固体力学基础知识介绍

合集下载

固体力学基础知识介绍

固体力学基础知识介绍

固体力学基础知识介绍固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。

固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。

在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。

自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。

人所共知的山崩地裂、沧海桑田都与固体力学有关。

现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算方法。

由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传统的有用的经典理论,另一方面为适应各门现代工程的特点而建立新的理论和方法。

固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。

薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。

在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。

起源固体力学的历史可以追溯到1638年,意大利科学家伽利略在实验的基础上首次提出梁的强度计算公式。

一般认为这是材料力学发展的开端。

当时,还采用刚体力学的方法进行计算,以致所得结论不完全正确。

后来,英国科学家R.胡克在1678年发表了"力与变形成正比"这一重要物理定律(即胡克定律),建立了弹性变形的概念。

从17世纪末到18世纪中,一些学者先后研究了弹性杆的挠度曲线、侧向振动和受压稳定性,发展了弹性杆的力学理论。

基本概念的形成弹性固体的力学理论是在实践的基础上于17世纪发展起来的。

英国的胡克于1678年提出:物体的变形与所受外载荷成正比,后称为胡克定律;瑞士的雅各布第一•伯努利在17世纪末提出关于弹性杆的挠度曲线的概念;而丹尼尔第一•伯努利于18世纪中期,首先导出棱柱杆侧向振动的微分方程;瑞士的欧拉于1744年建立了受压柱体失稳临界值的公式,又于1757年建立了柱体受压的微分方程,从而成为第一个研究稳定性问题的学者;法国的库仑在1773年提出了材料强度理论,他还在1784年研究了扭转问题并提出剪切的概念。

考研固体力学知识点剖析

考研固体力学知识点剖析

考研固体力学知识点剖析一、应力和应变在固体力学中,应力和应变是重要的基础概念。

应力是物体内部受到的力对单位面积的分布情况,通常用σ表示。

而应变是物体在受到应力作用后发生的形变程度,通常用ε表示。

应力和应变之间有着密切的关系,通过研究它们的关系可以深入理解固体的力学性质。

二、弹性力学弹性力学是固体力学的重要分支,它研究了物体在受到力作用后能够恢复原状的能力。

弹性力学可以通过应力和应变之间的关系来描述物体的力学行为。

其中,胡克定律是弹性力学的基本原理之一,它说明了应力和应变之间的线性关系。

胡克定律表达为σ = Eε,其中E是杨氏模量,它反映了物体抵抗力的能力。

三、杆的应力分析杆是固体力学中研究的一种基本结构,其应力分析是固体力学的重要内容之一。

杆在受到力作用时会发生变形,这个变形通常由拉伸、压缩或弯曲等形式体现。

通过对杆的应力分析,可以计算出杆的应力和变形情况,从而进一步了解杆的强度和稳定性。

四、梁的弯曲理论梁是一种常见的结构形式,其弯曲理论也是固体力学重要的研究内容。

梁在受到外力作用后会发生弯曲变形,而弯曲变形的大小与梁的形状、材料特性以及外力的大小有关。

通过梁的弯曲理论,可以计算出梁在受到外力作用时的应力和变形情况,进一步研究梁的强度和稳定性。

五、圆盘和圆环的应力分析圆盘和圆环是固体力学中常见的结构,其应力分析也是一个重要研究领域。

在受到力作用时,圆盘和圆环会出现不同形式的应力分布,如径向应力、切向应力、周向应力等。

通过对圆盘和圆环的应力分析,可以计算出不同位置的应力大小和分布情况,进一步研究它们的强度和稳定性。

六、刚体力学刚体力学是固体力学的另一个重要分支,它研究了物体在受到力作用后不发生形变的情况。

刚体力学可以通过研究力的平衡和力矩的平衡来描述物体的力学行为。

通过刚体力学的分析,可以计算出物体受力的大小和作用点的位置,理解物体的静力学性质和平衡条件。

七、应力分析的数值计算方法除了传统的解析方法外,数值计算方法在应力分析中也发挥了重要作用。

固体力学概述

固体力学概述

固体力学概述1. 固体力学基本概念固体力学是研究固体在各种力和力矩作用下的力学行为的科学。

固体可以是晶体、非晶体、复合材料或生物组织等。

固体力学主要关注的是固体在受力状态下的行为,包括变形、断裂、损伤等。

2. 弹性力学基础弹性力学是研究弹性体在外力作用下的应力、应变和位移等的学科。

当外力撤去后,弹性体能够恢复到原来的状态。

弹性力学的基本原理包括胡克定律、弹性模量等。

3. 材料力学材料力学是研究材料在各种力和力矩作用下的行为的学科。

它主要关注材料的强度、刚度、稳定性等问题,以及如何设计出既安全又经济的结构。

4. 塑性力学塑性力学是研究塑性变形过程的学科。

当外力超过材料的屈服点时,材料会发生塑性变形,即使外力撤去后也不能完全恢复原来的形状。

塑性力学对于理解材料的极限承载能力和工程设计中的安全系数至关重要。

5. 断裂力学断裂力学是研究材料断裂行为的学科。

它主要关注的是裂纹的萌生、扩展和断裂的过程,以及如何预测和控制材料的断裂行为。

6. 复合材料力学复合材料力学是研究复合材料的力学行为的学科。

复合材料由两种或多种材料组成,其力学行为比单一材料复杂得多。

复合材料力学对于航空、航天、汽车等领域的材料设计具有重要意义。

7. 热力学与相变热力学与相变是研究材料在温度变化时的热力学特性和相变行为的学科。

它涉及到材料的热膨胀、热传导、相变温度等,对于理解材料的热行为和热稳定性至关重要。

8. 非线性力学非线性力学是研究非线性现象的学科。

当外力足够大时,固体材料的力学行为会变得非常复杂,出现非线性现象,如分岔、混沌等。

非线性力学对于理解材料的极限行为和设计复杂结构具有重要意义。

9. 有限元分析有限元分析是一种数值分析方法,用于求解各种复杂的固体力学问题。

通过将连续的物体离散化为有限个小的单元(称为有限元),可以用数值方法求解这些单元的平衡方程,从而得到物体的应力、应变等。

有限元分析是现代工程设计和分析中不可或缺的工具。

固体力学分支

固体力学分支

固体力学分支
固体力学是力学的一个分支,涉及研究固体物质的力学特性和行为。

它主要研究固体的变形、应力、应力应变关系以及固体的弹性、塑性和断裂等性质。

固体力学的主要分支包括:
1. 弹性力学:研究固体的弹性性能和应力应变关系。

其中,线性弹性力学是最常见的弹性力学分支,它假设固体在小变形范围内服从胡克定律。

2. 塑性力学:研究固体的塑性变形和塑性流动。

它研究材料的屈服、应变硬化、回弹等塑性特性。

3. 断裂力学:研究固体的断裂行为和破坏机制。

包括静态断裂力学和疲劳断裂力学。

4. 组织力学:研究复杂材料(如复合材料)的力学性质,包括微观组织的力学行为。

5. 接触力学:研究接触问题中的应力分布和形变特性。

主要包括刚体接触力学和弹性接触力学。

6. 裂纹力学:研究裂纹对固体力学性能的影响及其扩展行为。

主要应用于材料和结构的断裂评估与设计。

除上述主要分支外,固体力学还与流变学、热力学等学科有着密切的关系,并在实际工程和科学研究中具有广泛应用。

固体物理学的基础知识

固体物理学的基础知识

固体物理学的基础知识固体物理学是物理学的一个重要分支,研究物质固态状态的性质和行为。

在这篇文章中,我们将介绍一些固体物理学的基础知识,包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。

一、晶体结构晶体是指由周期性排列的原子、离子或分子组成的物质。

晶体结构描述了这些粒子在空间中的排列方式。

最基本的晶体结构是简单立方、面心立方和体心立方。

简单立方是最简单的结构,每个原子与其六个相邻原子相接触;面心立方在每个立方的面心上添加了一个原子;体心立方在每个简单立方的中心添加了一个原子。

除了这些基本结构,还存在许多复杂的晶体结构,如钻石和蓝宝石。

二、晶格常数晶格常数是描述晶体结构的一个重要参数。

它表示晶体中相邻原子之间的距离。

晶格常数可以通过实验或计算得到。

对于简单立方结构来说,晶格常数就是原子间距离;对于面心立方和体心立方结构,晶格常数与原子间距离有特定的关系。

三、晶体缺陷晶体缺陷是指晶体结构中的一些缺陷或杂质。

晶体缺陷可以分为点缺陷、线缺陷和面缺陷。

点缺陷包括空位、间隙原子和替位原子;线缺陷包括位错和螺旋位错;面缺陷包括晶界和界面。

晶体缺陷对晶体的性质有重要影响,如电导率、热导率和光学性质等。

四、固体力学性质固体力学性质描述了固体对外界力的响应和变形行为。

其中最基本的性质是弹性模量。

弹性模量分为压缩模量、剪切模量和杨氏模量,它们分别描述了固体对压力、剪切力和应力的响应。

除了弹性模量,还有塑性、断裂和疲劳等力学性质值得研究。

结论固体物理学的基础知识包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。

通过对这些知识的研究,我们可以更深入地理解固体的性质和行为,为材料科学和工程技术的发展做出贡献。

希望本文对你对固体物理学的学习有所帮助。

参考文献:[1] Ashcroft N W, Mermin N D. Solid State Physics. Cengage Learning, 1976.[2] Kittel C. Introduction to Solid State Physics. John Wiley & Sons, 2005.[3] Rao C N R, Rao C N R, Omar Syed Ismail. Angular Momentum in Quantum Physics: Theory and Application. World Scientific, 2014.。

固体力学基本方程

固体力学基本方程

固体力学基本方程固体力学是研究物体在受力作用下的变形和运动的学科。

其基础是一些基本方程,这些方程是描述固体材料力学行为的数学表达式。

本文将介绍固体力学中的基本方程,包括应力-应变关系、变形与位移关系、能量方法、力学平衡方程和边界条件等。

1.应力-应变关系应力-应变关系是固体力学中最基础的方程之一。

它描述了外力作用下固体材料的应变与应力之间的关系。

根据麦克斯韦方程,应变是应力与弹性模量之间的比例关系。

对于线弹性材料,应力与应变之间满足胡克定律,即应力等于弹性模量与应变的乘积。

2.变形与位移关系变形与位移关系是描述固体材料在受力作用下发生变形时,材料内部各点位移与应变之间的关系。

对于小变形情况,可以利用拉格朗日描述变形。

拉格朗日公式用位移场来描述固体的运动,并与应变场相关联。

位移与应变之间的关系可由位移梯度张量和应变张量之间的关系给出。

3.能量方法能量方法是固体力学中一种重要的分析方法。

它基于能量守恒原理,通过计算系统储存的弹性势能和外界对系统做的功来得出力学行为。

能量方法不仅可以用于弹性材料的分析,还可以用于塑性、粘弹性和断裂等不同力学行为的分析。

4.力学平衡方程力学平衡方程是固体力学中最基本的方程之一。

它描述了固体物体在受力作用下的平衡条件。

根据牛顿定律和力的平衡性,可以得出力学平衡方程。

对于静力学平衡,作用在物体上的体力之和等于零;对于动力学平衡,还需要考虑物体的加速度。

5.边界条件边界条件是解固体力学问题时必须考虑的重要因素之一。

它描述了固体物体与外界的相互作用。

边界条件可以包括位移边界条件、力边界条件和热边界条件等。

位移边界条件描述了物体的边界上的位移情况,力边界条件描述了物体与外界的力的作用关系,热边界条件描述了物体在温度变化下的行为。

固体力学基本方程是固体力学研究的基础,它们为解决工程和科学问题提供了框架和方法。

这些方程的应用范围广泛,包括材料强度分析、结构力学、固体材料的变形和破坏行为等。

固 体 力 学

固 体 力 学

固体力学固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。

固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。

在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。

自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。

人所共知的山崩地裂、沧海桑田都与固体力学有关。

现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算方法。

由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传统的有用的经典理论,另一方面为适应各们现代工程的特点而建立新的理论和方法。

固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。

薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。

在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。

固体力学的发展历史萌芽时期远在公元前二千多年前,中国和世界其他文明古国就开始建造有力学思想的建筑物、简单的车船和狩猎工具等。

中国在隋开皇中期(公元591~599年)建造的赵州石拱桥,已蕴含了近代杆、板、壳体设计的一些基本思想。

随着实践经验的积累和工艺精度的提高,人类在房屋建筑、桥梁和船舶建造方面都不断取得辉煌的成就,但早期的关于强度计算或经验估算等方面的许多资料并没有流传下来。

尽管如此,这些成就还是为较早发展起来的固体力学理论,特别是为后来划归材料力学和结构力学那些理论奠定了基础。

发展时期实践经验的积累和17世纪物理学的成就,为固体力学理论的发展准备了条件。

在18世纪,制造大型机器、建造大型桥梁和大型厂房这些社会需要,成为固体力学发展的推动力。

第二章 固体力学基础

第二章 固体力学基础

第一节 固体力学中的若干定义和概念
设材料厚度为T,在静力作用下的变形量为δ,将变形量与
厚度T之比称为应变.
T
包装力学中,常将δ称为减薄量或压减量.
小变形范围内,应力应变满足虎克定律:
E
弹簧刚度(刚度系数)
kF
EA l
x y
u x v y
, ,
z
w , z
xy
v x
u y
yz
w y
(2)线性弹性体的叠置组合
设两种材料的承载面积,均为A;材料Ⅰ厚度为T1,材料Ⅱ厚 度为T2,总厚度T= T1+ T2。
组合材料的弹性系数和原始材料弹性系数的关系可表示为:
1 1 1 k k1 k2
k k1k2 k1 k2
k1
E1 A T1
,
k
2
E2 A T2
k E1E2 A T1E2 T2 E1
(4)非线型弹性体的叠放组合
①面积相同的两种非线型弹性材料的叠放组合
1 2
联接同一应力(纵)坐标下 曲线Ⅰ和Ⅱ上的对应点,得
线段aa′,bb′,cc′,按α : β的比值分割这些线段,把
各分割点联成平滑的曲线, 则得合成的应力—应变曲线。
②面积不同的两种非线型弹性材料的叠放组合
x x1 x2
(1)线性弹性体的并列组合
设两种材料的厚度相 同;材料Ⅰ的承载面 积为A1,材料Ⅱ的承 载面积为A2。
材料的弹性系数可以表示成:
k EA T
组合材料的弹性系数为各组合材料弹性系数之和,表示为:
n
k ki i 1
k
k1
k2
E1 A1
E2 A2 T
k
(E1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体力学基础知识介绍
固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。

固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。

在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。

自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。

人所共知的山崩地裂、沧海桑田都与固体力学有关。

现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算方法。

由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传统的有用的经典理论,另一方面为适应各门现代工程的特点而建立新的理论和方法。

固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。

薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。

在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。

起源
固体力学的历史可以追溯到1638年,意大利科学家伽利略在实验的基础上首次提出梁的强度计算公式。

一般认为这是材料力学发展的开端。

当时,还采用刚体力学的方法进行计算,以致所得结论不完全正确。

后来,英国科学家R.胡克在1678年发表了"力与变形成正比"这一重要物理定律(即胡克定律),建立了弹性变形的概念。

从17世纪末到18世纪中,一些学者先后研究了弹性杆的挠度曲线、侧向振动和受压稳定性,发展了弹性杆的力学理论。

基本概念的形成
弹性固体的力学理论是在实践的基础上于17世纪发展起来的。

英国的胡克于1678年提出:物体的变形与所受外载荷成正比,后称为胡克定律;瑞士的雅各布第一•伯努利在17世纪末提出关于弹性杆的挠度曲线的概念;而丹尼尔第一•伯努利于18
世纪中期,首先导出棱柱杆侧向振动的微分方程;瑞士的欧拉于1744年建立了受压柱体失稳临界值的公式,又于1757年建立了柱体受压的微分方程,从而成为第一个研究稳定性问题的学者;法国的库仑在1773年提出了材料强度理论,他还在1784年研究了扭转问题并提出剪切的概念。

这些研究成果为深入研究弹性固体的力学理论奠定了基础。

应用
对水利工程来说,固体力学主要用于工程结构的力学分析。

所得的结果(如结构的内力、应力、位移)可作为设计的依据,使工程结构满足安全与经济这两方面的设计要求。

力学分析的方法可以根据结构的类型或其简化模型而分别选用。

工程上常常遇到的杆件或杆系结构是应用材料力学或结构力学进行力学分析的。

例如:重力坝、闸墩等可以简化为杆件,应用材料力学分析它们的应力;对于水电站厂房骨架、闸门梁格系统等杆系结构,则应用结构力学进行内力分析。

这样分析只要用简单的数学方法,计算比较方便。

对于实体、板和壳等宜用弹性力学进行力学分析。

工程结构的简化和力学分析可以有不同的方案。

例如:前述的重力坝又可以简化为楔形体而利用弹性力学中的楔形体解答;还可以作为弹性力学的平面问题,应用有限元法或其他数值方法分析坝体应力。

板和壳也可以简化为杆系结构,作为结构力学问题进行计算。

有些问题的研究要综合应用固体力学的多个分支学科。

例如对基础梁的研究就需综合应用结构力学和弹性力学。

固体力学在应用中不断发展,随着电子计算机的广泛使用,力学分析和工程设计有效地结合,出现了结构优化设计、计算机辅助设计等新学科。

相关文档
最新文档