中,D、E分别是AB、AC上的点,连接DE.(1)若DE∥BC,求证:△ADE是等边三角形;(2)如图2,若D、E分别为AB、AC中点,连接CD、BE,CD与BE相交于点F,请直接写出图中所有等腰三角形.(△ADE与△ABC除外)17.(2021秋•孝南区期末)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF =60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.18.(2022春•通川区期末)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED =EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).19.(2021秋•台州期中)如图,△ABC是边长为12cm的等边三角形,动点M、N同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)若点M的运动速度是2cm/s,点N的运动速度是4cm/s,当N到达点C时,M、N两点都停止运动,设运动时间为t(s),当t=2时,判断△BMN的形状,并说明理由;(2)当它们的速度都是2cm/s,且当点M到达点B时,M、N两点停止运动,设点M的运动时间为t(s),则当t为何值时,△MBN是直角三角形?20.(2021秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s 的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?。
等边三角形的性质复习题精选附答案

等边三角形的性质习题精选一.选择题(共14小题)1.(2005•郴州)附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.2345A30 B 40 . 50 D 602.(2009•江干区模拟)如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A B C D3.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF 取得最小值时,则∠ECF的度数为()A15° B 22.5° C 30° D 45°4.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A Ll=L2 B L1>L2.L2>L1 D 无法确定5.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE 的长是()A B C 20+10 D 20﹣106.如图中左边图形,连接等边三角形的各边中点将得到一个小等边三角形,右边的图形就是这样得到的,请问右边图形中的阴影部分面积大还是空白部分面积大()7910A阴影部分面积大B 空白部分面积大C 一样大D 不确定7.如图,等边三角形ABC内有一点P,过点P向三边作垂线,垂足分别为S、Q、R,且PQ=6,PR=8,PS=10,则△ABC的面积等于()A190 B 192 C 194 D 1968.在边长为2cm的等边三角形内,随意取一些点,如果要保证所取的点中一定存在距离小于1cm的两点,那么取的点至少应有()A4个 B 5个 C 6个 D 7个9.如图,已知等边△ABC外有一点P,P落在∠ABC内,设点P到BC、CA、AB三边的距离分别为h1、h2、h3,且满足h2+h3﹣h1=6,那么等边△ABC的面积为()A12 B 9 C 8 D 410.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A B C D11.如图,AC=BC,AC⊥BC于C,AB=AD=BD,CD=CE=DE.若AB=,则BE=()121314A 1B 2C 3D 412.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A36 B 32 C 30 D 2813.如图,由四个全等的正三角形砌成一个大的正三角形,如果小正三角形的面积为25,则大正三角形的周长是()A120° B 135° C 150° D 165°二.填空题(共9小题)15.(2007•沈阳)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为_________ .1617192016.(2012•南开区一模)如图,将边长为3+的等边△ABC折叠,折痕为DE,点B与点F重合,EF和DF分别交AC于点M、N,DF⊥AB,垂足为D,AD=1,则重叠部分的面积为_________ .17.如右图,以等边△OAB的高OC为边向逆时针方向作等边△OCD,CD交OB于点E,再以OE为边向逆时针方向作等边△OEF,EF交OD于点G,再以OG为边向逆时针方向作等边△OGH,…,按此方法操作,最终得到△OMN,此时ON在OA上.若AB=1,则ON= _________ .18.已知正△ABC的面积是1,P是△ABC内一点,并且△PAB、△PBC、△PCA的面积相等,那么满足条件的点P共有_________ 个;△PAB的面积是_________ .19.如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1、3、5,则这个等边三角形的边长为_________ .20.如图所示,直线AB、CD相交于点O.若OM=ON=MN,那么∠APQ+∠CQP=_________ .21.在正△ABC中(如图),D为AC上一点,E为AB上一点,BD,CE相交于P,若四边形ADPE与△BPC的面积相等,那么∠BPE=_________ .2222.如图,平行于BC的线段MN把等边△ABC分成一个三角形和一个四边形,已知△AMN和四边形MBCN的周长相等,则BC与MN的长度之比是_________ .23.正三角形ABC的边长BC=2,以该等边三角形的高AD为正方形的边长,则正方形的面积为_________ .三.解答题(共7小题)24.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?_________ (填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r= _________ .若不存在,请说明理由.25.小明在找等边三角形ABC一边的三等分点时,他是这样做的,先做∠ABC、∠ACB的角平分线并且相交于点O,然后做线段BO、CO的垂直平分线,分别交BC于E、F,他说:“E、F就是BC边的三等分点.”你同意他的说法吗?请说明你的理由.26.在等边△ABC中,D是AC的中点,E是BC延长线上一点,且CE=CD,(1)请说明DB=DE的理由.(2)若等边△ABC的边长为4cm,求△BDE的面积.27.如图,设O为△ABC内一点,且∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:PA+PB+PC>OA+OB+OC.28.如图,等边△ABC,D、E分别在BC、AC上,且CD=AE,AD、BE相交于点P,试求∠BPD的度数.29.阅读下列材料,解答相应问题:已知△ABC是等边三角形,AD是高,设AD=h.点P(不与点A、B、C重合)到AB的距离PE=h1,到AC的距离PF=h2,到BC的距离PH=h3.如图1,当点P与点D重合时,我们容易发现:h1=h,h2=h,因此得到:h1+h2=h.小明同学大胆猜想提出问题:如图2,若点P在BC边上,但不与点D重合,结论h1+h2=h还成立吗?通过证明,他得到了肯定的答案.证明如下:证明:如图3,连接AP.∴S△ABC=S△ABP+S△APC.设等边三角形的边长AB=BC=CA=a.∵AD⊥BC,PE⊥AB,PF⊥AC,∴BC•AD=AB•PE+AC•PF∴a•h=a•h1+a•h2.∴h1+h2=h.(1)进一步猜想:当点P在BC的延长线上,上述结论还成立吗?若成立,请你证明;若不成立,请猜想h1,h2与h之间的数量关系,并证明.(借助答题卡上的图4)(2)我们容易知道,当点P在CB的延长线及直线AB,AC上时,情况与前述类似,这里不再说明.继续猜想,你会进一步提出怎样的问题呢?请在答题卡上借助图5画出示意图,写出你提出的问题,并直接写出结论,不必证明.30.如图△ABC是边长为2的等边三角形,D是AB边的中点,P是BC边上的动点,Q是AC边上的动点,当P、Q的位置在何处时,才能使△DPQ的周长最小?并求出这个最值.等边三角形的性质习题精选参考答案与试题解析一.选择题(共14小题)1.(2005•郴州)附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30 B.40 C.50 D.60考点:等边三角形的性质.专题:压轴题;规律型.分析:因为每个三角形都是等边的,从其中一个三角形入手,比右下角的以AB为边的三角形,设它的边长为x,则等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2.所以六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,而最大的三角形的边长AF等于AB的2倍,所以可以求出x,则可求得周长.解答:解:设AB=x,∴等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2,∴六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,∵AF=2AB,即x+6=2x,∴x=6cm,∴周长为7 x+18=60cm.故选D点评:结合等边三角形的性质,解一元一次方程,关键是要找出其中的等量关系.2.(2009•江干区模拟)如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A.B.C.D.考点:等边三角形的性质;对顶角、邻补角;三角形内角和定理;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质推出∠B=∠C,根据三角形的内角和定理求出∠2﹣∠1=∠α﹣∠γ,根据等边三角形的性质和邻补角定义求出∠2﹣∠1=∠β﹣∠α,代入上式即可求出答案.解答:解:∵AB=AC,∴∠B=∠C,∴∠2+∠γ=∠1+∠α,∴∠2﹣∠1=∠α﹣∠γ,∵等边△DEF,∴∠5=∠3=60°,∴∠2+∠α=∠1+∠β=120°,∴∠2﹣∠1=∠β﹣∠α,∴∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,∴α=,故选B.点评:本题主要考查对三角形的内角和定理,等边三角形的性质,等腰三角形的性质,邻补角的定义等知识点的3.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF 取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°考点:轴对称-最短路线问题;等边三角形的性质.分析:过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.解答:解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.点评:本题考查了轴对称﹣最短路线问题,等边三角形的性质,等腰三角形的性质,平行线分线段成比例定理等知识点的应用.4.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC 的周长为L2,则L1与L2的大小关系是()A.L=L2B.L1>L2C.L2>L1D.无法确定l考点:等边三角形的性质;三角形三边关系.专题:计算题.分析:等边三角形各内角为60°,故∠B=∠C=60°,即可求得BP=2BD,CP=2CE,∴BD+CE=BC,即可求得L=L2.1解答:解:∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE=BC,∴AD+AE=AB+AC﹣BC=BC,∴BD+CE+BC=BC,L1=BC+DE,L2=BC+DE,点评:本题考查了直角三角形中特殊角的正弦函数值,考查了等边三角形各边相等的性质,本题中求证L1=BC+DE,L2=BC+DE是解题的关键.5.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是()A.B.C.20+10 D.20﹣10考点:等边三角形的性质.专题:计算题.分析:根据ED⊥BC可得∠CED=30°,即可求得EC与ED的关系,设DE=x,则AE=x,根据DE即可计算CE,根据AE+CE=5即可计算x的值,根据CE=AC﹣AE即可求CE的值.解答:解:∵ED⊥BC,∠C=60°,∴∠CED=30°,设DE=x,则AE=x,且CE=x,又∵AE+CE=5,∴x+x=5,解得x=10﹣15,∴CE=5﹣(10﹣15)=20﹣10.故选D.点评:本题考查了特殊角的正弦值,等边三角形各内角为60°的性质,本题中根据AE、CE求x的值是解题的关键.6.如图中左边图形,连接等边三角形的各边中点将得到一个小等边三角形,右边的图形就是这样得到的,请问右边图形中的阴影部分面积大还是空白部分面积大()A.阴影部分面积大B.空白部分面积大C.一样大D.不确定考点:等边三角形的性质.分析:根据等边三角形的性质及三角形的中位线定理解答即可.解答:解:如图,∵D、E、F分别为三角形三边的中点,△ABC为等边三角形,∴AD=BD=BF=CF=AE=EC=DE=EF=DF,∴△ADE≌△DBF≌△EFC≌△FED,∴阴影部分面积与空白部分面积一样大.故选C.点评:此题比较简单,解答此题的关键是熟知三角形的中位线定理及等边三角形的性质.7.如图,等边三角形ABC内有一点P,过点P向三边作垂线,垂足分别为S、Q、R,且PQ=6,PR=8,PS=10,则△ABC 的面积等于()A.190 B.192 C.194 D.196考点:等边三角形的性质.专题:计算题.解答:解:连接AP、BP、CP,过点A作AD⊥BC于D,等边三角形面积S=BC•(PQ+PR+PS)=BC•AD故PQ+PR+PS=AD,∴AD=6+8+10=24,∵∠ABC=60°∴AB=24×=16,∴△ABC的面积S=BC•AD=×24×16=192,故选 B.点评:本题考查了等边三角形面积的计算,考查了等边三角形高线与边的关系,本题中求证PQ+PR+PS=AD是解题的关键.8.在边长为2cm的等边三角形内,随意取一些点,如果要保证所取的点中一定存在距离小于1cm的两点,那么取的点至少应有()A.4个B.5个C.6个D.7个考点:等边三角形的性质.专题:计算题;开放型.分析:把三角形每条边分成n份,相应点之间连线,则可把三角形分成分成n2个边长为的小三角形,则比三角形的个数多1可以保证至少有两个点落在同一小三角形内,即可解题.解答:解:把三角形每条边分成n份,相应点之间连线,可以把三角形分成n2个边长为的小三角形,n2+1个点可以保证至少有两个点落在同一个小三角形内,所以那两个点的距离是不超过的,∴取得点至少为n2+1,当根据题意n=2,∴n2+1=5.故选B.点评:本题考查了等边三角形各边长相等的性质,学生探究发现规律的能力,本题中构建n2个三角形是解题的关键.9.如图,已知等边△ABC外有一点P,P落在∠ABC内,设点P到BC、CA、AB三边的距离分别为h1、h2、h3,且满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.12 B.9C.8D.4考点:等边三角形的性质.专题:计算题.分析:根据等边三角形的面积即可计算(h+h2﹣h1)是等边三角形ABC的高,根据等边三角形的高即可求得BC的值,3即可求得△ABC的面积,即可解题.解答:解:设等边△ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PBC=S△ABC,从而ah3+ah2﹣ah1=a2,即a(h3+h2﹣h1)=a2,∵(h3+h2﹣h1)=6,∴a=4,点评:本题考查了等边三角形面积的计算,等边三角形高线长与边长的关系,本题中根据等边三角形的高计算等边三角形的面积是解题的关键.10.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.考点:等边三角形的性质.专题:计算题.分析:设BM=x,CN=y,用x、y分别表示m、n的值,化简m、n的表达式,可得四边形AMPN,△ABC的周长的比值,可以解题.解答:解:设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D.点评:本题考查了等边三角形各内角为60°的性质,等边三角形周长的计算,本题中用x、y表示m、n的值是解题的关键.11.如图,AC=BC,AC⊥BC于C,AB=AD=BD,CD=CE=DE.若AB=,则BE=()A.1B.2C.3D.4考点:等边三角形的性质.专题:计算题.分析:根据等边三角形边长相等的性质,可以证明△ACD≌△BED,故AC=BE,已知AB,根据勾股定理即可求AC 的长,即可解题.解答:解:∵∠ADC+∠CDB=60°,∠CDB+∠BDE=60°,∴∠ADC=∠BDE,在△ACD和△BED中,,∴△ACD≌△BED,∴AC=BE,∵AC=BC,AB=,∴AC=BC=1,∴BE=1.故选A.点评:本题考查了勾股定理在直角三角形中的运用,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△ACD≌△BED是解题的关键.12.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36 B.32 C.30 D.28考点:等边三角形的性质.专题:证明题.分析:根据等边三角形的“三线合一”的性质来找直角三角形.解答:解:①∵DE,EF,FD为等边△ABC三条中位线,∴AB=AC=BC,∴EFAB,EDAC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选C.点评:本题考查了等边三角形的性质.解题时,充分利用了三角形中位线定理、等边三角形的“三线合一”的性质.13.如图,由四个全等的正三角形砌成一个大的正三角形,如果小正三角形的面积为25,则大正三角形的周长是()A.100 B.60 C.100 D.60考点:等边三角形的性质.专题:计算题.分析:根据三角形面积公式和中位线定理求解.解答:解:设小三角形的边长为a.∴小三角形的面积为a2sin60°=25,解得a=10∵正三角形的三条中位线构成一个小的正三角形∴大三角形的边长为小三角形边长的2倍,为2a∴大的正三角形的周长为2a×3=6a=6×10=60.故选D.点评:考查了学生对三角形面积公式和中位线定理的掌握和理解.14.在凸四边形ABCD中,DA=DB=DC=BC,则这个四边形中最大角的度数是()A.120°B.135°C.150°D.165°考点:等腰三角形的性质;三角形内角和定理;等边三角形的性质.专题:计算题.分析:设∠CDA=x,∠ABC=y,根据DA=DB=DC=BC,求得x=2y,由四边形的内角和是360°得∠BAC=360°﹣∠DBA﹣∠DCA﹣∠BD C,解得即可得出答案.解答:解;设∠CDA=x,∠ABC=y,∵DA=DB=DC=BC,∴∠BDC=∠DBC=∠DCB=60°,∠DBA=∠DAB,∠DAC=∠DCA,∵∠DBA+∠BAD+∠BDA=180°,∴60°﹣x+2(60°+y)=180°,即x=2y,∠BAC=360°﹣∠DBA﹣∠DCA﹣∠BDC,=360°﹣(60°+y)﹣﹣60°,=150°.点评:此题主要考查学生对等腰三角形的性质和等边三角形性质的理解和掌握,此题的关键是有已知条件得到∠CAD 和∠ABC之间的关系,进一步求出结果.二.填空题(共9小题)15.(2007•沈阳)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为 6 .考点:等边三角形的性质.专题:压轴题.分析:要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△C ND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.解答:解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.点评:此题主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.16.(2012•南开区一模)如图,将边长为3+的等边△ABC折叠,折痕为DE,点B与点F重合,EF和DF分别交AC 于点M、N,DF⊥AB,垂足为D,AD=1,则重叠部分的面积为.考点:翻折变换(折叠问题);等边三角形的性质.专题:压轴题.分析:观察图形可知重叠部分的面积即是△DEF的面积减去△MNF的面积.由折叠的性质,可求得∠BDE=∠EDF=45°,由四边形的内角和为360°,求得∠BEF为150°,得到∠CEM为30°,则可证得∠EMC 为90°;作△BDE的高,根据45°与60°的三角函数,借助于方程即可求得其高的值,则各三角形的面积可解.解答:解:过点E作EG⊥AB于G,∴∠EGB=90°,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=3+,根据题意得:∠BDE=∠FDE,∠F=∠B=60°,∵DF⊥AB,∴∠FDB=90°,∴∠BEF=360°﹣∠B﹣∠F﹣∠BDF=150°,∠BDE=∠FDE=∠FDB=45°∴∠MEC=180°﹣∠BEF=30°,∴∠EMC=180°﹣∠C﹣∠EMC=90°,在Rt△ADN中,AD=1,tan∠A=tan60°==,∴DN=,∴S△ADN=AD•DN=×1×=,在△BDE中,DB=AB﹣AD=3+﹣1=2+,∵∠EDG=45°,∴∠DEG=45°,∴DG=EG,∵tan∠B=tan60°==,设EG=x,则DG=x,BG=x,∴x+x=2+,解得:x=,∴EG=DG=,∴S△BDE=BD•EG=×(2+)×=,∵∠B=∠C=∠F=60°,∴BE==+1,∴EC=BC﹣BE=2,∵∠BED=∠FED=180°﹣∠B﹣∠BDE=75°,∴∠FNM=∠MEC=30°,∴∠FMN=∠EMC=90°,∴EM=EC•cos30°=,∴FM=EF﹣EM=BE﹣EM=1,∴MN=FM•tan60°=,∴S四边形MNDE=S△DEF﹣S△MNF=S△BDE﹣S△MNF=﹣×1×=.点评:此题考查了等边三角形的性质,折叠的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是抓住数形结合思想的应用.17.如右图,以等边△OAB的高OC为边向逆时针方向作等边△OCD,CD交OB于点E,再以OE为边向逆时针方向作等边△OEF,EF交OD于点G,再以OG为边向逆时针方向作等边△OGH,…,按此方法操作,最终得到△OMN,此时ON在OA上.若AB=1,则ON= ()10.考点:等边三角形的性质.专题:压轴题;规律型.分析:利用正三角形的性质和正三角形的边长求得OC的长,然后逆时针旋转30°后可以求得OE的长,直至线段ON与线段OA重合,一共旋转了12次,从而可以求得ON的长.解答:解:∵OC为等边三角形的高,且等边三角形的边长为1,∴NC=,∵△OCD为等边三角形,∴∠OCD=60°,∴OE⊥CD,∴OE==()2,以此类推,当ON与OA重合时,一共旋转了10次,∴ON的长为()10,故答案为()10点评:本题考查了正三角形的性质,解题的关键是正确地得到一共旋转了多少次.18.已知正△ABC的面积是1,P是△ABC内一点,并且△PAB、△PBC、△PCA的面积相等,那么满足条件的点P共有 1 个;△PAB的面积是.考点:等边三角形的性质;三角形的面积.专题:计算题.分析:根据三角形面积的计算和△PAB、△PBC、△PCA的面积相等可得P到AB、BC、AC的距离相等,故P点为等边三角形三个角平分线的交点,故P点只有一个,且△PAB的面积为等边△ABC面积的.解答:解:∵△PAB、△PBC、△PCA的面积相等,AB=BC=AC,∴P到AB、BC、AC的距离相等,故点P为等边三角形三角平分线的交点,等边三角形三角平分线交于一点,故点P只有一个,且△PAB的面积为.故答案为:1,.点评:本题考查了等边三角形各边长相等的性质,三角形面积的计算,本题中求得P点是等边三角形三个角平分线的交点是解题的关键.19.如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1、3、5,则这个等边三角形的边长为.考点:等边三角形的性质;三角形的面积.专题:计算题.分析:作AM⊥BC,根据等边三角形的面积计算可以求得AM=PE+PD+PF,再根据等边三角形的高线长可以计算等边三角形的边长,即可解题.解答:解:过A作AM⊥BC,则AM为BC边上的高,连接PA、PB、PC,则△ABC的面积S=BC•AM=(BC•PD+AB•PF+AC•PE),∴BC•AM=BC•PD+AB•PF+AC•PE,∵△ABC是等边三角形,∴AB=BC=AC,∴BC•AM=BC•PD+BC•PF+BC•PE=BC•(PD+PF+PE),∴PD+PE+PF=AM,∴△ABC的高为:1+3+5=9,∴△ABC的边长为:AB===9×=6,故答案为6.点评:本题考查了三角形面积的计算,考查了等边三角形边长和高线长的关系,本题中求AM=PD+PE+PF是解题的关键.20.如图所示,直线AB、CD相交于点O.若OM=ON=MN,那么∠APQ+∠CQP=240°.考点:等边三角形的性质;三角形的外角性质.专题:计算题.分析:根据OM=ON=MN即可判定△OMN为等边三角形,根据等边三角形各内角为60°的性质,可求得∠OPQ+∠OQP的值,进而根据∠APQ+∠CQP=360°﹣(∠OPQ+∠OQP)即可解题.解答:解:∵OM=ON=MN,∴三角形OMN为正三角形,所以∠APQ+∠CQP=(180°﹣∠OPQ)+(180°﹣∠OQP),=360°﹣(∠OPQ+∠OQP),=360°﹣(180°﹣∠POQ),=180°+60°,=240°.故答案为:240°.点评:本题考查了等边三角形各内角为60°的性质,考查了外角的定义,本题中求得∠APQ+∠CQP=360°﹣(∠OPQ+∠OQP)是解题的关键.21.在正△ABC中(如图),D为AC上一点,E为AB上一点,BD,CE相交于P,若四边形ADPE与△BPC的面积相等,那么∠BPE=60°.考点:等边三角形的性质;三角形的面积.专题:计算题.分析:根据可以证明AD=BE,即AE=CD,即可证△ACE≌△BCD,可得∠DBC=∠ACE,根据∠BPE=∠BCE+∠DBC,∠ACE+∠BCE=60°即可求得∠BPE=∠ACB,即可解题.解答:解:∵△ABD的面积=四边形ADPE的面积+△BPE的面积△BCE的面积=三角形BPC的面积+△BPE的面积四边形ADPE与△BPC的面积相等,∴AD=BE,即AE=CD,又∵AC=BC,∠BAC=∠ACB=60°∴△ACE≌△BCD,∴∠DBC=∠ACE又∵∠BPE=∠BCE+∠DBC,∠ACE+∠BCE=60°,∴∠BPE=∠ACB=60°,故答案为60°.点评:本题考查了三角形面积的计算,考查了等边三角形各内角为60°的性质,考查了全等三角形的证明和全等三角形对应角相等的性质,本题中求证△ACE≌△BCD是解题的关键.22.如图,平行于BC的线段MN把等边△ABC分成一个三角形和一个四边形,已知△AMN和四边形MBCN的周长相等,则BC与MN的长度之比是4:3 .考点:等边三角形的性质.专题:计算题.分析:设=n,根据平行于BC的线段MN把等边△ABC分成一个三角形和一个四边形和△AMN和四边形MBCN的周长相等,得出3AM=AM+BC+2BM,然后整理此等式即可得出答案.解答:解:设==n,∵3AM=AM+BC+2BM,△ABC为等边三角形,∴BM=AB﹣AM=BC﹣AM,∴2AM=+2(BC﹣AM),即2AM=+2(﹣AM),∴2AM=+2AM(﹣1),即2=+﹣2,4=.∴BC与MN的长度之比是4:3.故答案为:4:3.点评:此题主要考查等边三件形的性质这一知识点,解答此题的关键是设=n 利用等边三角形的性质和△AMN和四边形MBCN的周长相等,列出3AM=AM+BC+2BM这样一个等式,然后整理即可.此题有一定的拔高难度,属于难题.23.正三角形ABC的边长BC=2,以该等边三角形的高AD为正方形的边长,则正方形的面积为 3 .考点:等边三角形的性质.专题:计算题.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求正方形的面积,即可解题.解答:解:∵等边三角形三线合一,∴D为BC的中点,即BD=DC=1,∴AD==,∴正方形的面积为×=3.故答案为3.点评:本题考查了勾股定理在直角三角形中的运用,正方形面积的计算,本题中根据勾股定理计算AD的值是解题的关键.三.解答题(共7小题)24.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?存在(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r= 2 .若不存在,请说明理由.考点:等边三角形的性质;三角形的面积;等腰三角形的性质.分析:(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.解答:证明:(1)连接AP,BP,CP.(2分)则S△ABP+S△BCP+S△ACP=S△ABC,(4分)即,(6分)∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(8分)(2)存在.(10分)r=2.(12分)点评:此题主要是考查了等边三角形的性质、角平分线的性质以及三角形的面积公式.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.25.小明在找等边三角形ABC一边的三等分点时,他是这样做的,先做∠ABC、∠ACB的角平分线并且相交于点O,然后做线段BO、CO的垂直平分线,分别交BC于E、F,他说:“E、F就是BC边的三等分点.”你同意他的说法吗?请说明你的理由.考点:等边三角形的性质;线段垂直平分线的性质.分析:连接OE,OF构建等腰三角形BOE和CFO,利用等腰三角形的“三线合一”推知的性质BE=OE、OF=CF,然后等边三角形ABC中,根据等边三角形的三个内角都是60°的性质、角平分线的性质证得△OEF是等边三角形(有两个内角60°的三角形是等边三角形);最后由等边三角形OEF的三条边都相等、等量代换证明BE=EF=FC即E,F是BC的三等分点.解答:解:E,F是BC的三等分点.理由:连接OE,OF,∵DE垂直平分OB∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),同理OF=CF,∴∠EBO=∠BOE,∠FCO=∠FOC,∵等边三角形ABC中,∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)∵BO平分∠ABC,CO平分∠ACB∴∠EBO=∠ABC=30°,∠FCO=∠ACB=30°∴∠BOE=∠EBO=30°,∠FOC=∠FCO=30°∴∠OEF=∠BOE+∠EBO=60°,∠OFE=∠FOC+∠FCO=60°,∴△OEF是等边三角形(有两个内角60°的三角形是等边三角形)∴OE=OF=EF(等边三角形各边相等)∴BE=EF=FC,即E,F是BC的三等分点.点评:本题综合考查了等边三角形的性质、线段垂直平分线的性质.解答该题时,充分利用了等腰三角形的底边上的高线、中线、对角的角平分线三线合一的特性.26.在等边△ABC中,D是AC的中点,E是BC延长线上一点,且CE=CD,(1)请说明DB=DE的理由.(2)若等边△ABC的边长为4cm,求△BDE的面积.考点:等边三角形的性质;三角形的面积;三角形的外角性质.专题:计算题.分析:(1)根据等边三角形三线合一的性质可得BD是∠ABC的角平分线,即可得∠CBD=30°,根据三角形外角性质即可得∠DCE=120°﹣60°,根据CD=CE,可得∠CDE=∠CED=30°,即可得∠CED=∠CBD=30°,即DB=DE.(2)过D作DF⊥BC,则DF=AG,根据等边三角形的性质可以求得BE的长,根据BE、DF的长即可计算△BDE 的面积.解答:解:(1)∵△ABC为等边三角形,D为AC的中点,即BD为AC边上的中线,∴BD是∠ABC的角平分线,∠ABC=60°,∴∠CBD=∠ABC=30°,。
全等三角形经典例题整理

CB全等三角形的典型习题一、全等在特殊图形中的运用1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数.2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判断△DEF 的形状.3、如图,△ABC 和△ADE 都是等边三角形,线段BE 、CD 相交于点H ,线段BE 、AC 相交于点G ,线段BE 、CD 相交于点H .请你解决以下问题:(1) 试说明BE =CD 的理由;(2) 试求BE 和CD 的夹角∠FHE 的度数Ex1、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明AG =AF 的理由.Ex2、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由.4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试用两种不同的方法说明BE 、CF 、EF 为边长的三角形是直角三角形。
ADD ACm二.证明全等常用方法(截长发或补短法)5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC 的理由.Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB .Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑)6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF=45°.请你试用补短法说明AE +CF =EF .Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?)三.全等在探究题中的运用7、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =. (1) 请你写出说明△ABC ≌△ECF 的理由; 在此基础上,同学们作了进一步的研究: (2)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (3)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.BB FC ABA D F C G EB 图1 A D FC G E B 图2 AD F C GE B 图3(第2题图)Ex1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想FN ,BM 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?请说明理由.Ex2.在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换. 活动一:如图1,在Rt △ABC 中,D 为斜边 AB 上的一点,AD =2,BD =1,且四边形DECF 是正方形,求阴影部分的面积.小明运用图形旋转的方法,将△DBF 绕点D 逆时针旋转90°,得到△DGE (如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积: .活动二:如图3,在四边形ABCD 中,AB =AD ,∠BAD =∠C =90°,BC =5,CD =3,过点A 作AE ⊥BC ,垂足为点E ,求AE 的长.小明仍运用图形旋转的方法,将△ABE 绕点A 逆时针旋转90°,得到△ADG (如图4所示),则①四边形AECG 是怎样的特殊四边形?答: .②AE 的长是 .活动三:如图5,在四边形ABCD 中,AB ⊥AD ,CD ⊥AD ,将BC 按逆时针方向绕点B 旋转90°得到线段BE ,连接AE .若AB =2,DC =4,求△ABE 的面积.图2图3图1A ( G )B ( E)图1 B 图2图5BCDA ED G 图4A BD 图E四.动点问题中的全等、8如图,已知ABC △中,20AB AC ==厘米,BC=16厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以6厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动 速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多 长时间点P 与点Q 第一次在ABC △的哪条边上相遇?。
全等三角形习题精粹(经典)

三角形全等习题荟萃(经典)1、如图,ABC ∆是等腰直角三角形,∠C =900,点M,N 分别是边AC 和BC 的中点,点D 在射线BM 上,且BD =2BM, 点E 在射线NA 上,且NE =2NA.求证:BD ⊥DE.2、如图,设P 为等腰直角三角形ABC 斜边AB 上任意一点,PE 垂直AC 于点E, PF 垂直BC 于点F, PG 垂直EF 于点G,延长GP 并在其延长线上取一点D,使得PD =PC.求证:BC ⊥BD, 且BC =BD.3、已知在ABC ∆中,=∠ACB 于F ,求证:AC EF 21=。
MNEDCBA4、如图,已知在ABC ∆︒=∠90ACB ︒=∠30CAB ACD ∆ABE ∆角形D E 交AB 于5、已知在ABC ∆6、已知ABC ∆和∆7、已知ABC ∆中,BDC ∠,求证:8、 等腰ABC ∆9、如图已知ABC ∆中,10、 如图,已知ABC ∆以D 为顶点作一个求证:AMN ∆11、AT 为ABC ∆的内角A 求证:BD=EC12、已知在ABC ∆中,作13、如图,已知在ABC 中,AD 是角平分线,CF ⊥AD 交AB 于F ,垂足为M ,CE ∥AD 交BA的延长线于E ,求证:AC=AE=AF 。
14、如图,△ABC 是等腰三角形,D 、E 分别是AB 及AC 延长线上的点,且BD=CE , 连结DE 交BC 于点G ,求证:GD=GE15、如图,在△ABC 中,AB=5,AC=3,则边BC 上的中线AD 的取值范围是多少?16、如图,在△ABC 内一点,DB=DA ,BF=AB,∠DBF=∠DBC,求∠F 的度数。
17、如图,△ABC 是等边三角形,AE=CD,BQ ⊥AD,垂足为Q,BE 交AD 于点P,求证:BP=2PQ.A BE B CC BC B A18、如图,△ABC,△BDE 都是等边三角形,求证:∠BAD=∠BCE19、如图,在等腰直角三角形ABC 中,∠BAC 是直角,D 是AC 上一个点,AE ⊥BD,AE 的延长线交BC 与F,若∠ADB=∠FDC ,求证:D 是AC 的中点。
《等边三角形的判定》课后练习题

《等边三角形的判定》课后练习题篇一:等边三角形练习题篇二:《等边三角形》练习题(附答案)《等边三角形》练习题1.(2021?深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△2.(2021?凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠5.(2021?随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q9.(20xx?天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③10.(20xx?南宁)如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是12.(20xx?曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰DF=DE,则∠E=度.14.(2021?日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有 _________ .(把你认为正确的序号都填上)15.(20xx?扬州)如图,将边长为4的等边△ABC,沿x轴向左平移2个单位后,得到△A′B′C′,则点A′的坐标为.16.(20xx?茂名)如图,正三角形A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中线又组成△A3B3C3,…,如此类推,得到△AnBnCn.则:(1)△A3B3C3的边长a3=;(2)△AnBnCn的边长an=(其中n为正整数).17.(20xx?嘉峪关)△ABC为等边三角形, D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为三角形.18.(1999?广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出 _________ 个.19.如图所示,P是等边三角形ABC内一点,将△ABP绕点B 顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′= _________ .20.(2021?浙江)如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明.21.(2021?辽阳)如图,△ABC为正三角形,D为边BA延长线上一点,连接CD,以CD为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.22.(2021?绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①_________ ;② _________ ;③23.(20xx?河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(20xx?苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.25.(2002?黑龙江)已知等边△ABC和点P,设点P到△ABC 三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.26.(2000?河南)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.27.(2021?雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.篇三:《等边三角形》练习题(附答案)[1]《等边三角形》练习题1.(2021?深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△2.(2021?凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠5.(2021?随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q9.(20xx?天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③10.(20xx?南宁)如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是12.(20xx?曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰DF=DE,则∠E=度.14.(2021?日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有 _________ .(把你认为正确的序号都填上)15.(20xx?扬州)如图,将边长为4的等边△ABC,沿x轴向左平移2个单位后,得到△A′B′C′,则点A′的坐标为_________ .16.(20xx?茂名)如图,正三角形A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中线又组成△A3B3C3,…,如此类推,得到△AnBnCn.则:(1)△A3B3C3的边长a3=;(2)△AnBnCn的边长an=(其中n为正整数).17.(20xx?嘉峪关)△ABC为等边三角形, D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为三角形.18.(1999?广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出 _________ 个.19.如图所示,P是等边三角形ABC内一点,将△ABP绕点B 顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′= _________ .20.(2021?浙江)如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明.21.(2021?辽阳)如图,△ABC为正三角形,D为边BA延长线上一点,连接CD,以CD为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.22.(2021?绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①_________ ;② _________ ;③23.(20xx?河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(20xx?苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.25.(2002?黑龙江)已知等边△ABC和点P,设点P到△ABC 三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.26.(2000?河南)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.27.(2021?雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.28.(20xx?临沂)如图,已知AD和BC交于点O,且△OAB 和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.29.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.30.如图,等边△ABC的边长为10,点P是边AB的中点,Q 为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?。
《等边三角形》练习题(附答案)

α+∠β的度数是(的度数是( )A .180° B . 220° C . 240° D . 300° 2C .D . 35.(2010•随州)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当P A=CQ 时,连PQ 交AC 边于D ,则DE 的长为(的长为( ) A . B . C . D . 不能确定能确定 6.(2009•攀枝花)如图所示,在等边△ABC 中,点D 、E 分别在边BC 、AB 上,且BD=AE ,AD 与CE 交于点F ,则∠DFC 的度数为(的度数为( )A .60° B . 45° C . 40° D . 30° 7.(2007•绵阳)如图,在正方形ABCD 的外侧,作等边△ADE ,BE 、CE 分别交AD 于G 、2S 1=S 2 D . S 1=2S 2《等边三角形》练习题1.(2012•深圳)如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为(的边长为() A .6 B . 12 C . 32 D . 64 2.(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形四边形,则图中∠ 3.(2012•荆门)如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF=2,则PE 的长为(的长为( ) A . 2 B . 4.(2011•南平)边长为4的正三角形的高为(的高为( )A .2 B . 4 C . D . 2H ,设△CDH 、△GHE 的面积分别为S 1、S 2,则(,则() A . 3S 1=2S 2 B . 2S 1=3S 2 C . 8.(2007•娄底)如图,△ABC 是边长为6cm 的等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中被截成三等分,则图中阴影阴影部分的面积为(部分的面积为( )A . 4cm 2B . 2cm 2C . 3cm 2D . 3cm 230° C . 45° D . 60° 13.(2011•茂名)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= _________ 度.度.14.(2008•日照)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作同侧分别作正正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60度.恒成立的结论有度.恒成立的结论有 _________ .(把你认为正确的序号都填上)(把你认为正确的序号都填上)15.(2005•扬州)如图,将边长为4的等边△ABC ,沿x 轴向左平移2个单位后,得到△A ′B ′C ′,则点A 9.(2006•天津)如图,A 、C 、B 三点在同一条三点在同一条直线直线上,△DAC 和△EBC 都是都是等边三角形等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM=CN ;③AC=DN .其中,正确结论的个数是(.其中,正确结论的个数是( ) A . 3个 B . 2个 C . 1个 D . 0个10.(2006•南宁)如图是一个等边三角形木框,甲虫P 在边框AC 上爬行(A ,C 端点除外),设甲虫P 到另外两边的距离之和为d ,等边三角形ABC 的高为h ,则d 与h 的大小关系是( )A . d >h B . d <h C . d =h D . 无法确定法确定11.(2007•南充)一艘一艘轮船轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距(两地相距( ) A . 30海里海里 B . 40海里海里 C . 50海里海里 D . 60海里海里12.(2006•曲靖)如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于(等于( )A .25° B .′的坐标为′的坐标为 _________ .16.(2004•茂名)如图,正三角形A 1B 1C 1的边长为1,△A 1B 1C 1的三条的三条中位线中位线组成△A 2B 2C 2,△A 2B 2C 2的三条的三条中线中线又组成△A 3B 3C 3,…,如此类推,得到△A n B n C n .则:.则:(1)△A 3B 3C 3的边长a 3= _________ ; (2)△A n B n C n 的边长a n = _________ (其中n 为正为正整数整数).17.(2006•嘉峪关)△ABC 为等边三角形,为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且上,且AE=CD=BF ,则△DEF 为 _________ 三角形.三角形.;②;② _________ ;③;③ _________ .并对②,③的判断,选择一个给出证明..并对②,③的判断,选择一个给出证明.18.(1999•广州)如图,以A ,B 两点为其中两个顶点作位置不同的两点为其中两个顶点作位置不同的等边三角形等边三角形,最多可以作出作出 _________个.19.如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ′,若PB=3,则PP ′= _________ .20.(2009•浙江)如图,在边长为4的正三角形ABC 中,AD ⊥BC 于点D ,以AD 为一边向右作正三角形ADE .(1)求△ABC 的面积S ;(2)判断AC 、DE 的位置关系,并给出证明.的位置关系,并给出证明.21.(2009•辽阳)如图,△ABC 为正三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作正三角形CDE ,连接AE ,判断AE 与BC 的位置关系,并说明理由.的位置关系,并说明理由.22.(2008•绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:一章后,老师布置了一道思考题:如图,点M ,N 分别在正三角形ABC 的BC ,CA 边上,且BM=CN ,AM ,BN 交于点Q .求证:∠BQM=60度.度.(1)请你完成这道思考题;)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:)后,同学们在老师的启发下进行了反思,提出了许多问题,如: ①若将题中“BM=CN ”与“∠BQM=60°”的位置的位置交换交换,得到的是否仍是真命题?,得到的是否仍是真命题?②若将题中的点M ,N 分别移动到BC ,CA 的延长线上,是否仍能得到∠BQM=60°? ③若将题中的条件“点M ,N 分别在正三角形ABC 的BC ,CA 边上”改为“点M ,N 分别在正方形ABCD 的BC ,CD 边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①:① _________23.(2007•河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角.一等腰直角边在一条直顶点为F,一条直角边与AC边在一条直所示的位置摆放,该三角尺的直角顶点三角尺按如图1所示的位置摆放,该三角尺的直角线上,另一条直角边恰好经过点B.数量关满足的数量关(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的,然后证明你的猜想;系,然后证明你的猜想;平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,(2)当三角尺沿AC方向方向平移另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;之间满足的数量关系,然后证明你的猜想; (3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(2004•苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB 至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;的长.(2)若D为AC的中点,求BP的长.度.. ①②③⑤①②③⑤ ..16;△ (或2) 17. 等边等边 三角形.18. 2 个.19 PP′= 3 . 20. 解:(1)在正△ABC 中,AD=4×,(2分)分)∴S=BC ×AD=×4×2=4.(3分)分)(2)AC 、DE 的位置关系:AC ⊥DE .(1分)分)在△CDF 中,∵∠CDE=90°﹣∠ADE=30°,(2分)分)∴∠CFD=180°﹣∠C ﹣∠CDE=180°﹣60°﹣30°=90°.∴AC ⊥DE .(3分)分)(注:其它方法酌情给分).21. E= 15解:AE ∥BC .理由如下:.理由如下:∵△ABC 与△CDE 为正三角形,∴BC=AC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,即∠BCD=∠ACE ,∴△BCD ≌△ACE ,∴∠B=∠EAC ,∵∠B=∠ACB ,∴∠EAC=∠ACB , ∴AE ∥BC .22.请你作出判断,在下列横线上填写“是”或“否”:①:① 是 ;②;② 是 ;③;③ 否 .并对 (1)证明:在△ABM 和△BCN 中,中,,∴△ABM ≌△BCN ,∴∠BAM=∠CBN ,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.)①是;②是;③否.②的证明:如图,②的证明:如图,在△ACM 和△BAN 中,中,,∴△ACM ≌△BAN ,∴∠AMC=∠BNA ,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,③的证明:如图,中,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN,∴∠AMB=∠BNC.又∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.23 解:(1)BF=CG;证明:在△ABF和△ACG中∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC ∴△ABF≌△ACG(AAS)∴BF=CG;(2)DE+DF=CG;证明:过点D作DH⊥CG于点H(如图2)∵DE⊥BA于点E,∠G=90°,DH⊥CG ∴四边形EDHG为矩形∴DE=HG,DH∥BG ∴∠GBC=∠HDC ∵AB=AC ∴∠FCD=∠GBC=∠HDC 又∵∠F=∠DHC=90°,CD=DC ∴△FDC≌△HCD(AAS)∴DF=CH ∴GH+CH=DE+DF=CG,即DE+DF=CG;)仍然成立.(3)仍然成立.证明:过点D作DH⊥CG于点H(如图3)∵DE⊥BA于点E,∠G=90°,DH⊥CG 为矩形,∴四边形EDHG为矩形,∴DE=HG,DH∥BG,∴∠GBC=∠HDC,∵AB=AC,∴∠FCD=∠GBC=∠HDC,又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS)∴DF=CH,∴GH+CH=DE+DF=CG,即DE+DF=CG.24.(1)证明:过点D作DF∥AB,交BC于F.∵△ABC为正三角形,∴∠CDF=∠A=60°.为正三角形.∴△CDF为正三角形.∴DF=CD.又BE=CD,∴BE=DF.又DF∥AB,∴∠PEB=∠PDF.中,∵在△DFP和△EBP中,∵,∴△DFP≌△EBP(AAS).∴DP=PE.(2)解:由(1)得△DFP≌△EBP,可得FP=BP.∵D为AC中点,DF∥AB,∴BF=BC=a.∴BP=BF=a.25.解:(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.仍然成立.理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2+h3=AN+MN=AM=h,即h1+h2+h3=h.(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2﹣h3=h.理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.是矩形,∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2﹣h3=AN﹣MN=AM=h,即h1+h2﹣h3=h.26.解:(1)当CD22=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD 2=AC •DB ,由PC=PD=CD 可得:PC •PD=AC •DB , 即=, 则根据相似三角形的则根据相似三角形的判定定理判定定理得△ACP ∽△PDB (2)当△ACP ∽△PDB 时,∠APC=∠PBD ∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB 的度数为120°. 27. 证明:(1)∵△ACD 和△BCE 是等边三角形, ∴AC=DC ,CE=CB ,∠DCA=60°,∠ECB=60°, ∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE ,∠ACE=∠DCB , 在△ACE 与△DCB 中,中,∵,∴△ACE ≌△DCB ,∴AE=BD ;(2)∵由(1)得,△ACE ≌△DCB ,∴∠CAM=∠CDN ,∵∠ACD=∠ECB=60°,而A 、C 、B 三点三点共线共线, ∴∠DCN=60°,在△ACM 与△DCN 中,中,∵,∴△ACM ≌△DCN ,∴MC=NC ,∵∠MCN=60°,∴△MCN 为等边三角形,为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA ,∴MN ∥AB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
.2cm B
.4cm
C
.8cm D
.16cm
5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准确的判
断是( )A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状二、填空题
1.△ABC中,AB=AC,∠A=∠C,则∠B=_______.
2.在直角三角形ABC中,C90,如果
等边三角形练习题
一、选择题
1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()
2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角
(每个顶点处各取一个外角)都相等的三角形;?④一腰上的中线也是这条腰上的高的等
腰三角形.其中是等边三角形的有(
)
A
.①②③
B.①②④
C.①③
D.①②③④
3.如图,D、E、F分别是等边△ABC各边上的点,且
AD=BE=CF,则△DEF?的形状是(
)
A
.等边三角形B.腰和底边不相等的等腰三角形
C.直角三角形
D.不等边三角形
A
F
A
D
E
D
1
2
B
E
C
B
C
题3
题5
4.Rt△ABC中,CD是斜边AB上的高,∠
B=30°,AD=2cm,则AB的长度是(
B2A,那么
A
______
,
AB
________
BC.
3.如图,已知:
ABC是等边三角形,
AB
5cm,
AD
BC,DE
AB,AF
AD,
则BAD
________,
ADF
_______,BD
_________cm,
FDC
_____.
3题图
10
题图
11
题图
4.一辆汽车沿30
角的山坡从山底开到山顶,共走了
4000
BE交AC于
F,AD交CE于H,
①求证:BE=AD;
A
②求证:CF=CH;
③判断FH?与BD的位置关系,并证明.
E
F
H
BCD
AD=,EFC的周长=。
11.如图,已知:在
ABC中,AB AC
4cm,
ABC 15,BD
AC于点D,则
BD______.
三、解答题
1.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC?于点D,?求证:?BC=3AD.
A
B
D
C
2.如图,已知:在
ABC中,
AB
AC,
BAC
120
,D是
2
。
,
求BD,CE的长。
9.如图,在ABC中,ABAC,BAD30,且AEAD,求EDC的度数。
10.如图,已知:在
ABC中,AD是BAC的平分线,DE // AC交AB于E,DF // AB交
AC于F,又AE
6。求:四边形AFDE的周长。
11.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD?的夹角是多少度?
8.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.
9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,?则CD?的长度是_______.
10.如图,ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,则
米,那么这座山的高度是____
_米.
5.一等腰三角形的一个底角为30,底边上的高为9cm,则这个等腰三角形的腰长是
________cm,
顶角是_______.
6.ABC为等边三角形,D为BC边上的一点,DE // AB,交AC于点E,则EDC为______
三角形.
7.在ABC中,B30,C45,若ADBC,D为垂足,CD1,则AB______.
6.如图,已知:在直角三角形ABC中,C90,ABC75,从顶点B引BD交CA
于D,使CDB 30.求证:AD 2BC.
7.如图,已知:在
Rt ABC中,ACB
90,A
30,CD
AB,DE
BC,D、
E是垂足,AB
24cm。求BE。
8.如,已知,在
ABC
中,
A 60
,高BD,EC相交于点
H,且
HD
1 HE
BC上的一点,
DE
AB,
DF
AC,垂足分别为
E、F。求证:
DE
DF
1BC。
2
3.如图,已知:在ABC中,AB
AC,BAC
120,P为BC边的中点,PD AC。
求证:CD 3AD。
4.如图,已知:在等边三角形ABC中,D为AB中点,DEBC于E。求证:BC4BE。
5.如图,已知:在ABC中,ABC90 ,A30,CD平分ACB。求证:AD2BD。
12.如图,已知等边ABC的∠ABC、∠ACB的平分线交于O点,若
BC上的点
E、F分别在
OB、OC垂直平分线上,试说明EF与AB的关系,并加以证明。
13.如图,已知ABC是等边三角形,D为AC上一点,∠1=∠2,BD=CE,求证:ADE是等边三角形。
14.如图,已知点B、C、D在同一条直线上,△
ABC和△CDE?都是等边三角形.