导数与微分练习题答案
微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。
在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。
在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。
1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。
答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。
答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。
答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。
答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。
答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。
答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。
答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。
答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。
答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。
通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。
微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。
第三章 导数与微分 习题及答案

第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
微积分基础练习--导数、微分及其应用

(二)导数、微分及其应用一.选择题1.设⎪⎩⎪⎨⎧=≠=0,00,1cos )(2x x xx x f ,则f (x )在点x =0处的导数( ) (A )等于0 (B )等于1 (C )等于-1 (D )不存在 2.设)(x ϕ为连续函数,且0)(≠a ϕ,则)()()(x a x x f ϕ-=在点x =a 处( )(A )连续,但不可导 (B)可导,且()()f a a ϕ'= (C)不连续,更不可导 (D )可导,且()0f a '= 3.设f (x )=(x -1)sin x ,则f (x )在点x =1处的导数( )(A) 等于0 (B )等于cos1 (C )等于-cos1 (D)sin1 4.曲线ln y x =上某点的切线平行于直线23y x =-,该点坐标是( )(A) 1(2,ln )2 (B ) 1(,ln 2)2- (C ) 1(2,ln )2- (D) 1(,ln 2)25. 在抛物线21y x =+上过点(1,2)处的切线的斜率为( )(A )12 (B) 2 (C ) 2- (D) 12- 6.函数y 由方程y y x =+)(ϕ确定,)(y ϕ'若存在且不等于1,则dydx的值是( )(A ))(1y ϕ'+ (B ))(11y ϕ'- (C ))(11y ϕ'+ (D )不存在7.若f (x )为可导函数,且)(xe f y =,则y ′=( )(A ))(xxe f e ' (B))()(x f e f x'' (C ))(xe f ' (D))(xxe f e 8.f (x )是x 的可导函数,则2()df x dx=( ) (A ))(323x f x ' (B )22()xf x ' (C ))(2x f ' (D))(2x f x '9.若f (x )为可导函数,且)(x f ey =,则y ′=( )(A ))()(x f ex f ' (B ))(x f e (C ))()(x x f e f e ' (D ))(x f e x '10.导数等于1sin 22x 的函数是 ( ) (A)1cos 24x (B )21sin 2x (C ) 21cos 2x (D )11cos 22x -11.若f (u )为可导,且)(xe f y =,则有d y =( )(A ) dx e f e x x )(' (B )dx e f x)(' (C) dx e e f x x x ])([' (D) xx x de e f ])(['12.函数( )的微分等于它的增量。
导数与微分习题及答案

第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
(完整版)第二章导数与微分(答案)

x 第二章导数与微分(一)f X 0 X f X 0Ix 0X3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A )5. 若函数f x 在点a 连续,则f x 在点a ( D )C . a6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C .-1 D .不存在7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A )A . 8B . 12C . -6D . 68.设y e f x 且fx 二阶可导,则y ( D )A . e f xB f X r e ff X££fX丄2x C . e f x f x D . ef x9.若 f x axe , x 0在x 0处可导,则a , b 的值应为 b sin2x,(A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到X ox 时,相应函数的改变量f x 0 x B .f x 0 x C . f x 0X f X 0 f X 。
x2 .设f x 在x o 处可,则limf X 0 B .X oC . f X 0D . 2 f X 0A .必要不充分条件B . 充分不必要条件C .充分必要条件既不充分也不必要条件4.设函数y f u 是可导的,且ux2,则 dy ( C )x 2 B . xf x 2C .2 22xf x D . x f xD .有定义10•若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A )A •一定都没有导数B •—定都有导数C .恰有一个有导数D •至少一个有导数11.函数fx 与g x 在x 0处都没有导数,则Fxg x 在 x o 处(D )13 . y arctg 1,贝U yxA .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12.已知F xf g x ,在 X X 。
微积分变态题及答案

微积分变态题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题a.在该点的函数值的增量与自变量的增量的比b.一个函数c.一个常数,不是变数d.函数在这一点到它附近一点之间的平均变化率[答案] c[解析] 由定义,f′(x0)是当δx无限趋近于0时,δyδx无限趋近的常数,故应选c.[答案] b[解析] ∵s(t)=3t2,t0=3,∴δs=s(t0+δt)-s(t0)=3(3+δt)2-=18δt+3(δt)2∴δsδt=18+3δt.当δt→0时,δsδt→18,故高文瑞b.[答案] b[解析] ∵f(x)=x2,x=1,∴δy=f(1+δx)2-f(1)=(1+δx)2-1=2δx+(δx)2∴δyδx=2+δx当δx→0时,δyδx→2∴f′(1)=2,故高文瑞b.[答案] d[解析] ∵δsδt=4(5+δt)2-3-4×52+3δt=40+4δt,∴s′(5)=limδt→0 δsδt=limδt→0 (40+4δt)=40.故应选d.a.δy=f(x0+δx)-f(x0)叫作函数值的增量b.δyδx=f(x0+δx)-f(x0)δx叫做函数在x0到x0+δx之间的平均变化率 c.f(x)在x0处的导数记作y′d.f(x)在x0处的导数记为f′(x0)[答案] c[解析] 由导数的定义可知c错误.故应选c.a.f′(x0)=f(x0+δx)-f(x0)b.f′(x0)=limδx→0[f(x0+δx)-f(x0)]c.f′(x0)=f(x0+δx)-f(x0)δxd.f′(x0)=limδx→0 f(x0+δx)-f(x0)δx[答案] d[解析] 由导数的定义知d正确.故应选d.[答案] d[解析] ∵δyδx=a(2+δx)2+b(2+δx)+c-4a-2b-cδx=4a+b+aδx,∴y′|x=2=limδx→0 δyδx=limδx→0 (4a+b+aδx)=4a+b.故应选d. [答案] d[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选d.[答案] b[解析] ∵δsδt=3(0+δt)-(0+δt)2δt=3-δt,∴s′(0)=limδt→0 δsδt=3.故高文瑞b.[答案] c[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limδx→0f(x0-δx)-f(x0)δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-[解析] limδx→0 f(x0-δx)-f(x0)δx=-limδx→0 f(x0-δx)-f(x0)-δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limδx→0 f(x0+δx)-f(x0)δx=-12f′(x0)=-.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵δy=1+δx+11+δx-1+11=δx-1+1δx+1=(δx)2δx+1,∴δyδx=δxδx+1.∴y′|x=1=limδx→0 δxδx+1=0.13.未知函数f(x)=ax+4,若f′(2)=2,则a等同于______.[答案] 2[解析] ∵δyδx=a(2+δx)+4-2a-4δx=a,∴f′(1)=limδx→0 δyδx=a.∴a=2.14.未知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值就是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可以化成limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、答疑题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义存有f′(x0)=limδx→0 f(x0+δx)-f(x0)δx=limδx→0 (x0+δx)2-x20δx=limδx→0 δx(2x0+δx)δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 加速度公式为s=12at2∵δs=12a(t0+δt)2-12at20=at0δt+12a(δt)2∴δsδt=at0+12aδt,∴limδt→0 δsδt=limδt→0 at0+12aδt=at0,未知a=5.0×m/s2,t0=1.6×10-3s,∴at0=m/s.所以枪弹箭出来枪口时的瞬时速度为m/s.17.在曲线y=f(x)=x2+3的图象上取一点p(1,4)及附近一点(1+δx,4+δy),求(1)δyδx (2)f′(1).[解析] (1)δyδx=f(1+δx)-f(1)δx=(1+δx)2+3-12-3δx=2+δx.(2)f′(1)=limδx→0 f(1+δx)-f(1)δx=limδx→0 (2+δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处为与否存有导数?若存有,谋出,若没,表明理由.δy=f(0+δx)-f(0)=f(δx)∴limx→0+δyδx=limδx→0+ (1+δx)=1,limδx→0-δyδx=limδx→0- (-1-δx)=-1,∵limδx→0-δyδx≠limδx→0+δyδx,∴δx→0时,δyδx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
微积分综合练习题及参考答案1

综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sinlim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e xx +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B(7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x .解:4121lim )2)(2()1)(2(lim 423lim22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题(1)曲线1)(+=x x f 在)2,1(点的切斜率是 . 答案:21(2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f .答案:x x x x f --+-=''e e 2)(='')0(f 2-2.单项选择题(1)若x x f x cos e )(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e ()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21ex x y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .x e C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
导数与微分习题及答案

导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。
它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。
本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。
1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。
解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。
化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。
因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。
2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。
解答:同样地,我们可以利用导数的定义来求解。
根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。
代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。
化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学练习题 第二章 导数与微分第一节 导数概念一.填空题1.若)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000= )(0x f '-2. 若)(0x f '存在,hh x f h x f h )()(lim000--+→= )(20x f ' .000(3)()limx f x x f x x∆→+∆-∆=03()f x '.3.设20-=')(x f , 则=--→)()2(lim)000x f x x f xx 414.已知物体的运动规律为2t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒)5.曲线x y cos =上点(3π,21)处的切线方程为03123=--+πy x ,法线方程为 0322332=-+-πy x 6.用箭头⇒或⇏表示在一点处函数极限存在、连续、可导、可微之间的关系,可微 ⇔可导<≠⇒| 连续 <≠⇒ 极限存在。
二、选择题 1.设)0(=f ,且)0(f '存在,则xx f x )(lim→=[ B ](A ))(x f ' ( B) )0(f ' (C) )0(f (D)21)0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则xx b x f x a x f x ∆∆--∆+→∆)()(lim0 =[ B ](A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D)2ba +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ](A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要4.设曲线22-+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ](A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1) 5.设函数|sin |)(x x f =,则)(x f 在=x 处[ B ](A )不连续。
(B )连续,但不可导。
(C)可导,但不连续。
(D )可导,且导数也连续。
三、设函数⎩⎨⎧>+≤=11)(2x b ax x x x f 为了使函数)(x f 在1=x 处连续且可导,a ,b 应取什么值。
解:由于)(x f 在1=x 处连续, 所以 )1()1(1)1(f b a f f =+===+-即 1=+b a又)(x f 在1=x 处可导,所以2'11(1)lim 21x x f x --→-==-'1()(1)lim 1x ax b a b f ax ++→+-+==-有 2=a , 1-=b 故 求得 2=a , 1-=b四、如果)(x f 为偶函数,且)0(f '存在,证明)0(f '=0。
解:由于)(x f 是偶函数, 所以有 )()(x f x f -=()(0)(0)limx f x f f x →-'=-()(0)lim0x f x f x →--=-()(0)lim (0)x tt f t f f t=→-'==--令 即 0)0(2='f , 故 0)0(='f五、 证明:双曲线2a xy =上任一点处的切线与两坐标轴构成三角形的面积为定值。
解:222,xa y x a y -='=在任意),(00y x 处的切线方程为)(02020x x x a y y --=-则该切线与两坐标轴的交点为:)2,0(02x a 和)0,2(0x所以切线与两坐标轴构成的三角形的面积为20222221a x x a A =⋅⋅=,(a 是已知常数)故其值为定值.第二节 求导法则一、填空题1.x x y sin )sec 2(+=, y '=1cos 2tan 2++x x ; x e y sin -=,y '=xxesin cos --.2.)2cos(x e y =,y '= 2sin(2)x x e e -; y =xx2sin ,y '=22sin 2cos 2x xx x -3.2tanln θρ=,ρ'=θcsc ; =r 2ln log 2+x x ,r '=e x 22log log +4. )tan ln(sec t t w +=, w '=t sec . 2arccos()y x x =+,y '=5. ='+)1(2x 21xx +; (c x ++21 )'=21xx + .6. ]2tan [ln 'x = ; ( c x x +++)1ln(2)'=211x+ .二、选择题1.已知y=xx sin ,则y '=[ B ] (A )2cos sin x x x x - (B)2sin cos x xx x - (C)2sin sin x xx x - (D)x x x x sin cos 23-2. 已知y=xx cos 1sin + ,则y '=[ C ] (A )1cos 21cos +-x x (B) 1cos 2cos 1-+x x (C) xcos 11+ (D)xx cos 11cos 2+-3. 已知x e y sec =,则y '=[ A ](A )x x x e e e tan sec (B) x x e e tan sec(C) x e tan(D)x x e e cot 4.已知)1ln(2x x y ++=,则y '=[ A ](A )211x+ (B) 21x + (C)21xx + (D)12-x5. 已知xy cot ln ==,则4|π='x y =[ D ](A )1 (B )2 (C )2/1- (D)2-6. 已知xxy +-=11,则y '=[ B ](A )2)1(2+x (B) 2)1(2+-x (C) 2)1(2+x x(D) 2)1(2+-x x三、计算下列函数的导数:(1) y =+)tan(ln x y =解:2311(ln )3y x x -''=+ 解:xx y 1)(ln sec '2= 23111(ln )33y x x x -'=+ )(ln sec 12x x= (3) ve u 1sin 2-= (4 ) )(ln sec 3x y =解:⋅-⋅=-v eu v1sin 2('1sin 2))1(1cos 2vv -⋅ 解:⋅=)sec(ln )(ln sec 3'2x x y xx 1)tan(ln ⋅v e v v 1sin 222sin 1-= )tan(ln )(ln sec 33x x x=(5) ln(y x =+ (6) 1arctan 1xy x-=+解:''y x =+ 解:211()111()1xy x x x-''=-+++=211x-=+=四、设)(x f 可导,求下列函数y 的导数dxdy (1))()(x f x e e f y = (2))(cos )(sin 22x f x f y +=解:)()(''x f x x e e e f y ⋅⋅= 解:x x x f y cos sin 2)(sin ''2= )(')()(x f e e f x f x ⋅⋅+ 2'(cos )(2cos (sin ))f x x x +⋅-=)()(')('[)(x x x x f e f x f e f e e + =22sin 2('(sin )'(cos ))x f x f x -(3) )](arctan[x f y = (4))](sin[)(sin x f x f y +=解:)(')(11'2x f x f y ⋅+=解:+=x x f y cos )(sin '')('))(cos(x f x f ⋅=)(1)('2x f x f + +=)(sin 'cos x x ))(cos()('x f x f第三节 隐函数及由参数方程所确定的函数的导数一、填空题1.设yxe y +=1,则y '=ye y-2 .2. 设)tan(r r +=θ,则r '=)(csc 2r +-θ .3. 设xy y x arctan ln 22=+,则y '=yx yx -+ 。
4.设⎩⎨⎧==te y t e x t t cos sin ,则dx dy =t t tt cos sin sin cos +- ,3|π=t dx dy =23- 。
二、选择题1. 由方程0sin =+y xe y 所确定的曲线)(x y y =在(0,0)点处的切线斜率为 [ A ](A )1- (B )1 (C )21 (D )21- 2. 设由方程22=xy 所确定的隐函数为)(x y y =,则dy = [ A ] (A )dx x y 2-(B )dx x y 2 (C )dx x y - (D )dx xy3. 设由方程0sin 21=+-y y x 所确定的隐函数为)(x y y =,则dxdy= [ A ](A )y cos 22- (B )y sin 22+ (C )y cos 22+ (D )xcos 22-4. 设由方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定的函数为)(x y y =,则在2π=t 处的导数为 [ B ](A )1-(B )1 (C )0 (D )21- 5.设由方程ln arctan x y t⎧⎪=⎨=⎪⎩所确定的函数为)(x y y =,则=dx dy[ B ](A)2t (B )1t (C )12t ; (D )t .三、求下列函数的导数dy dx1.222333x y a += , 2. 33cos sin x a ty a t ⎧=⎨=⎩解:方程两边同时对x 求导,得 解: 223sin cos tan 3cos sin a t ty t a t t '==-- 113322'033x y y --+=y '= 3.2310x y x y ye +++= 4. xe x x y -=1sin解:方程两边同时对x 求导,得 解:)1ln(41sin ln 21ln 21ln x e x x y -++=322230xxy xy x y y ye y e '''++++= )1(4sin 2cos 21'1xxe e x x x y y --++=322213xxxy ye y x y e +'=-++))1(4cot 221(1sin 'xxxe e x x e x x y --+-= 四、求曲线⎩⎨⎧=--=+-0201sin 3θθθy e x x 在0=θ处的切线方程,法线方程 解: θθd dy )23(2+=0cos sin =+⋅-θθθd e dx e dx x xθθθsin 1cos x x e d e dx -=∴, 从而 θθθcos )sin 1)(23(2xx e e dx dy -+= 当 0,1,0=-==y x θ,e dxdy20==θ故 切线方程为 )1(2+=x e y法线方程为 )1(21+-=x ey第四节 高阶导数一、填空题1.设φφcos =r ,则r 'r ''2.设)1ln(2x x y ++=,则y 'y ''3若)(2t f y =, 且)(t f '' 存在,则dt dy,22dty d 4.设yxe y +=1,则y '=y e y-2 , y ''=32)2()3(y y e y -- 5.设⎩⎨⎧-==arctgt t y t f x )(,且2tdx dy =,则22dx y d =t t 412+。