大学物理学_第二版_第1-3章习题解答
《大学物理学》第二版上册课后答案

大学物理学习题答案习题一 答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5)r 和r 有区别吗?v 和dv 0 和d vv 有区别吗?0 各代表什么运动?dtdt(6) 设质点的运动方程为: xx t, y y t ,在计算质点的速度和加速度时,有人先求出 rx 2y 2 ,然后根据vdr 及d 2 rdt a2dt而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即2dy 222dx及ad 2xd 2yvdtdt 2 dt 2dt你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零 .”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,a n 、 a t 、 a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿 x 轴运动,坐标与时间的变化关系为 x 4t2t 2 ,式中 x, t 分别以 m 、 s 为单位,试计算: (1) 在最初2s内的位移、平均速度和2s 末的瞬时速度;(2) 1s末到 3s 末的平均加速度; (3) 3s末的瞬时加速度。
解:(1)最初 2s 内的位移为为:x x(2)x(0)00 0(m / s)最初 2s 内的平均速度为:v ave x00(m / s) t2dxt 时刻的瞬时速度为:v(t)44tdt2s末的瞬时速度为:v(2)4424m / s(2)1s 末到 3s末的平均加速度为:aave v v(3) v(1)8 04m/ s2 t22(3)3s末的瞬时加速度为:a dv d(4 4t )4(m / s2 ) 。
大学物理(第二版)第一章习题答案

第一章习题1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北走了18m 。
求:⑴ 位移和平均速度 ⑵ 路程和平均速率 解:由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。
⑴ 位移:OC30OA m = ,10AB m =,18BC m =由于是正西北方向,所以45ABD ADB ∠=∠=︒BD =(()(()222222cos 4518301021830102OC CD OD OD CD =+-︒=-+--⨯-⨯-⨯1324305.92=-≈ 17.5OC m ≈平均速度的大小为:()17.50.35m 50r v t ∆===∆ ⑵ 路程应为:58m s OA AB BC =++=平均速率为1.16m s 1.2有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。
解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m =所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3质点作直线运动,其运动方程为2126x t t =-,采用国际单位制,求:⑴ 4t s =时,质点的位置,速度和加速度⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置⑷ 作位移,速度以及加速度随着时间变化的曲线图。
解:⑴ 由运动方程2126x t t =-,可得速度,加速度的表达式分别为1212dx v t dt ==- 12dv a dt==- 所以当4t s =时,质点的位置,速度和加速度分别为48m x =-;36m s v =-;212m a =-⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v =⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4质点沿直线运动,速度()3222m v t t =++,如果当2s t =时,4m x =,求3st =时质点的位置,速度和加速度。
大学物理学第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《物理学(第二版)》(李迺伯主编)第一章:过关测试第一关1.判断下列哪一种说法是正确的A.你用手关一扇门,此门可以看成质点;B.开枪后子弹在空中飞行,子弹可看成质点;C.讨论地球自转,地球可看成质点;D.一列火车在半径为800m的圆轨道上行驶,火车可看成质点。
答案:B2.下列哪一种说法是正确的A.加速度恒定不变时,物体的运动方向必定不变;B.平均速率等于平均速度的大小;C.不论加速度如何,平均速率的表达式总可以写成。
上式中为初始速率,为末了速率;D.运动物体的速率不变时,速度可以变化。
答案:D3.某质点的运动学方程为,以为单位,以为单位。
则该质点作A.匀加速直线运动,加速度为正值;B.匀加速直线运动,加速度为负值;C.变加速直线运动,加速度为正值;D.变加速直线运动,加速度为负值。
答案:D (解:速度加速度)4.质点作匀加速圆周运动,它的A.切向加速度的大小和方向都在变化;B.法向加速度的大小和方向都在变化;C.法向加速度的方向变化,大小不变;D.切向加速度的方向不变,大小变化。
答案:B5.气球正在上升,气球下系有一重物,当气球上升到离地面100 m高处,系绳突然断裂,最后重物下落到地面。
与另一物体从100 m高处自由下落到地面的运动相比,下列结论正确的是A.运动的时间相同;B.运动的路程相同;C.运动的位移相同;D.落地时的速度相同。
答案:C(解:由于重物在100 m高处有向上的初速度,先上升,到达最高点后再下落。
与物体从100 m高处自由落体到地面的运动相比,运动的时间、路程,落地时的速度均不相同,仅位移相同。
)6.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A.小球受到重力、绳的拉力和向心力的作用;B.小球受到重力、绳的拉力和离心力的作用;C.绳子的拉力可能为零;D.小球可能处于受力平衡状态。
答案:C(解:小球所受合力的法向分量有时称作向心力,它是“合力的分量”,不是其它物体施加的,故A不正确。
大学物理习题册及解答第二版第一章质点的运动

7 汽车在半径为200m的圆弧形公路上刹车,刹车开始阶段的路程
随时间的变化关系为 S 20t 0.2t3(SI),汽车在t=1s时的切向加速
度
,法向加速度大小为 ,加速度的大小和方向为
和
。
at
d 2S dt 2
1.2t
1.2m / s2
an
2
R
1 dS R dt
2
(20 0.6t 2 )2 R
第一章 质点的运动(一)
一、选择题
1 某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则
该质点作 (A)匀加速直线运动,加速度沿x轴正方向. (B)匀加速直线运动,加速度沿x轴负方向. (C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
2
一质点在某瞬时位于位矢 r(
2
4 一质点沿x方向运动,其加速度随时间变化关系为a =3+2t(SI) , 如果初始时质点的速度v0为5m/s,则当t为3s时,质点的速度v
=_2__3_m_/_s_
5.一质点作半径为 0.1 m的圆周运动,其角位置的运动学方程为:
π
1 t2
(SI)
42
则其切向加速度为 a
R
R d 2
0.1m / s2
定要经过2m的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大.
3. 在相对地面静止的坐标系内, A、B 二船都以3m/s 的速率匀
速行驶, A 船沿x轴正向, B船沿y轴正向,今在船 A 上设置与静
(A)
1 2
大学物理第二版答案(北京邮电大学出版社)

大 学 物 理 习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:(m)j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(2) 第一秒内位移jy y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V (4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V (5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txvc t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12即1224134-++=t t t x tt tv a t t v 63d d 23223+==++=将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x 1-3 (1) 由运动方程消去t 得轨迹方程⎩⎨⎧+==ty t x 2342)3(2=--y x (2) 1秒时间坐标和位矢方向为 my mx 5411== [4,5]m:︒===3.51,25.1ααxytg (3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V (4) 质点的速度与加速度分别为 itVa j i tr V8d d ,28d d ==+== 故t =1s 时的速度和加速度分别为2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯即该星云是年前和我们银河系分离的.101009.2⨯1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s 1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得,,如图所示,相对南面,小球开始下落时,它和电2m/s 2.1=a s 5.00=t h 梯的速度为m/s)0v 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为习题1-9图 习题1-10图习题1-12图习题1-13图习题2-1图2m/s 0.17=三物体只有水平方向的运动,只须列出水平方向的牛顿方程及相关方程:习题2-3图习题2-2图)4(:)3(0cos )2(sin :)1(:322211MaN F M g m T a m T m am T m =-⎩⎨⎧=-==水平αα为绳中的雨拉力在水平向的合力水平3N )5(sin 3αT T N +=水平联立(1),(2),(3),(4),(5)解得)N (78480)(2221212==-++=g m m g m m m m F (因为三个物体有同一加速度a ,且在水平方向只受外力F 的作同,所以,可将三个物体看作一个物体:aM m m F )(21++=再与(1),(2),(3)式联立求解即可。
《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ?和r ?有区别吗?v ?和v ?有区别吗?0dv dt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+ dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ?===? t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-?=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ?---====-? (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
大学物理学_第二版_第1-3章习题解答3

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆有区别吗?0dv dt= 和0d v dt = 各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt = 及 22d ra dt=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4)质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5)r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v 有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动?(6)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =,然后根据dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1)最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
质点作直线运动,初速度为零,初始加速度为0a ,质点出发后,每经过τ时间,加速度均匀增加b 。
求经过t 时间后,质点的速度和位移。
解: 由题意知,加速度和时间的关系为利用dv adt =,并取积分得000v tb dv a t dv τ⎛⎫=+ ⎪⎝⎭⎰⎰,202b v a t t τ=+ 再利用dx vdt =,并取积分[设0t =时00x =]得00x tx dx vdt =⎰⎰,230126b x a t t τ∆=+ 一质点从位矢为(0)4r j =r r 的位置以初速度(0)4v i =r r 开始运动,其加速度与时间的关系为(3)2a t i j =-r r r .所有的长度以米计,时间以秒计.求:(1)经过多长时间质点到达x 轴;(2)到达x 轴时的位置。
解: 203()(0)()4(2)2t v t v a t dt t i t j ⎛⎫=+=+- ⎪⎝⎭⎰r r r r r (1) 当240t -=,即2t s =时,到达x 轴。
(2) 2t s =时到达x 轴的位矢为 :(2)12r i =r r即质点到达x 轴时的位置为12,0x m y ==。
一质点沿x 轴运动,其加速度与坐标的关系为2a x ω=-,式中ω为常数,设0=t 时刻的质点坐标为0x 、速度为0v ,求质点的速度与坐标的关系。
解:按题意 222d x x dtω=- 由此有 dx dv v dt dx dx dv dt dv dt x d x ====-222ω, 即 xdx vdv 2ω-=,两边取积分 ⎰⎰-=xx v v xdx vdv 002ω, 得 2022122212021221x x v v ωω+-=- 由此给出v =±,20202x v A +⎪⎭⎫ ⎝⎛=ω 一质点的运动方程为k t j t i t r ϖϖϖϖ++=24)(,式中r ,t 分别以m 、s 为单位。
试求:(1) 质点的速度与加速度;(2) 质点的轨迹方程。
解:(1) 速度和加速度分别为: (8)dr v t j k dt ==+v v v v , j dtv d a ϖϖ8== (2) 令k z j y i x t r ϖϖϖϖ++=)(,与所给条件比较可知 1=x ,24t y =,t z =所以轨迹方程为:21,4x y z ==。
已知质点作直线运动,其速度为213()v t t ms -=-,求质点在0~4s 时间内的路程。
解: 在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运动出现往返。
如果计算积分40vdt ⎰,则求出的是位移而不是路程。
求路程应当计算积分4v dt ⎰。
令230v t t =-=,解得3t s =。
由此可知:3t <s 时,0v >,v v =; 3t =s 时,0v =;而3t >s 时,0v <,v v =-。
因而质点在0~4s 时间内的路程为34232303313116()23233t t t t m ⎡⎤⎡⎤=---=⎢⎥⎢⎥⎣⎦⎣⎦。
在离船的高度为h 的岸边,一人以恒定的速率0v 收绳,求当船头与岸的水平距离为x 时,船的速度和加速度。
解: 建立坐标系如题图所示,船沿X 轴方向作直线运动,欲求速度,应先建立运动方程,由图题,可得出习题图两边求微分,则有船速为 按题意0dr v dt=-(负号表示绳随时间t 缩短),所以船速为 负号表明船速与x 轴正向反向,船速与x 有关,说明船作变速运动。
将上式对时间求导,可得船的加速度为负号表明船的加速度与x 轴正方向相反,与船速方向相同,加速度与x 有关,说明船作变加速运动。
一质点沿半径为10cm 的圆周运动,其角坐标θ(以弧度rad 计)可用下式表示 其中t 的单位是秒(s )试问:(1)在2t s =时,它的法向加速度和切向加速度各是多少?(2)当θ等于多少时其总加速度与半径成45o 角 ?解:(1) 利用 324t θ=+,2/12d dt t ωθ==,/24d dt t αω==,得到法向加速度和切向加速度的表达式24144n a r rt ω==,24t a r rt α==在2t s =时,法向加速度和切向加速度为:4421441440.12230.4()n a rt m s -==⨯⨯=⋅,(2) 要使总加速度与半径成45o 角,必须有n t a a =,即414424rt rt =解得 31/6t =,此时 67.2423=+=t θrad甲乙两船,甲以10/km h 的速度向东行驶,乙以15/km h 的速度向南行驶。
问坐在乙船上的人看来,甲船的速度如何?坐在甲船上的人看来乙船的速度又如何? 解:以地球为参照系,设i ϖ、j ϖ分别代表正东和正北方向,则甲乙两船速度分别为 h km i v /101ϖϖ=,h km j v /152ϖϖ-=根据伽利略变换,当以乙船为参照物时,甲船速度为h km v /1.18151022=+=ϖ,ο31.561015==arctg θ 即在乙船上看,甲船速度为18.1/km h ,方向为东偏北ο31.56同理,在甲船上看,乙船速度为18.1/km h ,方向为西偏南ο31.56。
有一水平飞行的飞机,速率为0v ,在飞机上安置一门大炮,炮弹以水平速度v 向前射击。
略去空气阻力,(1) 以地球为参照系,求炮弹的轨迹方程;(2) 以飞机为参照系,求炮弹的轨迹方程;(3) 以炮弹为参照系,飞机的轨迹如何?解:(1) 以地球为参照系时,炮弹的初速度为01v v v +=,而t v x 1=,25.0gt y -= 消去时间参数t ,得到轨迹方程为:202)(2v v gx y +-=(若以竖直向下为y 轴正方向,则负号去掉,下同) (2) 以飞机为参照系时,炮弹的初速度为v ,同上可得轨迹方程为222vgx y -= (3) 以炮弹为参照系,只需在(2)的求解过程中用x -代替x ,y -代替y ,可得222vgx y =. 如题图,一条船平行于平直的海岸线航行,离岸的距离为D ,速率为v ,一艘速率为u v <的海上警卫快艇从一港口出去拦截这条船。
试证明:如果快艇在尽可能最迟的时刻出发,那么快艇出发时这条船到海岸线的垂线与港口的距离为x u =;快艇截住这条船所需的时间为t=。
港口 习题图证明:在如图所示的坐标系中,船与快艇的运动方程分别为11x vt y D =⎧⎨=⎩ 和 22cos sin x x u t y u tθθ=+⋅⎧⎨=⋅⎩ 拦截条件为:⎩⎨⎧==2121y y x x 即 cos sin vt x u t D u t θθ=+⋅⎧⎨=⋅⎩ 所以()cos sin D v u x u θθ-=, x 取最大值的条件为:0/=θd dx ,由此得到cos /u v θ=,相应地sin θ=因此x 的最大值为x 取最大值时对应的出发时间最迟。
快艇截住这条船所需的时间为sin D t u θ== 习题二答案x习题二简要回答下列问题:(1) 有人说:牛顿第一定律只是牛顿第二定律在合外力等于零情况下的一个特例,因而它是多余的.你的看法如何?(2) 物体的运动方向与合外力方向是否一定相同?(3) 物体受到了几个力的作用,是否一定产生加速度?(4) 物体运动的速率不变,所受合外力是否一定为零?(5) 物体速度很大,所受到的合外力是否也很大?(6) 为什么重力势能有正负,弹性势能只有正值,而引力势能只有负值?(7) 合外力对物体所做的功等于物体动能的增量,而其中某一分力做的功,能否大于物体动能的增量?(8)质点的动量和动能是否与惯性系的选取有关?功是否与惯性系有关?质点的动量定理与动能定理是否与惯性系有关?请举例说明.(9)判断下列说法是否正确,并说明理由:(a)不受外力作用的系统,它的动量和机械能都守恒.(b)内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒. (c)只有保守内力作用而没有外力作用的系统,它的动量和机械能都守恒.(10) 在弹性碰撞中,有哪些量保持不变,在非弹性碰撞中,又有哪些量保持不变?(11) 放焰火时,一朵五彩缤纷的焰火质心运动轨迹如何?为什么在空中焰火总是以球形逐渐扩大?(忽略空气阻力)质量为m 质点在流体中作直线运动,受与速度成正比的阻力F kv =-(k 为常数)作用,0t =时质点的速度为,证明:(1)t 时刻的速度为0kt v v e -=;(2)由0到t 的时间内经过的距离为0()[1]kt m x mv k e -=⋅-;(3)停止运动前经过的距离为0mv k 。