第三节 分式的化简求值与恒等变形-学而思培优

第三节 分式的化简求值与恒等变形-学而思培优
第三节 分式的化简求值与恒等变形-学而思培优

第三节 分式的化简求值与恒等变形

一、课标导航

二、核心纲要

给出一定的条件,在此条件下求分式的值称为有条件的分式求值.分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化简后求值是解有条件的分式的化简与求值的基本策略. 解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的方法外,还常常用到如下技巧:

(1)恰当引入参数.

(2)取倒数或利用倒数关系.

(3)拆项变形或拆分变形.

(4)整体代入.

(5)利用比例性质等.

本节重点讲解:一种求值.一种变形

三、全能突破

基 础 演 练

1.若,02=+y x 则2

2

22x xy y xy x -++的值为( ). 51.-A 5

3.-B 1.C D .无法确定

2.已知,31=+

x x 则=+221x x =-x x 1

3.已知

,411=-b a 则分式b

ab a b ab a 2722-+--的值为 4.课堂上,李老师给大家出了这样一道题:当37,225,3+-=x 时,求代数式1221

1222+-÷-+-x x x x x 的值,小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体的解题过程.

5.化简求值:

),111()111)(1(--÷-+

x x 其中?-=2

1x ),232(21)2(2++-÷+--x x x x x 其中?=21x

分式化简求值几大常用技巧

分式化简求值几大常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果1 2x x +=,则242 1x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 1 1 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果1 2x x +=,则2421x x x ++的值是多少? 解:将待求分式取倒数,得 42222 22 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2 22 2323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak ===

∴3 c ak bk k ck k k ck ==?=??=, ∴3 1,1k k == ∴a b c == ∴原式= 1.a b c a b c +-=-+ 5、整体代换法 例6 已知 113,x y -=求2322x xy y x xy y +---的值. 解:将已知变形,得 3,y x xy -=即3x y xy -=- ∴原式= 2()32(3)333 .()23255 x y xy xy xy xy x y xy xy xy xy -+?-+-===----- 例: 例5. 已知a b +<0 ,且满足a a b ba b 2 2 22++--=,求a b a b 33 13+-的值。 解:因为a a b ba b 2 2 22++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1 所以a b a b a ba a b b a b 3322 1313+-= +-+-()() = -?-+-= -+-11331 2222() a a b b ab a a b b ab = +--=---= --()()a b a b a b a b a b a b a b 2233113311331 =-1 评注:本题应先对已知条件a a b ba b 22 22++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。 6、消元代换法 例7 已知1,abc =则 111a b c ab a bc b ac c ++=++++++ . 解:∵1,abc =∴1,c ab = ∴原式=1 11111a b ab ab a b ab b a ab ab ++ ++?++?++

分式的恒等变形教学提纲

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法:)(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性) (2)如果bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++

4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

奥数-分式恒等变形学

分式恒等变形 方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。 例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求 111a b c bc ca ab a b c ++---的值。 例2. 若0abc ≠,0a b c ++=,求222 a b c bc ac ab ++的值。 例3. @ 例4. 求证: 2220()()()()()() a bc b a c c ba a b a c a b b c c b a c ---++=++++++ 例5. 设正数x ,y ,z 满足不等式 2222x y z xy +-+2222y z x yz +-+222 2z x y xz +->1,求证x ,y ,z 是某个三角形的三边长 例6. 求分式 24816 1124816 111111a a a a a a +++++ -+++++,当2a =时的值. ; 例7. 若1111a b c a b c ++= ++,求证:777777 1111 a b c a b c ++=++.

例8. 化简:()()()()()() a b b c c a a b b c c a a b b c c a a b b c c a ------+++++++++. ! 例9. 计算:2132x x x -++262x x ---210 4 x x -- -. 例10. 化简22 32233223222244 113a b a b a a b ab b a a b ab b a b a b a b +++-- +++-+--+-. 例11. # 例12. 化简: () () () () () () 2222222 2 2 2 2 2 a b c b c a c a b a c b a b c b c a ------+ + +-+-+- 例13. 已知0a b c ++=,求证222222222 111 0b c a a c b b a c ++=+-+-+- 例14. 已知0a b c ++=,求222 222222a b c a bc b ac c ab +++++的值 … 例15. 已知1,2xyz x y z =++=, 22216 x y z ++=,求代数式 111 222xy z yz x zx y +++++的值。

分式化简求值练习题库(经典精心整理)复习过程

分式化简求值练习题库(经典精心整理)

1.先化简,再求值: 12112---x x ,其中x =-2. 2、先化简,再求值: ,其中a=﹣1. 3、(2011?綦江县)先化简,再求值: ,其中x=. 4、先化简,再求值:,其中. 5先化简,再求值 ,其中x 满足x 2﹣x ﹣1=0. 6、化简: b a b a b a b 3a -++-- 7、(2011?曲靖)先化简,再求值: ,其中a=. 8、(2011?保山)先化简211111 x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.

9、(2011?新疆)先化简,再求值:( +1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–3 11、(2011?雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算. . 12、先化简,再求值: 12-x x (x x 1--2),其中x =2. 13、(2011?泸州)先化简,再求值: ,其中. 14、先化简22()5525x x x x x x -÷---,然后从不等组23212 x x --≤??

求值:2222121111a a a a a a a +-+?---+,其中12 a =-。 18.先化简,再求值:? ?? ??1+1x -2÷x 2 -2x +1x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --??÷- ?+?? ,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(1 1222+---÷-+-m m m m m m ) ,其中m =. 21、(1)化简:÷.(2)化简:22a b ab b a (a b )a a ??--÷-≠ ??? 22、先化简,再求值: ,其中. 23请你先化简分式2223691,x 1211 x x x x x x x +++÷+--++再取恰的的值代入求值. 24、(本小题8分)先化简再求值()1 21112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其结果是. 3

奥数-分式恒等变形学

分式恒等变形 方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。 例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求 111 a b c bc ca ab a b c ++---的值。 例2. 若0abc ≠,0a b c ++=,求222 a b c bc ac ab ++的值。 例3. 求证: 2220()()()()()() a bc b a c c ba a b a c a b b c c b a c ---++=++++++ 例4. 设正数x ,y ,z 满足不等式 2222x y z xy +-+2222y z x yz +-+222 2z x y xz +->1,求证x ,y ,z 是某个三角形的三边长 例5. 求分式 24816 1124816 111111a a a a a a +++++ -+++++,当2a =时的值. 例6. 若1111a b c a b c ++= ++,求证:777777 1111 a b c a b c ++=++.

例7. 化简:()()()()()() a b b c c a a b b c c a a b b c c a a b b c c a ------+++++++++. 例8. 计算:2132x x x -++262x x ---210 4 x x -- -. 例9. 化简22 32233223222244 113a b a b a a b ab b a a b ab b a b a b a b +++-- +++-+--+-. 例10. 化简: () () () () () () 2222222 2 2 2 2 2 a b c b c a c a b a c b a b c b c a ------+ + +-+-+- 例11. 已知0a b c ++=,求证222222222 111 0b c a a c b b a c ++=+-+-+- 例12. 已知0a b c ++=,求222 222222a b c a bc b ac c ab +++++的值 例13. 已知1,2xyz x y z =++=, 22216 x y z ++=,求代数式 111 222xy z yz x zx y +++++的值。

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

专题训练七分式化简求值解题技巧

专题训练七分式化简求值 解题技巧 Prepared on 21 November 2021

【专题训练七】 分式化简求值解题技巧 例1、(1)如果242114x x x =++,那么42251553x x x -+= 。 (2)若 a b c d b c d a ===,则a b c d a b c d -+-=+-+ 。 例2、若a b c 、、满足1111a b c a b c ++=++,则a b c 、、中 ( ) A 、必有两个数相等 B 、必有两个数互为相反数 C 、必有两个数互为倒数 D 、每两个数都不相等 例3、化简求值:22214( )2442a a a a a a a a ----÷++++,其中a 满足2210a a +-= 。 例4、已知2410,a a ++=且42321533a ma a ma a ++=++,求m 的值。 例5、已知a b c 、、满足222222222 1222b c a c a b a b c bc ac ab +-+-+-++=,求证:这三个分数的值有两个为1,一个为1-。 针对性训练 1、已知30,x y -=那么22 2()2x y x y x xy y +?-=-+ 。 2、已知7x y +=且12xy =,则当x y <时,11x y -= 。 3、已知0abc ≠,且 a b c b c a ==,则3223a b c a b c ++=-- 。 4、已知2310x x -+=,则2 421 x x x =++ 。 5、已知0abc ≠,0,a b c ++=则111111()()()a b c b c c a a b +++++= 。 6、已知323x y -=,则23796x y xy xy y x --=+- 。 7、若4360,270(0)x y z x y z xyz --=+-=≠,则代数式222 222 522310x y z x y z +-=-- 。

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴ 比例的基本性质: a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=???=?=???=?? 交换内项 交换外项 同时交换内外项 ⑶ 反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷ 合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个n 个=(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a -=(0a ≠),即n a -(0a ≠)是n a 的倒数 知识点睛 中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减, a c ad bc ad bc b d bd bd bd ±±=±= 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值:21 1 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 2221 (1)()4111(1)a a a a a a a a a ---+÷?=-=--++- 【答案】4- 【例3】 先化简,再求值: 22144 (1)1a a a a a -+-÷--,其中1a =- 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,安徽省中考 【解析】()()2221144211122a a a a a a a a a a a a --+-?? -÷=?= ?----??- 例题精讲

代数变形中常用的技巧

代数变形中常用的技巧 数学与应用数学专业 摘要:代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。本文就初等代数变形中的解题技巧,作一些论述。关键词代数变形技巧 两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。 代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。 代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。 一、整式变形 整式变形包括整式的加减、乘除、因式分解等知识。这些知识都是代数中的最基础的知识。有关整式的运算与化简求值,常用到整式的变形。 例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2 分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。 解:设y-z=a, z-x=b, x-y=c,则a+b+c=0,y+z-2x=b-c, x+z-2y=c-a, x+y-2z=a-b。于是原式=(b-c)2+(c-a)2+(a-b)2-3a2-3b2-3c2 =b2-2ac+c2+c2-2ac+a2+a2-2ab+b2-3a2-3b2-3c2 =-a2 -b2-c2-2ac-2ab-2bc =-(a+b+c)2 =0 例2:分解因式 ①(1-x2)(1-y2)-4xy ②x4+y4+ x2y2 分析:本题的两个小题,若按通则变形,则困难重重,不知从何下手,但从其含平方的项来研究,考虑应用配方法会使变形迎刃而解。①题先将括号展开,并把-4xy拆成-2xy和-2xy,再分组就可以配成完全平方式。②题用添项、减项法加上x2y2再减去x2y2,即可配方,然后再进行变形分解。 解:①原式= 1-y2-x2+x2y2-2xy-2xy =(1-2xy+x2y2)-( x2+2xy+ y2)

《分式化简求值的几种常见方法》公开课教案

《分式化简求值的几种常见方法》公开课教案 【教学目标】 1、复习分式计算的相关知识。 2、归纳总结分式化简的几种常见方法技巧。 3、通过探究把新旧知识有机结合起来找出解决问题的方法。 4、通过有效引导,提高学生解决问题的能力,激发学生数学学习的兴趣。 【教学重点】 熟练掌握分式化简求值的几种常见方法。 【教学难点】 能够根据题型特点迅速的找出解决问题的途径。 【教学方法】 合作探究,练习,归纳 【辅助手段】 多媒体 【教学过程】 一、复习准备 1、提问:平方差公式和完全平方式。 2、计算 (1)已知2x-y=3,则2y+9-4x的值是多少? (2)(2x+3)2=

3、因式分解 (1)x 2-2x+1= (2)9x 2+9x+1= 二、问题研讨 (一)、连比设k 法 例1:已知x 3=y 4=z 5 ≠0,求 3x?2y+z x?2y?z 针对练习: (二)、整体代入法 针对练习: (三)倒数法 22 2317x x xy y y -==、已知:,则2、已知三条线段x,y,z,且x:y:z=3:5:7,x y z x y z ++-+则 的值为 23242x xy y x y xy x xy y +--=--例2、已知:,求: 的值。 11 12a b ab a b -=-=、已知:,则 112x+3xy-2y 2、已知:-=3,求:的值. x y x-2xy-y 111,y x x y x y x y +=+= +3、已知:则2 2 113,x x x x +=+=4、已知:则

针对练习: (四)非负代数式之和等于零 针对练习: 以上环节,教师展示例题之后学生合作探究,结果展示之后师生共同明确,教师引导学生归纳总结方法,特点以及注意事项。 针对练习原则上学生自主完成,个别同学板演,如果出现难度则由教师引导完成,如果时间紧张一部分由学生课下完成。 三、巩固练习 选用适当的方法进行化简求值 2 311x x ++++2 24x 1x 例、已知:=,求:的值x 7x 11+2 24x 、已知:x +4x+1=0,求:的值 x 2 231a =++2 24 a 、若a -3a+1=0,则a 2 2 a+b 例4、已知:a +b +4a-2b+5=0,求:的值 a-b 12a b -+21 、已知-4b+4=0,则 = 2(1)(1)ab a b -++2 1 2、已知:+(b-1)=0,则 = 1 a b c = ++2 1b+1+c -2c+1=0,则23::3:4:52a b c a b c a b c -+== -+2、若,则

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

分式的恒等变形精讲精练

一、化分式为部分分式的和 【例1】 (4级)(第10届华罗庚金杯决赛) 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1, 且一次项系数相同),则p 的最大值是 . 【例3】 (5级)若213111 a M N a a a -=+ --+,求M 、N 的值. 【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244 x x -,求a ,b . 【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足111 4 a b +=,则a b +的最大值是 . 【例6】 (4级)若对于3±以外的一切数,2 8339 m n x x x x -=+--均成立,求mn . 【例7】 (5级)若关于x 的恒等式 222Mx N c x x x a x b +=- +-++中,22 Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N . 【例8】 (4级)将2 6 9 x -化为部分分式. 分式恒等变形(竞赛部分)

【例9】 (4级)化21 (1)(2) x x x ---为部分分式. 【例10】 (4级)将下列分式写成部分分式的和的形式:234 2 x x x +--. 【例11】 (4级)将下列分式写成部分分式的和的形式:32222361 (1)(3) x x x x x -++++. 【例12】 (5级)将下列分式写成部分分式的和的形式:322 41338 (1)(2)(1)x x x x x x -+++--. 【例13】 (4级)计算:2132x x x -++262x x ---2 10 4 x x ---. 【例14】 (4级)将下列分式写成部分分式的和的形式:4322231 (1)(1) x x x x x ++-+-. 二、分式的恒等证明 【例15】 (4级)(1994广东潮州市初中数学竞赛) 求证:()()3322222222 22a a a ab b a ab b a ab b a ab b a b a b ????++--+-=++-+ ???-+? ??? 【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111 x y z y z x +=+=+,求证:2221x y z =.

条件分式求值的方法与技巧完整版

条件分式求值的方法与 技巧 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

学科: 奥数 教学内容:条件分式求值的方法与技巧 求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面: 一、将条件式变形后代入求值 例1已知 432z y x ==,z y x z y x +--+22求的值. 解:设4 32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=5 45443224322==+-?-?+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法. 例2已知的值求b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0, ∴ a +3b =0或a -2b =0, 解得a =-3b 或a =2b . 当a =-3b 时,原式=233=+---b b b b ; 当a =2b 时,原式=3 122=+--b b b b . 二、将求值变形代入求值. 例3已知)11()11()11(,0c b a a c b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b + c =0, ∴ 原式=-3. 例4已知31=+x x ,的值求1242++x x x . 分析:∵ 1)1(11122 2224-+=++=++x x x x x x x , ∴ 可先求值式的倒数,再求求值式的值. 解:∵ 1)1(12224-+=++x x x x x 8132=-=,

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法:)(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性)

(2)如果 bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++ 4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

第14讲有式的恒等变形

第14讲有理式的恒等变形 可以数是属统治着整个量的世界,而算数的四 则运算则可以看作是数学家的全部装备 麦克斯韦 知识方法扫描 有理式的恒等变形可以分为无条件限制等式和有条件限制等式两大类. 无条件等式的证明方法很多,常用的有:直接从左到右或从右到左的变形(常 常是从较复杂的一边向较简单的一边变形),还有比较法、分析法等. 条件等式的证明实质上是有根据,有目标的有理式的恒等变形,条件等式证 明的基本方法是对约束条件或待证等式进行适当变形, 运用有理式的对称,轮换 性质,有关非负数的性质及比较法,消元法和换元法等?在证明过程中,不但要 注意已知条件的变换,使之有利于应用,同时也要研究结论的需求, 结论部分复 杂的也要进行比较变换,使之有利于已知条件的沟通. 经典例题解析 2 2 b ea ab e (b e)(b a) (e a)(e b) 分析要证A=B ,可先证A-B=O ,这种方法称为求差法。 这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a , e 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第 三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作 轮换式.利用这种特性,可使轮换式的运算简化. 证明因为 例1.求证: a 2 be (a b)(a e) 左-右 a 2 be (a b)(a e) b 2 ca (b e)(b a) e 2 ab (e a)(e b) a 2 be (a b)(a e) a 2 ae ae be (a b)(a e) a(a c) c(a b) (a b)(a e) a. e abac 同理 b 2 ea e 2 ab (b e)(b a) b e b a (e a)(e b) e a b e

分式化简求值练习题带答案

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d = ?=,比例的两外项之积等于两内项之积. 知识点睛 中考要求

⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c = ?= ⑷合比性:a c a b c d b d b d ±±= ?=,推广:a c a kb c kd b d b d ±±=?= (k 为任意实数) ⑸等比性:如果....a c m b d n = ==,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??= ? 分式的除法:a c a d a d b d b c b c ?÷ =?=? 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=? =?个 个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)

⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±± =±= 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 例题精讲

分式的化简求值和分式方程

海豚教育个性化简案

海豚教育个性化教案(真题演练) 1. (2012?攀枝花)若分式方程:有增根,则k= 。 2. (2013?威海)若关于x 的方程无解,则m= 。 海豚教育个性化教案 分式的化简求值及分式方程一:分式的化简求值题型一:直接化简求值例1 :先化简,再求值:( + )÷ ,其中x= -2. 例2 :先化简,后求值: ,其中a = 3. 例3 :先化简再求值:

,其中 练习1:先化简,再求值 ,其中x=-2. 练习2:先化简,再求值: ,其中x= 练习3:先化简,再求值: ,其中 题型二:先化简,再取适当的数代入求值例1 :先化简: ,并从0, ,2 中选一个合适的数作为 的值代入求值。 例2 :先化简:,若﹣2≤x≤2,请你选择一个恰当的x值(x 是整数)代入求值.练习1:先化简

,再从﹣1、0、1 三个数中,选择一个你认为合适的数作为练 x 的值代入求值.习2:先化简 ,然后从不等组 的解集中,选取一个你认为符合题意的x 的值代入求值.题型三:整体代入求值 例1 :已知 ,求 的值 例2 :先化简,再求值: ,其中 例3 :先化简,再求值:,其中x 满足x2+x-2=0. 练习1:已知 ,求 的值. 练习2:先化简,再求值: ,其中x 为方程 的根. 练习3:先化简,再求值:

,其中m是方程x2+3x-1=0 的根.二:分式方程考点一:分式方程的概念分母中含有未知数的方程叫做分式方程。如 都是分式方程。注:一个式子是分式方程必须满足: 是方程; 分式的分母中含有未知数例一:下列哪些是分式方程?

2、3、4、5、

因式分解与分式化简求值

因式分解与分式化简求值 因式分解的几种常用方法 (1)提公因式法 (2)运用公式法: ①平方差公式:a 2-b 2=(a+b)(a-b) ②完全平方公式:a 2±2ab+b 2=(a ±b)2 (3)二次三项式型:x 2+(a+b)x+ab=(x+a)(x+b);及十字相乘法 (4)分组分解法: ①分组后能提公因式; ②分组后能运用公式. (5)求根公式法: 因式分解的一般步骤 可归纳为:一提二公三分组,十字相乘要彻底;若遇二次三项式,求根公式来帮忙。 (1)一“提”:先看多项式的各项是否有公因式,若有必须先提出来。 (2)二“公”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法用x 2+(p+q)x+pq 型分解。 (3)三“分组”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分成一组,使之分组后能“提”或能“公”,当然要注意其要分解到底才能结束。 (4)十字相乘法、求根公式法均针对二次三项式的因式分解。 (5)“查”:可以用整式乘法检查因式分解的结果是否正确。 (6)若有几个因式乘积再加减单项式的,可以先将几个因式的乘积求出,再进行多项式的因式分解。 (7)要注意整体思想的应用。 典型试题解析: 【例1】 因式分解: (1)-4x 2y+2xy 2-12xy ; (2)3x 2(a-b)-x(b-a); (3)9(x+y)2-4(x-y)2; (4)81a 4-1; (5)(x 2+2x)2+2(x 2+2x)+1; (6)(a 2+b 2)2-4a 2b 2. (7)m 3+2m 2-9m-18; (8)a 2-b 2-c 2-2bc ; (9) x 4 -5x 2+4; (10) x 3-2x 2 -5x+6. 专题二 有效分组再分解因式 【例2】(2007年广东中山)因式分解xy y x 844122+--,正确的分组是( ) A .)()(xy y x 844122--- B .xy y x 844122+--)( C .)44()8122y x xy +-+( D .)844(122xy y x -+- 专题三 在实数范围内分解因式 【例3】(2007年潍坊市)在实数范围内分解因式:4m 2+8m -4= . 分式化简求值: 一、填空题

相关文档
最新文档