高等代数作业 第二章行列式答案
《高等代数》第二章习题及答案

习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。
高等代数教程上王萼芳著课后习题部份解答2012

第一章 行列式1. 习题1.4(2)第2题 计算行列式。
14916491625916253616253649⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦2. 习题1.5第4(2)题 计算行列式中所有元素的代素余子式之和。
12100...00...............0...000n n a a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦0,1,2, (i)i n a≠=解:3. 习题1.6第1(3)题 计算行列式:1101231211232102321⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦第6题 计算2n 阶行列式aba b b a b a 0000000解:得列列加到第第,列,列加到第列,第列加到第将第,121212n n n n +-D =aba ab a a b a b b a b b a b b a 00000000000000000000000++++++ 行)行减第,第行行减第行,第行减第(第n n n n 121212+-b a b a b a b ba bb a b b a ---+++00000000000000000000000=n n n b a b a b a )()()(22-=-+4. 复习题 1第4题 计算行列式nn 222221222223222222222221-----------解: 原式244400014400006400000500222222222221)2()()2()4()2()3(++------------n n n=24444014440074400064000052221++⋅-n n=)2()1(7656+⨯+⨯⨯⨯⨯⨯n n =)!2(41+n第 6 题 计算行列式12121231212321----n n n n n n解:12121231212321----n n n n n n行)行减第第,行,行减第行,第行减第(第n n 13221- =122111111111111111111111--n n n ---------- (第n 列分别加到第1列,第2列,至第1-n 列)=131110000120001220012220 -+n nn (对第1列展开)=阶)1(1100012000122001222012222)1()1(-++-n n n =212)1(1-++n n n )(-第 7 题 计算行列式01211...110...01...0......... (10)n a aa a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1...0na a≠)第二章 线性方程组1. 习题2.1 第 1 (4) 题1212323434545561562(4)56256254x x x x x x x x x x x x x ì+=ïïïï++=-ïïï++=íïïï++=-ïïï+=-ïî56561615615656115656156156156151515561656565655156656615619156301515151515561656561619563065114150515150565191145665D 解:方程组的系数行列式对第行展开=-骣÷ç÷ç÷ç÷=--=-ç÷ç÷ç÷ç÷桫骣÷ç÷=--=-ç÷ç÷ç桫=?? Cramer D 0, ¹根据法则,方程组有唯一解。
高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
行列式课后练习及答案

0
0 0 0 0 0 0
0 解:Dn (1)
n ( n 1) 2
0 0 0
0 0
0 0
...............................
0
(1)
n ( n 1) 2
[ n ( 1) n 1 n ]
[ n 1 (1) n 1 n 1 ] (1)
2.若
(5 ) x1 2 x2 2 x3 0, 2 x1 (6 ) x2 0, 有非零解, 则 = 2或5或8 . 2 x1 (4 ) x3 0
5
x1 x2 x3 x4 5, x 2 x2 x3 4 x4 2, 3. 1 2 x 3x x3 5 x4 2, 的解是否唯一? 3x1 x 2 1 2 2 x3 11x4 0
答案:1.行列式概念的引进课后作业
a11
1. a21
a12 a22 a32 4 3 6 1 0 0 3 5
a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
a31 1 3 1 3
2. 5 2 1 80
(1 a) x1 x2 xn 0, 2 x (2 a)x 2x 0, 2 n 4.设齐次线性方程组为 1 (n 2) , 若其有非零解, nx1 nx2 (n a)xn 0.
则 a=
n(n 1) 或a 0 2
x1 2 x2 x3 1, 5.用克莱姆法则求解 2 x1 3x2 x3 0, 4 x 7 x 2 x 2. 2 3 1
高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X , 因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
高等代数2.1-引言

联合收入问题
R,S,T三公司有右 三公司有右 图股份关系。 公司 图股份关系。R公司 拥有T公司60%股份 公司60%股份, 拥有 公司60%股份, 公司掌握R公司 T公司掌握 公司 20%股份 ,R,S,T 股份…, 股份 各自营业净收入分别 10、 万元。 是10、8和6万元。求 各公司联合收入及实 际收入。 际收入。
+
15/27
例2.求 n 级排列 135 (2n 1)(2n)(2n 2) 42 . 的逆序数. 的逆序数.
方法一
解:135 (2n 1)(2n)(2n 2) 42
12
n1
n1
1
τ = 1 + 2 + + (n 1) + (n 1) + + 2 + 1 = n(n 1)
16/27
19/27
定理1 定理
对换改变排列的奇偶性.即经过一次对换, 对换改变排列的奇偶性.即经过一次对换, 奇排列变成偶排列,偶排列变成奇排列. 奇排列变成偶排列,偶排列变成奇排列. 证明 1) 特殊情形:作相邻对换 特殊情形: 设排列为
a1 al ab b1 bm ab
对换 a 与 b
a1 al ba b1 bm
两式相减消去 x2,得
(a11a22 a12a21)x1 = b1a22 a12b2 ;
4/27
类似地, 类似地,消去 x1,得 (a11a22 a12a21)x1 = b1a22 a12b2;
(a11a22 a12a21)x2 = a11b2 b1a21 ,
当 a11a22 a12a21 ≠ 0 时, 原方程组有唯一解
除 a , b 外,其它元素所成逆序不改变. 其它元素所成逆序不改变
华东理工大学线性代数习题答案-第二章

第二章 行列式一、习题解答2.1(1)解:逆序数(4132)4τ= (2)解:(36195)4τ= (3)解:(3)(2)(21(1)...3)12n n n n τ---=+2.2解:根据行列式的定义,每个乘积均由来自不同行不同列的元素组成,当来自不同行不同列的元素的行标为自然排列时,其列标的逆序数决定了该乘积项的符号,根据观察,出现4x 的只有主对角线上的四个元素的相乘项11223344a a a a ,该项为(1234)(1)236x x x x x τ-⋅⋅⋅⋅=,故4x 的系数为6,而可以出现3x 的乘积项有两项,它们是1221334414223341,,a a a a a a a a 即分别为3)4231(3)1234(33)1(,331)1(x x x x x x x x -=⋅⋅⋅⋅--=⋅⋅⋅⋅-ττ两项相加,即知3x 的系数为6-。
2.3(1)解:将行列式的2,3,4列全加到第一列后,再提公因子,得原式=121314(1)(1)(1)3111111111113011101101003331(1)(1)(1)3310111010010311011100001r r r ----===⋅⋅-⋅-⋅-=--- (2)解:原式=5514000100200275(1)51(1)036036941011410115++⋅-=⋅⋅--=130352(1)10(01043)120410+-⋅⋅-=-⋅⋅-⋅=(3)解:原式=1213142112312311(1)359(1)(1)3293(1)32581752418252212215+++⋅-+-⋅-+⋅-=--=-----(4)解:原式=342312222222222222(1)22222222(1)(1)222222221234213243543243546543546576r r r -------=--------=14916149163579357905791122227911132222==(5)解:原式=12312312456133310025789333=⋅=⋅= 2.4(1)解:原式=2()12()2()12()1x y yx y yx y x y x yxx y x yx x y xyxy+++++=+++=12()02()10yx yx yx y xy x y x y xx yx+-+-=+⋅⋅----=22332()()2()x y x xy y x y ⎡⎤+--+=-+⎣⎦(2)解:原式=1411(1)0a b cb ac b a cb ac b a cc a a b b c c a a b b c b c ab c a+------=⋅------- =1()11ab c a b cbcc aa b b c c a b a b c a b bc a b c a c a -------==++ =21()0()()()()0bca b c a b b c a b c a b a c b c c b a c⎡⎤++--=++--+-⎣⎦--=3333a b c abc ++-(3)解:原式2143(1)(1)0011001111111100001111111111r r x x x xxyy y y y----==--= 22111111111100110000110011y x y x xy yx xy=--=--2.5(1)证:将左端行列式的底2,3列加到第一列,则第一列元素全为零,由行列式性质, 得证。
高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数第四次作业第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =则._____122122211121=n n nn n n a a a a a a a a a(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2. 设d =nn n n nna a a a a a a a a 212222111211则121112222121n n n nnn a a a a a a a a a =d ( )×3. 设d =nnn n n na a a a a a a a a 212222111211则d a a a a a a a a a nnn n n n-=112112122221( )×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x -=000000 ( )× 6.0000000=yxh gf e d c b a ( )√7. 如果行列式D 的元素都是整数,则D 的值也是整数。
( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。
( )×9.n na a a a a a 2121= ( )× 10. 0100002000010nn -=n ! ( )×三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093142112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )513312446526a a a a a a 4. n 阶行列式的展开式中,取“–”号的项有( )项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )3,1k l ==,符号为正; (D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602. 计算3111131111311113. 解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2.222)(00000000a b b a a b b a ab -= ( )√ 3.222)(00000000b a a b b a a b b a -= ( )√4.0=d b a c d b c a b d c a b d a c ( )√ 5.483111131111311113= ( )√ 6.)(000000hx gy a yh fdx g e c b a -= ( )× 7.0107310111187654321=--- ( )√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2- 2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零 (B )行列式主对角线上有一个元素为零 (C )行列式零元素的个数多于n 个 (D )行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a 的解是( )B (A )2221211a b a b x =,2211112b a b a x =(B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=10011001101aa aa ---解:方法1:100110011001aa a a ---21r r ↔=a aa a 100110001011---21r ar +=aaa a a 1001100100112--+-32r r ↔=aaa a a 10101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---•a aaa a a=1])1([22++++a a a a a .1324++=a a2. 计算12125431432321-=n n n D n解:12125431432321-n n n121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n121125411431321)1(21-+=n n n n11101111110321)1(21n nnn n --+=111111111)1(21n n nn n ---+= )1()1(0000111)1(121212)1(+-=---+=--n n n nn n n n n3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4. 计算=n D 12111111111n a a a +++解:=n D 12111111111na a a +++ na a a111101121++=12111111+111a a ++1211--+=n n n a a a D a ).11(121∑=+=ni in a a a a 5. 解方程:22x 9132513232x 213211--=0.解:22x9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=224000130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:2.设111,12,11,111211nn n n n a a a a a a D ---=,求证:n D D D D +++= 21,其中k D ()1,2,,k n =为将D 中第k 列元素换成121,,,,1n x x x -后所得的新行列式。