流体力学简介

流体力学简介
流体力学简介

福建工程学院

2019 年硕士研究生入学考试专业课课程(考试)大纲

一、考试科目名称: 流体力学

二、招生学院(盖学院公章):生态环境与城市建设学院

说明:

1、考试基本内容:一般包括基础理论、实际知识、综合分析和论证等几个方面的内容。有些课程还应有基本运算和实验方法等方面的内容。字数一般在300字左右。

2、难易程度:根据大学本科的教学大纲和本学科、专业的基本要求,一般应使大学本科毕业生中优秀学生在规定的三个小时内答完全部考题,略有一些时间进行检查和思考。排序从易到难。

工程流体力学复习知识总结

一、 二、 三、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。(错误) 2.平面无旋流动既存在流函数又存在势函数。(正 确) 3.附面层分离只能发生在增压减速区。 (正确) 4.等温管流摩阻随管长增加而增加,速度和压力都减少。(错误) 5.相对静止状态的等压面一定也是水平面。(错 误) 6.平面流只存在流函数,无旋流动存在势函数。(正 确) 7.流体的静压是指流体的点静压。 (正确) 8.流线和等势线一定正交。 (正确) 9.附面层内的流体流动是粘性有旋流动。(正 确) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11.相对静止状态的等压面可以是斜面或曲面。(正 确) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13.壁面静压力的压力中心总是低于受压壁面的形心。(正确) 14.相邻两流线的函数值之差,是此两流线间的单宽流量。(正确) 15.附面层外的流体流动时理想无旋流动。(正 确) 16.处于静止或相对平衡液体的水平面是等压面。(错 误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。(错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。(错误) 四、填空题。 1、1mmH2O= 9.807 Pa 2、描述流体运动的方法有欧拉法和拉格朗日法。 3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力 与粘性力的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量 Q为,总阻抗S为。串联后总管路的流量Q 为,总阻抗S为。

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

《流体力学》教学大纲

《流体力学》教学大纲 一、基本信息 二、教学目标及任务 “流体力学”作为环境工程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。学生通过该课程的学习,掌握流体的基本性质,流体静止与运动的规律及流体与边界的相互作用、明渠流、管流、堰流等知识,具备流体计算(水力计算)的基本技能,为解决环境工程专业中的相关流体力学问题奠定基础。 本课程支撑环境工程专业毕业要求、、、、和。 三、学时分配 教学课时分配

四、教学内容及教学要求 绪论 第一节流体力学的任务和发展简史 第二节连续介质假定与流体的主要物理性质 . 连续介质假设 .流体的主要物理性质 习题要点:牛顿内摩擦定律的理解与应用 第三节作用在流体上的力 习题要点:质量力与表面力的概念 第四节流体力学的研究方法 本章重点、难点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 本章教学要求:了解流体力学的发展简史,了解本课程在专业及工程中的应用;掌握流体主要物理性质,特别是黏性和牛顿内摩擦定律;理解作用在流体上的力;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的一般方法。 第一章流体静力学 第一节流体静压强特性 第二节流体平衡微分方程 . 流体平衡微分方程 . 流体平衡微分方程的积分 . 等压面 习题要点:流体平衡微分方程的推导 第三节流体静力学基本方程 . 流体静力学基本方程

. 压强的表示方法 3.测压计 习题要点:流体静力学基本方程的应用,压强表示与计算 第四节液体的相对平衡 . 液体的相对平衡 . 液体的相对平衡在生产中的应用 习题要点:等压面方程,压强分布规律 第五节作用在平面上的液体总压力 . 图解法 . 解析法 习题要点:平面静水总压力的计算 第六节作用在曲面上的液体总压力 习题要点:曲面静水总压力的计算 本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压力体图,作用于平面壁和曲面壁上的液体总压力,流体平衡微分方程的建立与应用。 本章教学要求:理解流体静压强的概念;掌握静水压强的特性,压强的表示方法及计量单位;掌握流体微分方程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算方法;掌握作用于平面壁和曲面壁上的液体总压力的计算。 第二章流体动力学基础 第一节描述流体运动的二种方法 . 拉格朗日法 . 欧拉法 .流线迹线脉线 习题要点:流线与迹线方程求解 第二节描述流体运动的概念 习题要点:掌握流体运动的概念 第三节流体运动的类型 习题要点:掌握流体运动类型及其特性

高等计算流体力学讲义(2)

高等计算流体力学讲义(2) 第二章 可压缩流动的数值方法 §1. Euler 方程的基本理论 0 概述 在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。 1非线性守恒系统和Euler 方程 一维一阶非线性守恒系统(守恒律)可写为下列一般形式 =??+??x F t U ,0,>∈t R x (1) 其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即: 0)(lim =→U F U 即通量是对守恒变量的输运,守恒变量为零时,通量也为零。 守恒律的物理意义 设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R R 。即此时虽然(,)U x t 的分布可以随时 间变化,但其总量保持守恒。 多维守恒律可以写为 )(=++??+??k H j G i F t U (2) 守恒律的空间导数项可以写为散度形式。 守恒系统(1)可以展开成所谓拟线性形式

流体力学发展简史.

流体力学发展简史 流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。 人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。在我国水力事业的历史十分悠久。 4000多年前的大禹治水,说明我国古代已有大规模的治河工程。 秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出“深淘滩,低作堰”、"遇弯截角,逢正抽心"的治水原则。说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。 西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。 在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。 古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流

使铜壶的水位变化来计算时间的。说明当时对孔口出流已有相当的认识。 北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。 明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 著名物理学家和艺术家列奥纳德达芬奇(Leonardo.da.Vinci,1452-1519)设计建造了一小型水渠,系统地研究了物体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻力随着流体介质密度的增大和速度

工程流体力学知识整理

流体:一种受任何微小剪切力作用,都能产生连续变形的物质。 流动性:当某些分子的能量大到一定程度时,将做相对的移动改变它的平衡位置。 流体介质:取宏观上足够小、微观上足够大的流体微团,从而将流体看成是由空间上连续分布的流体质点所组成的连续介质 压缩性:流体的体积随压力变化的特性称为流体的压缩性。 膨胀性:流体的体积随温度变化的特性称为流体的膨胀性。 粘性:流体内部存在内摩擦力的特性,或者说是流体抵抗变形的特性。 牛顿流体:将遵守牛顿内摩擦定律的流体称为牛顿流体,反之称为非牛顿流体。 理想流体:忽略流体的粘性,将流体当成是完全没有粘性的理想流体。 表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。 表面力:大小与表面面积有关而且分布作用在流体微团表面上的力称为表面力。 质量力:所有流体质点受某种力场作用而产生,它的大小与流体的质量成正比。 压强:把流体的内法线应力称作流体压强。 流体静压强:当流体处于静止或相对静止时,流体的压强称为流体静压强。 流体静压强的特性:一、作用方向总是沿其作用面的内法线方向。二、任意一点上的压强与作用方位无关,其值均相等(流体静压强是一个标量)。 绝对压强:以完全真空为基准计量的压强。 相对压强:以当地大气压为基准计量的压强。 真空度:当地大气压-绝对压强 液体的相对平衡:指流体质点之间虽然没有相对运动,但盛装液体的容器却对地面上的固定坐标系有相对运动时的平衡。 压力体:曲面上方的液柱体积。 等压面:在平衡流体中,压力相等的各点所组成的面称为等压面。特性一、在平衡的流体中,过任意一点的等压面,必与该点所受的质量力互相垂直。特性二、当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 流场:充满运动流体的空间称为流场。 定常流动:流场中各空间点上的物理量不随时间变化。 缓变流:当流动边界是直的,且大小形状不变时,流线是平行(或近似平行)的直线的流动状态为缓变流。

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

流体力学课程

量纲分析和相似原理在流体力学的应用 钟文 车辆1003 摘要:量纲分析法是研究较为复杂的自然现象中各物理量之间的关系及内在规律性的有效工具,也是相似理论的理论基础.量纲分析法的理论和应用,在科学研究和物理学领域中有着十分重要的地位.而对于设计制造复杂庞大的机械,往往要根据相似原理,进行模拟实验,将实验结果推广到同类型中,以相似原理为基础的模型试验方法在流体中有广发的应用。 关键词:量纲分析法;相似原理;流体力学;应用 0 前言 本文在充分研读[1] 《工程流体力学》(莫乃容)第九章节及相关书籍后,对量纲分析和相似原理有了一个深刻的认识,在对量纲分析和相似原理实际操作上做了一些范例,同时在了解的基础上继续做了一些实际的推广,将量纲分析的基本原理,相似原理引入相似结构大变形非线性动态响应分析。对车身典型薄壁件进行了轴向冲击响应与压溃变形的相似分析,得到模型与原型之间的相似比,并进一步得出了由缩比模型预测相似模型碰撞响应。 实验可分为两类,即直接试验和模拟实验。直接实验就是在所研究的对象即原型上直接进行实验,这种方法具有很大的局限性:实验结果只能用于特定的实验条件,或只能推广到与实验条件完全相同的现象上去:对于某些设备,由于实验条件的限制,如高温高压或者设备尺寸太大或者太小,都可能使实验难以进行;对于那些尚未建造的设备,如要设计一座新的水坝,则根本谈不上用实验方法探索其规律性;直接实验的方法不适用于大型设备的破坏性实验。 模拟实验即模化实验克服乐山直接实验的缺点,根据相似原理,按一定原则把流动实物原型缩小或放大,或者把复杂的、苛刻的工况条件转化为简单 的实验条件,或者更换为流体介质,把易燃、易爆、有毒、昂贵的流体介质更换为空气或水,制成模拟试验台,把模型试验台上测定流动参数,找出模型中流体的运动规律,然后将这些规律运用于与模型相似的各种实验设备上去。用模型试验方法解决流体力学所依据的基本理论和方法是量纲分析和 相似原理。 1量纲分析 1.1量纲和单位 物理量单位的种类称为量纲,表示物理量的本质属性,用dim 表示。一个物理量可以用不同的单位度量,但量纲却是唯一的。例如长度、宽度、高度、厚度、深度都可以用米、英尺等长度单位来度量,但是它们的量纲都是长度量纲L 。 由于许多物理量的量纲之间都有一定的联系,在量纲分析时选少数几个物理量的量纲作为基本量纲,其他物理量的量纲都可以由这些基本量纲导出,称为导出量纲。基本量纲是相互独立的,而不能由其他量纲的组合来表示,在工程流体力学中常用质量、长度、时间(M 、 L 、T )作为基本量纲。 在一般的力学问题中,任意一个物理量B 的量纲都可以用M , L ,T 这三个基本量纲的指数乘积来表示 dim B =M αL βT γ 在量纲分析中,有一些物理量的量纲为1 ,称为无量纲量,用M 0L 0T 0表示。无量纲量就 是一个数,但可以把它看成由几个物理量组合而成的综合表达。例如雷诺相似准数的量纲 dim Re = dim (υvl )=000121T L M T L L LT =--

流体力学教学大纲

《流体力学》教学大纲 一、课程名称 1. 中文名:流体力学 2. 英文名:Fluid Mechanics 二、课程管理院(系) 三、大纲说明 1.适用专业、层次 环境工程专业,本科。 2.学时与学分数 总学时为64学时,总学分为3学分。 3.课程的性质、目的与任务 流体力学是环境工程专业及其相近专业的一门学科基础课程,属工程科学,是用自然科学的原理考察、解释和处理工程实际问题。研究方法主要是因次论指导下的实验研究法、数学模型法、参数归并和过程分解与组合。本课程强调工程观点、定量运算、实验技能、设计能力和模拟优化能力的训练,强调在理论和实际的结合中,提高分析问题、解决问题的能力。 本课程理论教学主要研究连续性方程、能量方程和动量方程的基础理论及具体的工程应用。通过本课程的学习,使学生熟悉流体力学的基本概念和基本方程,掌握在环境工程和科学领域中的应用途径和处理方法,具备解决环境工程中流体力学问题的能力。 4. 先行、后续课程 本课程是学生在具备了必要的高等数学、物理、理论力学等基础知识之后必修的技术基础课,是水污染控制工程、大气污染控制工程、给排水工程、水控课程设计、毕业设计的基础。 5.考试方式与成绩评定 考试方式:笔试(闭卷)。 成绩评定:笔试70%,平时成绩30%。 四、纲目 (上册) 1绪论(3学时) [教学目的] 了解流体力学的研究内容及发展简史,掌握流体的主要物理性质和流体的连续介质模型,掌握流体的主要物理性质和作用在流体上的力。 [教学重点与难点] 流体的物理性质;流体的连续介质模型。 [教学时数] 3学时 [教学方法与手段] 在多媒体教室采用电子课件进行课堂讲授。本章内容是学生学习流体力学这门课的基础,是流体力学的“门槛”。因此,必须联系生产及生活实际,使学生首先在思想上明确认识,对这门课产生兴趣,使学生认识到流体力学理论在生产和生活实际中的应用是无所不在的。[教学内容] 1.1工程流体力学的任务及其发展简史 1.2连续介质假设,流体的主要物理性质 连续介质假设;流体的主要物理性质 1.3作用在流体上的力

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

流体力学结课论文

谈流体力学的研究内容及发展简史 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机 械运动规律及其实际应用的技术科学,在许多工业部门中都有着广泛应 用,航空工业中飞机的制造离不开空气动力学;造船工业部门要用到水 动力学,与土建类各专业有着更加密切的关系,了解流体动力学的研究 内容及发展简史对学习流体力学知识具有的一定的引导作用,为以后的 学习铺设台阶,引起学习的兴趣。 流体力学的研究内容 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都 可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。 大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70% 是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等) 乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的 应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动 学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力 学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛 顿流体力学等。 在流体力学中为简化计算,对流体模型做出了假设:质量守恒;动量 守恒;能量守恒。 在流体力学中常会假设流体是不可压缩流体,也就是流体的密 度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会 假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为 非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子), 则在边界处流体的速度为零。 流体的主要物理性质: 1、流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。液体 有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一 定的体积,不存在自由液面。 2、流体的连续介质模型 微观:流体是由大量做无规则运动的分子组成的,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右的分子,相邻分子间的距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右的分子,相邻分子间的距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时间都

《流体力学》教学大纲

《工程流体力学》课程教学大纲 适用专业层次 理论课 学时实践课 学时 总学时学分课程性质 环境工程方向本科48 48 3 专业基础课 先修课程高等数学 一、课程性质、目的与任务 1. 性质:《流体力学》学科的渗透性很强,几乎与所有的基础和技术学科形成交叉学科,环境方向当然也包括在内的,该课程是环境工程专业的一门专业基础核心课程,是从事环境实验与理论研究、环境工程设计与管理、环境应用与开发等专业的一门重要的基础课。 2. 目的与任务:通过对该课程的学习,要求学生掌握有关流体力学的基本概念、基本定律、基础理论、重要应用等,同时注意培养学生正确逻辑思维的能力,从而为学生学习后继相关专业课程提供必要的基础理论知识和有关流体和传热计算的基本方法。 二、课程的总体安排和各部分的课时分配 总学时:48学时,其中理论教学40学时,课堂讨论与习题讲解8学时 理论课教学的内容及学时分配 课程目录教学内容学时数 第一章绪论 2 第二章流体静力学 6 第三章流体运动学8 第四章理想流体动力学8 第七章粘性流体动力学8 第八章圆管中的流动8 第九章边界层理论 6 期末复习 2 三、课程教学内容和教学基本要求 第一章绪论 理论教学2学时 内容:流体力学发展简史;流体力学的研究内容、研究方法和应用;流体的定义和特征、

连续介质模型;作用在流体上的力;流体的主要物理性质。 重点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 难点:牛顿内摩擦定律的具体应用。 第二章流体静力学 理论教学6学时 内容:流体静压强及其特性;流体平衡微分方程式;重力场中流体的绝对平衡和相对平衡;静止液体作用在固体壁面上的总压力。 重点:静压强及其特性,点压强的计算,静压强分布图,作用于平面壁和曲面壁上的液体总压力,压力体图。 难点:流体平衡微分方程的建立与应用。 第三章流体运动学 理论教学6学时,课堂讨论和习题2学时 内容:研究流体运动的两种方法及描述流体流动的一些基本概念;连续性方程;流动势函数和流函数的求解。 重点:流体流动中的几个基本概念,连续性方程、速度势函数和流函数的推导依据。 难点:连续性方程、流线方程和迹线方程的求解和二者的关系。 本章是全书的重点章节。 第四章理想流体动力学 理论教学8学时 内容:运动微分方程及有关概念,伯努利方程及其应用,动量定理和动量矩定理。 本章是全书的重点章。 重点:运动微分方程及有关概念,总流的伯努利方程的推导。 难点:动量定理和动量矩定理。 第七章粘性流体动力学 理论教学:6学时,课堂讨论和习题2学时 本章是全书的难点章节。 内容:粘性流体运动微分方程,量纲分析和相似理论。 重点:动量方程及其应用。 难点:量纲分析和相似理论。 第八章圆管中的流动 理论教学:6学时,课堂讨论和习题2学时 本章是全书的重点章节。 内容:层流和湍流的概念,圆管层流流动,圆管湍流流动,管道沿程水头损失和局部阻力损失。 重点:层流和湍流的概念,圆管层流流动,水头损失的计算。 难点:圆管湍流流动,水头损失的计算。 第九章边界层理论基础 理论教学:6学时

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

工程流体力学学习心得

工程流体力学学习心得 工程流体力学对于过程装备与控制工程专业的我来说,属于专业必备课程,对专业后续的无论是就业还是研究生学习研究都是必备的知识。 工程流体力学介绍了工业生产中的基本流体特性、流体流动的基本特性以及流体在储运设备以及管道中储存和流动时流体对储运设备的影响等相关知识。对于自己的专业来讲,工程流体力学对以后自己在选择设计承压储运工程流体设备的工作中,为不同流体对不同形式的承压储运设备的力学及性能影响提供理论依据,从而使工作顺利进行下去。 对于本门课程主要的知识点归结如下: 1、柏努力方程 2、流体流动时的动量守恒方程 3、连续性方程 4、流体流动时的动量矩守恒方程 5、流体管程流动阻力计算 6、流体局部流动阻力计算 另一个自己感觉重要的知识便是获得上述各方程前期的假设性,在假设的基础上,由最简单形式开始展开对公式的推导以及验证。 事务研究的基础任务,例如假设性条件和忽略性因素,才是研究取得成功的根本,因此,要探究事物的根本,就应该努力培养如何提出假设的这种能力,培养先创性及大胆实践探求的精神。同时,作为工科专业,又应该具有工程概念,工程概念中的一个很大特点就是“人各异性”。同一个工程建设中,很可能有多种施工方案,并且每一种方案都会有自己的特点及优势,而且也并不存在真正绝对的答案供自己选择。因此,在培养先创性及大胆实践探求的精神同时,一定不要钻死牛角尖,同时要根据实际情况选择自己的设计方案。 在学习这门课程中,有些基础知识掌握的不是很到位,并且,在自己感觉相对简单的知识点方面,本以为自己已经掌握了,但是,当真正拿到手亲身做的时候,就会发现很多问题,因此,在今后的学习及生活中,也要克服自以为是的坏毛病,亲身实践去获取所需。 对这个学期的课程来讲,我并没有因考察考试的区分来看待所学的各门课程,而是对照自己的毕业从业计划有目的的投入到学习中,这虽是一门考查课,但是在以后的工作中,这门课程将会给予我实际的操作应用。 一门课程的结束都会教会我很多专业必备的知识技能,这也将会是我今后学习以及工作的宝贵财富。

流体力学课程教学大纲

《流体力学》课程教学大纲 一、课程基本信息 1、课程代码:0330010 2、课程名称(中/英文):流体力学/Fluid Dynamics 3、学时/学分:48/6 4、先修课程:高等数学 (上、下)、理论力学,1110011/1110012/0610040 5、面向对象: 热能与动力工程专业和机械设计制造及其自动化专业的本科生 6、开课院(系):航海学院机械工程与自动控制系 7、教材、教学参考书: 教 材:《流体力学》、景思睿 张鸣远编著、西安交通大学出版社、2001年7月; 教学参考书:《工程流体力学》、归柯庭等编著、科学出版社、2003年7月; 《流体力学》、吴望一主著、北京大学出版社、1983年3月。 二、课程性质和任务 《流体力学》为非流体力学专业的机械制造、动力工程、能源、环境与化学工程等类专业的重要技术基础课。通过本课程讲述将使学生掌握基础的流体力学知识,并对后续专业课程的学习及相关专业工作的开展奠定初步的流体力学理论基础。 三、教学内容和基本要求 《流体力学》课程在内容设置上既着眼于本科生未来工作和高技术发展的需要,也兼顾到本科生急需掌握的基础理论和基础专业知识。主要讲述内容包括:流体及其物理性质,流体静力学、流体运动力学基础、流体动力学基础、相似原理与量纲分析、理想不可压缩流体的定常流动、通道内的粘性流动、粘性不可压流体绕物体流动等。本课程讲述总计需48学时,具体教学内容和基本要求如下: 第一章流体及其主要物理性质(4)

主要内容: 1、流体与连续介质模型; 2、流体的黏性; 3、流体的可压缩性; 4、作用在流体上的力。 基本要求:掌握流体的基本物理性质; 理解连续介质模型的含义。 第二章流体静力学(6) 主要内容: 1、流体静压强及其特性; 2、静止流体平衡微分方程式; 3、重力场中静止流体内的压强分布及压强测量; 4、作用在平面上的流体静压力; 5、作用在曲面上的流体静压力及浮力。 基本要求:掌握流体静压强的基本特性; 掌握流体静力学的基本原理; 了解压强常用的测量方法; 掌握平面及曲面上流体静压力的计算。 第三章流体运动学基础(4) 主要内容: 1、描述流体运动的两种方法; 2、物质导数; 3、迹线、流线和染色线,流管; 4、流体微团的运动和变形。 基本要求:掌握描述流体运动的两种方法; 掌握物质导数的含义;

浙大工程流体力学试卷及答案知识分享

浙大工程流体力学试 卷及答案

2002-2003学年工程流体力学期末试卷 一、单选题(每小题2分,共20分) 1、一密闭容器内下部为水,上部为空气,液面 下4.2米处的测压管高度为2.2m,设当地压强 为98KPa,则容器内液面的绝对压强为水 柱。 (a) 2m (b)1m (c) 8m (d)-2m 2、断面平均流速υ与断面上每一点的实际流速u 的关系是。 (a)υ =u (b)υ >u (c)υ

的流量。 (a)等于 (b)大于 (c)小于 (d) 不能判定 8、圆管流中判别液流流态的下临界雷诺数为。 (a) 2300 (b)3300 (c)13000 (d) 575 9、已知流速势函数,求点(1,2)的速度分量为。 (a) 2 (b) 3 (c) -3 (d) 以上都不是 10、按与之比可将堰分为三种类型:薄壁堰、实用堰、宽顶堰 (a)堰厚堰前水头 (b) 堰厚堰顶水头 (c) 堰高堰前水头 (d) 堰高堰顶水头 二、简答题(共24分) 1.静水压强的特性(6分) 2.渐变流的定义及水力特性(6分) 3.边界层的定义及边界层中的压强特性(6分) 4.渗流模型简化的原则及条件(6分) 三、计算题(共56分) 1、(本小题14分) 有一圆滚门,长度L=10m,直径D=4m,上游水深H1=4m,下游水深H2=2m,求作用在圆滚门上的水平和铅直分压力。 题1图题2图 2、(本小题12分) 设导叶将水平射流作的转弯后仍水平射出,如图所示。若已知最大可能的支撑力为F,射流直径为d,流体密度为 ,能量损失不计,试求最大射流速度V1。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

相关文档
最新文档