磨煤机减速机结构
磨煤机减速机工作原理

磨煤机减速机工作原理
磨煤机减速机工作原理是利用齿轮传动来实现速度调节和扭矩放大的装置。
具体工作原理如下:
1. 电动机驱动:磨煤机减速机的工作起始于电动机的驱动。
电动机通过轴向连接与减速机输入轴相连。
2. 输入轴和齿轮组:电动机的转动通过输入轴传入减速机内部。
减速机内部设有组成齿轮组的多个齿轮,其中包括主动齿轮和被动齿轮。
输入轴与主动齿轮相连,使其转动。
3. 齿轮传动:主动齿轮与其他齿轮相互啮合,通过齿轮传动实现速度调节和扭矩放大。
不同大小的齿轮组合使输入轴的转速变小,同时输出轴的扭矩放大。
4. 输出轴和磨煤机连接:减速机的输出轴与磨煤机连接,通过输出轴传递变速后的转动力矩给磨煤机,从而使磨煤机正常工作。
总结:磨煤机减速机通过齿轮传动实现输入轴转速的减小和输出轴扭矩的放大,使磨煤机获得适合工作的转速和扭矩。
磨煤机结构、原理及故障分析

况
精品文档
检修工的形象
精品文档
谢谢大家!!!
精品文档
或涉及人身安全的问题。
精品文档
精品文档
影响中速磨煤机工作的主要因素
1)转速:中速磨煤机的转速应考虑到最小能量消耗下的最 佳磨煤机效果及研磨元件的合理使用寿命。
2)研磨压力:研磨件上平均载荷称为研磨压力,它对磨煤 机的工作影响较大。
3)通风量:通风量的大小对中速磨煤机出力和煤粉细度影 响较大,而且还影响 石子煤量的多少,为此要求维持一
精品文档
磨煤机需要大修的标准
一期磨煤机: 1、磨煤机实际运行时间达到或超过8000小
时。 2、磨煤机实际磨损量达到或超过80mm。 3、磨煤机轴承箱内轴承损坏或不转。 4、磨煤机运行已经严重影响安全稳定运行
或涉及人身安全的问题。
精品文档
磨煤机需要大修的标准
二期磨煤机: 1、磨煤机实际运行时间达到或超过8000小
一次风不匹配
检查冷、热风门
密封或磨损严重
更换密封盘根或挖补
电机电流过大 电机电流过小
煤湿;过载;煤粉过细;碾 检查煤质;加载力;出口
磨压力过大
分离器挡板门
磨辊卡涩或不转;给煤量较 小;联轴器或轴折断
精品文档
检查磨辊是否转动灵活; 检查给煤量;检查联轴器
磨煤机正常运行监视和检查内容
பைடு நூலகம்
项目 磨煤机振动 磨煤机噪声 磨煤机碾磨件磨 损量 排渣量监视
磨碎的煤矸石、石块等排出磨外。
精品文档
中速磨煤机结构
中速磨煤机主要由磨煤机本体、减速 机、盘车装置、润滑油站、液压油站 及密封风系统组成
精品文档
精品文档
精品文档
精品文档
磨煤机结构、原理及故障分析课件

合理数值,以保证研磨区具有良好的空气动力特性。 5)燃料性质:中速磨煤机对煤的磨损指数、灰分含量及成
分、可磨性系统等都有一定的要求。
中速磨煤机常见故障
故障现象 堵煤
磨煤机振动大
磨煤机出力不足
磨煤机出口温度 高
磨煤机漏粉
分析原因
一次风管堵塞、一次风 量过小,长时间不排渣
磨煤机结构、原理及故障分 析课 件
主要内容: 磨煤机分类及型号 磨煤机原理、结构 磨煤机常见的缺陷及处理方法
磨煤机按转速分为三类:
1)低速磨煤机:转速为16---25r/min, 常见的钢球磨煤机。 2) 中速磨煤机:转速为60---300r/min, 常见的有平盘磨、碗式磨煤机。 3) 高速磨煤机:转速为大于300r/min, 常见的有风扇磨。
时。 2、磨煤机实际磨损量达到或超过80mm。 3、磨煤机轴承箱内轴承损坏或不转。 4、磨煤机运行已经严重影响安全稳定运行
或涉及人身安全的问题。
磨煤机需要大修的标准
三期磨煤机: 1、磨煤机实际运行时间达到或超过6000小
时。 2、磨煤机实际磨损量达到或超过65mm。 3、磨煤机轴承箱内轴承损坏或不转。 4、磨煤机运行已经严重影响安全稳定运行
或涉及人身安全的问题。
影响中速磨煤机工作的主要因素
1)转速:中速磨煤机的转速应考虑到最小能量消耗下的最 佳磨煤机效果及研磨元件的合理使用寿命。
2)研磨压力:研磨件上平均载荷称为研磨压力,它对磨煤 机的工作影响较大。
3)通风量:通风量的大小对中速磨煤机出力和煤粉细度影 响较大,而且还影响 石子煤量的多少,为此要求维持一
处理方法
ZGM磨煤机特性与结构

ZGM磨煤机特性与结构厂制粉系统采用正压冷一次风机直吹式制粉系统,每台炉配备6台北京电力设备总厂制造的ZGM-113G型中速辊式磨煤机。
ZGM113G型磨煤机是在继承和发扬德国Babcock公司技术的基础上,由北京电力设备总厂研制开发的一种MPS磨煤机。
一. 型号及主要技术特点Z G M 113 G分K、N、G三个型号,K为小型,N为中型,G为大型磨环滚道平均半径(cm)磨煤机辊式中速1.采用行星齿轮减速机1)体积小,结构紧凑(由于采用分流传动),重量轻,占地面积小,投资小(减少轴向尺寸,磨煤机可以纵向布置,磨煤机间跨距大为缩小),检修方便。
2)承载能力大,噪音小。
3)传动效率高,空载功率降低。
4)减速机中间是浮动齿形联轴器,使齿轮系统来自磨煤机的冲击完全隔开,运转平稳可靠。
2.磨煤机液压变加载1)磨煤机出力范围由过去的40~100%扩大到25~100%,提高低负荷性能,满足机组调峰需要。
2)提高耐磨材料寿命当磨煤机出力低时,加载力就小,可减小低出力时磨煤机振动、减少辊胎和衬板的磨损。
避免磨煤机小煤量时不能形成稳定的煤层,磨煤机振动加剧,致使加载杆频繁断裂,磨煤机内衬板振落,地脚螺栓振断等问题,若是恒加载力,低出力煤层薄时,加载力仍然很大,辊胎和衬板磨损就很快。
3.降低磨煤机电耗由图6-1所示可知,加载力大小随磨煤机出力大小变化而变化,可有效减少磨煤机回粉量,降低磨煤机电耗。
由于空气弹簧的刚度是一个变量,加载力小,刚度小(反之亦然),现将空气弹簧的最大刚度做到低于弹簧定加载磨煤机的弹簧刚度,这样磨煤机的振动小,运行更加平稳。
1)可以实现磨煤机开空车由于磨煤机的磨辊与磨环有3mm的间隙,可以实现磨煤机开空车,使磨煤机启动对锅炉的影响减至很小,提高了锅炉运行的稳定性,同时也有利于磨煤机顺控启动的实现。
2)减少检修维护量定加载的中速磨煤机,检修每3000小时进行一次检查,检查弹簧长度合格,以保证加载力合格,采用液压变加载,检修日常维护工作量可大大减少。
采煤机的减速机械结构和运动传递结构

采煤机的减速机械结构和运动传递结构作为机械化设备出现的最主要的意义,运动的传递与功的转化是为机械的意义,公元前,在巴勒斯坦地区的犹太人建立了杰里科城,城市首次出现了,最早的机械—车轮或许是此时诞生的。
车轮是人类最为重要的发明之一,正是由于车轮的产生,才令车成为人类最主要的交通工具。
到近代瓦特的蒸汽机让机械化展现在人类眼前。
机械的发展就像人类文明的进步历史,每一次巨大的进步都是由于人类对于机械的理解进一步深化。
因此,研究采煤机机械的减速机械结构和运动传递结构,可以帮助采煤机更好地进行结构的完善,提高工作效率。
2 采煤机机械的减速机械结构行星减速机构是一种动力传递装置,可以在有限的空间内实现降低输入转速的目的,具有结构紧、传动比大,传动效率高及输出扭矩大等优点。
这些优点恰好迎合了采煤机井下有限、恶劣的工作条件,因此行星减速机构在采煤机械中被大量使用。
由于采煤机井下工作环境较为复杂,采煤机截割部行星机构承受着较大的冲击和振动作用,在恶劣的工作环境中行星减速机构极易发生损坏,造成采煤机无法进行截割作业。
其基本传动结构分为四个部分:太阳齿轮、行星齿轮(组合于行星架)、内齿轮环、电机经过多级直齿轮传动,齿轮九经由1/ 5内花键和行星减速器的太阳轮的一端相联接,进而为行星减速器输入转矩;在行星减速器中太阳轮的转动,既能够使行星轮环绕本身的轴线自转,同时能够通过行星轴带动行星架沿着行星架中心轴线转动,通过行星架输出端的外渐开线花键和方头的联接,能够将输出转矩传递到滚筒。
该行星减速器主要零部件由一个太阳轮、四个行星轮、一个行星架、一个内齿轮构成。
行星减速器作为截割部传动系统的重要组成部分,一旦损坏将会影响采煤机的正常工作。
采煤机过岩石断层时,验证行星减速器的关键部件能否正常工作,首先需要建立太阳轮、行星轮、内齿圈、行星架的三维模型,其次对关键零部件做受力分析,在本章需要计算出行星轴作用在行星架左右侧板上的载荷以及太轮、行星轮、内齿圈的切向力、径向力、法向力。
磨煤机结构

磨煤机结构磨煤机是煤炭燃烧与发电厂中普遍使用的设备,它的主要功能是将煤炭进行破碎和磨细,以满足锅炉燃烧的要求。
下面,我们将详细介绍磨煤机的结构。
磨煤机主要包含磨盘、磨辊、进料装置、排渣装置、风道系统和传动系统等组成部分。
1. 磨盘:磨盘是磨煤机的核心部件,它呈圆盘状,通常由铸铁材料制成。
磨盘由磨辊环绕,其高速旋转使煤炭在磨盘上发生破碎和磨细作用。
2. 磨辊:磨辊是安装在磨盘上的一组辊子,它们与磨盘同向旋转。
磨辊一般由钢材制成,承受着煤炭破碎和磨细的载荷。
磨辊的数量和直径会根据磨煤机的规格和容量进行设计。
3. 进料装置:进料装置负责将煤炭送入磨盘和磨辊之间进行破碎和磨细。
常见的进料装置包括鼓式进料装置和液体平衡进料装置。
这些装置通过调整进料量和速度,确保煤炭在磨煤机内均匀分布,以提高效率和破碎度。
4. 排渣装置:排渣装置用于处理磨煤过程中产生的渣滓物。
它通过旋转分离和气流输送等方式将渣滓物从磨煤机中排出,并送往渣滓处理设备进行后续处理。
5. 风道系统:磨煤机的风道系统起到输送和控制煤粉气流的作用。
它包括进风口、出风口以及与锅炉相连接的煤粉管道。
风道系统能够控制气流速度和方向,确保煤粉的平稳输送和燃烧。
6. 传动系统:传动系统将电动机的动力传递给磨盘和磨辊,实现其旋转运动。
一般采用液力传动、齿轮传动或链传动等方式,以确保磨煤机的正常运转和高效工作。
总的来说,磨煤机是一种重要的煤炭处理设备,其结构包括磨盘、磨辊、进料装置、排渣装置、风道系统和传动系统等组成部分。
这些组成部分相互配合,共同完成煤炭破碎和磨细的过程,为煤炭燃烧与发电提供了可靠的技术支持。
通过不断优化和改进,磨煤机的结构不断完善,提高了其效率和可靠性。
磨煤机结构、原理及轴承磨损分析

中速磨煤机结构
• 中速磨煤机主要由磨煤机本体、减速 机、盘车装置、润滑油站、液压油站 及密封风系统组成
中速磨煤机优点
• 质量轻,占地少,系统简单, 投资少,电耗低,噪声小等优 点。
影响中速磨煤机工作的主要因素
1、转速:中速磨煤机的转速应考虑到最小能量消耗下的 最佳磨煤机效果及研磨元件的合理使用寿命。 2、研磨压力:研磨件上平均载荷称为研磨压力,它对磨 煤机的工作影响较大。 3、通风量:通风量的大小对中速磨煤机出力和煤粉细度 影响较大,而且还影响 石子煤量的多少,为此要求维持 一定的风煤比。 4、风环气流速度:对中速磨煤机其风环气流速度应选择 一合理数值,以保证研磨区具有良好的空气动力特性。
密封或磨损严重 煤湿;过载;煤粉过细;碾 磨压力过大
磨煤机出力不足
检查给煤量与风量;检 查磨辊及磨盘磨损量 检查磨煤机是否自燃; 检查冷、热风门
更换密封盘根或挖补 检查煤质;加载力;出口 分离器挡板门
磨煤机出口温度 高
磨煤机漏粉 电机电流过大
电机电过小
磨辊卡涩或不转;给煤量较 小;联轴器或轴折断
检查磨辊是否转动灵活; 检查给煤量;检查联轴器
中速磨煤机常见故障
故障现象 堵煤 磨煤机振动大 分析原因 一次风管堵塞、一次风 量过小,长时间不排渣 处理方法 检查一次风量,检查排 渣室内积渣较多
给煤量较小,磨盘上原 检查给煤量;检查磨辊 煤较少;磨辊轴承损坏; 是否转动灵活;检查磨 磨内进入杂物 内是有杂物 磨煤机风量与给煤机不 匹配;碾磨件磨损超过 标准 磨煤机内自燃;冷、热 一次风不匹配
中速磨煤机结构、原理 及轴承磨损分析
主要内容: 磨煤机分类及型号 磨煤机原理、结构 磨煤机常见的缺陷及处理方法 磨煤机轴承磨损分析
磨煤机原理及零部件作用

2、磨煤机的工作原理:图4-2-1 磨煤机的构造图给煤机将煤从磨煤机中心落煤管输入,煤落到旋转的磨碗上,在离心力的作用下沿径向朝外移动到研磨环。
由于径向和周向的移动,煤在可绕轴转动的磨辊下通过。
三个独立的液压加载磨辊相隔120°分布安装于磨碗上部,磨辊与磨碗间保持一定的间隙,两者并无直接接触。
磨辊利用液压加压装置施以必要的研磨压力,当煤通过磨碗与磨辊之间时,煤就被磨制成煤粉。
这种磨煤机主要是利用磨辊与磨碗对它们之间的煤的压碎和研磨两种方法来实现磨煤的。
磨制出来的煤粉由于离心力的作用继续向外移动,最后沿磨碗周缘溢出。
在煤的研磨过程中,较小较轻的颗粒被热空气(一次风)连续地从磨碗上吹起来。
磨煤枯燥用的热空气由磨碗底进入,空气通过磨碗周围的环隙流经旋转磨碗的外径。
装在磨碗上的叶片(称为叶轮)使气流趋于垂直方向。
在磨碗外径的较小较轻的煤粒被气流携带向上,而重的不易磨碎的外来杂物穿过气流落入侧机体区域。
在此,外来杂物通过侧机体底板由装在转动的裙罩上的刮板装置扫出磨煤机,然后进入石子煤排放系统。
外来杂物通常由煤层中的岩石和开采机械的零件组成,因此把这些杂物降低到最少是有好处的。
如图4-1-2所示,煤粉的别离分为三个阶段。
由于应用了安装在别离器上的固定空气折向器,第一级别离正好在磨碗水平面上发生。
在此,最重的煤粒直接返回磨碗进一步辗磨成更小的颗粒。
而较轻的颗粒被气流携带至别离器顶盖进展第二次别离,此处弯曲的可调叶片使风粉混合物产生旋风运动导致重颗粒失去动量而从气流中脱离出来返回磨碗重新辗磨,这就是煤粉的第二级别离。
较细的煤粉气流通过称为文丘里套管的垂直插管进一步进展别离,到达所要求的的煤粉细度。
在别离器叶片和文丘里套管里别离出来的较重煤粒经过锥体返回到磨碗的辗磨区域。
锥体把磨煤机的紊流区域从别离颗粒别离出来,无紊流区域的颗粒在重力作用下返回磨碗。
出来的风粉混合物经过文丘里,在此首先浓缩,然后扩大使得每根煤粉管中风粉分配均匀,煤粉管把风粉混合物引入炉膛进展燃烧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这几天看到磨煤机的行星轮减速箱但对行星轮工作原理不是很明白
所以在网上找了点资料与大家
第一次发贴不妥的地方大家见谅
1)齿圈固定,太阳轮主动,行星架被动。
从演示中可以看出,此种组合为降速传动,通常传动比一般为2.5~5,转向相同。
2)齿圈固定,行星架主动,太阳轮被动。
从演示中可以看出,此种组合为升速传动,传动比一般为0.2~0.4,转向相同。
3)太阳轮固定,齿圈主动,行星架被动。
从演示中可以看出,此种组合为降速传动,传动比一般为1.25~1.67,转向相同。
4)太阳轮固定,行星架主动,齿圈被动。
从演示中可以看出,此种组合为升速传动,传动比一般为0.6~0.8,转向相同。
5)行星架固定,太阳轮主动,齿圈被动。
从演示中可以看出此种组合为降速传动,传动比一般为1.5~4,转向相反。
6)行星架固定,齿圈主动,太阳轮被动。
从演示中可以看出此种组合为升速传动,传动比一般为0.25~0.67,转向相反。
7)把三元件中任意两元件结合为一体的情况:
当把行星架和齿圈结合为一体作为主动件,太阳轮为被动件或者把太阳轮和行星架结合
为一体作为主动件,齿圈作为被动件的运动情况。
从演示中我们可以看出,行星齿轮间没有相对运动,作为一个整体运转,传动比为1,转向相同。
汽车上常用此种组合方式组成直接档。
8)三元件中任一元件为主动,其余的两元件自由:
从分析中可知,其余两元件无确定的转速输出。
第六种组合方式,由于升速较大,主被动件的转向相反,在汽车上通常不用这种组合。
其余的七种组合方式比较常用。
行星齿轮传动的定义及特点
齿轮传动在各种机器和机械设备中已获得了较广泛的应用。
例如,起重机械、工程机械、冶金机械、建筑机械、石油机械、纺织机械、机床、汽车、飞机、火炮、船舶和仪器、仪表中均采用了齿轮传动。
在上述各种机器设备和机械传动装置中,为了减速、增速和变速等特殊用途,经常采用一系列互相啮合的齿轮所组成的传动系统,在《机械原理》中,便将上述的齿轮传动系统统称之为轮系。
一、行星齿轮传动的定义
轮系可由各种类型的齿轮副组成。
由锥齿轮、螺旋齿轮和蜗杆轮组成的轮系,称为空间轮系;而由圆柱齿轮组成的轮系,称为平面系统。
本书主要讨论平面轮系的设计问题。
根据齿轮系运转时其各齿轮的几何轴线相对位置是否变动,齿轮传动分为两大类型。
1.普通齿轮传动(定轴轮系)
当齿轮系运转时,如果组成该齿轮系的所有齿轮的几何轴线位置都是固定不变的,则称为普通齿轮传动(或称定轴轮系)。
在普通齿轮传动中,如果各齿轮副的轴线均互相平行,则称为平行轴齿轮传动;如果齿轮系中含有一个相交轴齿轮副或一个相错轴齿轮副,则称为不平行轴齿轮传动(空间齿轮传动)。
2.行星齿轮传动(行星轮系)
当齿轮系运转时,如果组成该齿轮中至少有一个齿轮的几何轴线位置不固定,而绕着其他齿轮的几何轴线旋转,即在该齿轮系中,至少具有一个作行星运动的齿轮,如图1(a)所示。
在上述齿轮传动中,齿轮a、b和构件x均绕几何轴线OO转动,而齿轮c是活套在构件x的轴Oc上,它一方面绕自身的几何轴线Oc旋转(自转),同时又随着几何轴线Oc 绕固定的几何轴线OO旋转(公转),即齿轮c作行星运行;因此,称该齿轮传动为行星齿轮传动,即行星轮系。
行星齿轮传动按其自由度的数目可分为以下几种。
(1)简单行星齿轮传动具有一个自由度(W=1)的行星齿轮传动,如图1(b)所示。
对于简单行星齿轮传动,只需要知道其中一个构件的运动后,其余各构件的运动便可以确定。
||| (2)差动行星齿轮传动具有两个自由度(W=2)的行星齿轮传动,即它是具有三个可动外接构件(a、b和x)的行星轮系[见图1(a)]。
对于差动行星齿轮传动,必须给定
两个构件的运动后,其余构件的运动才能确定。
在行星齿轮传动中作行星运动的齿轮c,称为行星齿轮(简称为行星轮)。
换言之,在齿轮系中,凡具有自转和公转的齿轮,则称为行星轮,如图1中所示齿轮c。
仅有一个齿圈的行星c,称为单齿圈行星轮[见图1和图2(a)];带有两个齿圈的行星轮c-d,称为双齿圈行星轮[见图2(b)和图3]。
在行星齿轮传动中,支承行星轮c(或c-d)并使它得到公转的构件,称为转臂(又称为系杆),用符号x表示。
转臂x绕之旋转的几何轴线,称为主轴线,如轴线OO。
在行星齿轮传动中,与行星齿轮相啮合的,且其轴线又与主轴线OO重合的齿轮,称为中心轮;外齿中心轮用符号a或b 表示,内齿中心轮用符号b 或e表示。
最小的外齿中心轮a又可称为太阳轮。
而将固定不动的(与机架连接的)中心轮,称为支持轮,如图1(b)中所示的内齿轮b.
在行星齿轮传动中,凡是其旋转轴线与主轴线OO相重合,并承受外力矩的构件,称为基本构件,如图1-1中的中心轮a、b和转臂x。
换言之,所谓基本构件就是在空间具有固定旋转轴线的受力构件;其中也可能是固定构件,如图1(b)中与机架相连接的内齿轮b.而差动行星齿轮传动[见图1(a)]就是具有三个运动基本构件的行星齿轮传动。
在其三个基本构件中,若将内齿轮b固定不动,则可得到应有十分广泛的,输入件为中心轮a或转臂x,输出件为转臂x或中心轮a的行星齿轮传动[见图1(b)]。
仿上,当中心轮a固定不动时,则可得到输入件为内齿轮b或转臂x,输出件为转臂x或内齿轮b的行星齿轮传动。
当转臂
x固定不动时,则可得到所有齿轮轴线均固定不动的普通齿轮传动,即定轴齿轮传动。
由于该定轴齿轮传动是原来行星齿轮传动的转化机构,故又称之为准行星齿轮传动,如图书1(c)所示。