第三章 流体运动学
合集下载
第三章流体运动学

第三章 流体运动学
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动
第三章 流体运动学.ppt

1786年,他接受法王路易十六的邀请, 定居巴黎,直至去世。近百余年来,数学领 域的许多新成就都可以直接或间接地溯源于 拉格朗日的工作。
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理
流体力学-第三章

空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
第3章1 流体运动学基础

2、拉格朗日坐标:
在某一初始时刻t0,以不同的一组数(a,b,c)
来标记不同的流体质点,这组数 (a,b,c)就叫
拉格朗日变数。或称为拉格朗日坐标。
物理量的表示形式:若以f表示流体质点的某 一物理量,其拉格朗日描述的数学表达是: f=f(a,b,c,t)
如任意时刻t,任何质点在空间的位置(x,y,z) 都可以看成为拉格郎日变数和时间t的函数
流进的流体质量:
1u1dA1
在单位时间内从 2-2断面 流出的流体质量:
2u2 dA2
在单位时间内流入控制体的流体质量为:
dM 1u1dA1 2u2 dA2
对稳定流,各点的运动要素不随时间变化,且流体又是 无空隙的连续介质,由质量守恒定律得:
dM 0
即
1u1dA1 2u2 dA2
求:(1)流线方程以及t=0,1,2时的流线图
(2)迹线方程以及t=0时通过(0,0)点的迹线 dx dy dz dx dy 解:(1)由流线方程 得: 。 ux uy uz a bt 对自变量x,y积分,得: ay btx C bt y xC a 因此,流线为一簇平行的斜线。在不同的瞬时,流线的斜率不同。
后三项反映了在同一瞬时(即t不变)流体质点从 一个空间转移到另一个空间点,即流体质点所在空 间位置的变化而引起的速度变化率,称迁移加速度。
欧拉法的优越性:
1. 利用欧拉法得到的是场,便于采用场论这一数学工具来研究。
2. 采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是二 阶导数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求解容
p p( x, y, z, t )
工程流体力学-第三章

四、有效断面、流量和平均流速
1. 有效断面 流束中处处与速度方向相垂直的横截面称为该流束的有效断面, 又称过流断面。 说明:
(1)所有流体质点的
速度矢量都与有效断面 相垂直,沿有效断面切
向的流速为0。
(2)有效断面可能是 平面,也可能是曲面。
2. 流量
(1) 定义:单位时间内通过某一过流断面的流体量称为流量。
压强的拉格朗日描述是:p=p(a,b,c,t)
密度的格朗日描述是:
(a, b, c, t)
二、欧拉法(Euler)
1. 欧拉法:以数学场论为基础,着眼于任何时刻物理量在场上 的分布规律的流体运动描述方法。 2. 欧拉坐标(欧拉变数):欧拉法中用来表达流场中流体运动 规律的质点空间坐标(x,y,z)与时间t变量称为欧拉坐标或欧拉变 数。
(1)x,y,z固定t改变时, 各函数代表空间中某固
定点上各物理量随时间
的变化规律; (2)当t固定x,y,z改变 时,它代表的是某一时 刻各物理量在空间中的 分布规律。
密度场
压力场
( x, y , z , t )
p p ( x, y , z , t ) T T ( x, y , z , t )
u y du z du z ( x, y , z , t ) u z u z u z az ux uy uz dt dt t t t t du u a (u )u dt t
在同一空间上由于流动的不稳定性引起的加速度,称 为当地加速度或时变加速度。 在同一时刻由于流动的不均匀性引起的加 速度,称为迁移加速度或位变加速度。
一元流动
按照描述流动所需的空间坐标数目划分
二元流动
三元流动
流体运动学

在流体运动的某一初始时刻t = t。每一个流体质点都占有唯一确 定的空间位置,这样,我们就可以用这一质点在t = t。时刻的空间坐 标(X,Y,Z)来标记它。如对于某一流体质点,当t = t。时的坐标 为 ,则该点的轨迹 。 对于任一质点:
流体在初始时刻的坐标或(X,Y,Z)就称为拉格朗日坐标,显然,在以 上描述中 ,或
4. 在定常流中,流线和迹线重合。
所以在定常流中,可以用烟线来显示流谱,问题:在非定常流 场中,烟线是流线还是迹线?——脉线
例2:给定欧拉描述的速度场:u=x+t,v=-y-t。求: 1)t=1时过x=1,y=1点的流体质点的迹线方程;
2)过该点的流线方程。
解:由迹线的微分方程,
积分得: 1)代入t=1时过x=1,y=1点的质点的条件可确定积分常数:
将其代入数度场的关系即可得到数度场的欧拉描述:
对上式求质点到数可得加速度:
与前面得到的结果相同。
那么我们究竟采用那种描述方法呢,仿佛拉格朗日法更符合我们 的习惯,事实是,在流体力学里,除了极特殊的情况,我们一般都采 用欧拉法而不是拉格朗日法。虽然因为拉氏法对运动的描述与理论力 学相同使我们感到熟悉,虽然欧氏法的加速度表述比较复杂,但是:
第二节 迹线和流线
一、 迹线
流体质点运动的轨迹叫迹线。在拉格 朗日法中,流体质点的位移方程就是迹线 方程: 。在欧拉法中,流体质 。 点运动的微分方程为:
可知,迹线是基于拉格朗日观点的流 体运动描述。 欧拉法在直角坐标中的分量表述可以写成:
所以:
二、 流线
流线是这样的一条空间曲线,在某一 时刻,此曲线上任一点的切线方向与流体 在该点的速度方向一致。(场,如电力线、
任一不与流管侧面平行的面被流管截
流体在初始时刻的坐标或(X,Y,Z)就称为拉格朗日坐标,显然,在以 上描述中 ,或
4. 在定常流中,流线和迹线重合。
所以在定常流中,可以用烟线来显示流谱,问题:在非定常流 场中,烟线是流线还是迹线?——脉线
例2:给定欧拉描述的速度场:u=x+t,v=-y-t。求: 1)t=1时过x=1,y=1点的流体质点的迹线方程;
2)过该点的流线方程。
解:由迹线的微分方程,
积分得: 1)代入t=1时过x=1,y=1点的质点的条件可确定积分常数:
将其代入数度场的关系即可得到数度场的欧拉描述:
对上式求质点到数可得加速度:
与前面得到的结果相同。
那么我们究竟采用那种描述方法呢,仿佛拉格朗日法更符合我们 的习惯,事实是,在流体力学里,除了极特殊的情况,我们一般都采 用欧拉法而不是拉格朗日法。虽然因为拉氏法对运动的描述与理论力 学相同使我们感到熟悉,虽然欧氏法的加速度表述比较复杂,但是:
第二节 迹线和流线
一、 迹线
流体质点运动的轨迹叫迹线。在拉格 朗日法中,流体质点的位移方程就是迹线 方程: 。在欧拉法中,流体质 。 点运动的微分方程为:
可知,迹线是基于拉格朗日观点的流 体运动描述。 欧拉法在直角坐标中的分量表述可以写成:
所以:
二、 流线
流线是这样的一条空间曲线,在某一 时刻,此曲线上任一点的切线方向与流体 在该点的速度方向一致。(场,如电力线、
任一不与流管侧面平行的面被流管截
工程流体力学-第三章

三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
水力学 第三章 流体运动学

§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均匀流与非均匀流划分在流管中的划分
均匀流、非均匀流划分
均匀流 渐变流 非均匀流 均匀流 急变流 非均匀流 均匀流
均 匀 流
非均匀流 急变流
返回
均匀流、渐变流过水断面的重要特性
均匀流是流线为彼此平行的直线,应具有以下特性: •过水断面为平面,且过水断面的形状和尺寸沿程不变; •同一流线上不同的流速应相等,从而各过水断面上的 流速分布相同,断面平均流速相等;
图3—18变直径水管
[例3—8] 输水管道经三通管分流(图3—19).已知管径d1 100 =d2=200mm, d 3 mm.断面平均流速 =3mv/ , =2m 1 v/s。试求断面的平均流速 2 s v2 。 v3 [解] 流入和流出三通管的流量应相等,
非均匀流——流线不是平行直线的流动。
特征:非均匀流中流场中相应点的流速大小
或方向或同时二者沿程改变,即沿流程方向
速度分布不均。(非均匀流又可分为急变流
和渐变流)
例:流体在收缩管、扩散管或弯管中的流动
渐变流与急变流 非均匀流中如流动变化缓慢,流线的曲率很小接近平 行,过流断面上的压力基本上是静压分布者为渐变流 (gradually varied flow),否则为急变流。
1
2
2
x
uy
1
z
方程一般式计算。
( u x ) 2 2t , ( y x 2 ) 2 x, x x t
( u z ) ( 2tz ) 2t z z
此流动满足连续性条件。
( u x ) ( u y ) ( u z ) 将以上各项代人式(3—30)得:t x y z 0,
udA
A
A
返回
第三节
连续性方程
连续性方程是流体力学基本方程之一,是质量守恒原理的 流体力学表达式。
一、连续性微分方程
在流场中取微小直角六面体空间为控制体, 正交的三个边长dx,dy,dz,分别平行于x,y, z坐标轴(图3—16)。控制体是流场中划定的空间, 图3—16 形状、位置固定不变,流体可不受影响地通过。 dt时间x方向流出与流入控制体的质量差,即x方向净流出质 量为:
O
O
在均匀流,与流线正交的n方向上无加速度,所以有 Fn 0
即: pdA ( p dp) dA gdAdn cos 0
dp gdz 0
积分得:
z
g
p
C
返回
流管、微小流束、总流和过水断面
流管——由流线构成的 一个封闭的管状曲面
dA
微小流束——充满以流 管为边界的一束液流
即有: dQ1 dQ2
设 1 2 ,则 u1dA1 u2dA2 微小流束的连续性方程 恒定总流的连续性方程
积分得: Q1 Q2
也可表达为: V1 A1 V2 A2
适用条件:恒定、不可压缩的总流且没有支汇流。
若有支流:
Q1 Q2 Q3 Q1 Q3 Q2
Q1 Q2 Q3
Q1 Q3 Q2
前进
本章主要研究流体的运动规律
主要内容:
流体运动的描述 欧拉法的基本概念 连续性方程 流体微团运动分析
结束
流体运动的描述
1.拉格朗日法 ——以研究单个液体质点的运动过程 作为基础,综合所有质点的运动,构 图示 成整个液体的运动。 又称为质点系法(轨迹法)。 用于研究流体的波动和震荡等 2.欧拉法 ——以考察不同液体质点通过固定的空间 点的运动情况作为基础,综合所有空间点 图示 上的运动情况,构成整个液体的运动。 又称为流场法。 在研究工程流体力学时主要采用欧拉法
返回
欧拉法的若干基本概念
•恒定流动和非恒定流动 •迹线与流线 •均匀流与非均匀流 •流管、微小流束、总流和过水断面
•流量和断面平均流速
•水流的分类
返回
一、恒定流(steady flow)和非恒定流 (unsteady flow) 1. 恒定流
在流场中,流体质点的一切运动要素都不随时间
改变而只是坐标的函数,这种流动为恒定流
z
t (x,y,z) (t0)
O
M (a,b,c)
x
y
x x(a, b, c, t ) y y (a, b, c, t ) z z (a, b, c, t )
x x(a, b, c, t ) t t y y (a, b, c, t ) uy t t z z (a, b, c, t ) uz t t ux
若x,y,z为常数,t为变数, 若t 为常数, x,y,z为变数, 若针对一个具体的质点,x,y ,z ,t均为 变数,且有 x(t),y (t) ,z (t) ,
质点通过流场中任意点的加速度
返回
A
Q udA
即为旋转抛物体的体积
旋转抛物面
A
V A Q 即为柱体的体积
断面平均流速V
V
c
[例3—6] 已知速度场 u x cx2 yz, u y y 2 z cx2 yz, u z 为常数。 其中 试求坐标 z 方程的速度分量 u z 。 [解]:流动为不可压缩流体空间流动 u y u x u y u z u x 2 yz 2cxyz 2cxyz z ( x y ) 2 yz y x 由不可压缩流体连续性微分式方程式(3—22)积分得:
(3—29)
(3—30) (3—31)
式(3—30)或式(3—31)是连续性微分方程的一般形式。 对于均质的不可压缩流体,密度 =常数,式(3—30)化简为: 按场论的定义,速度场的散度 不可压缩流体的连续性微分方程可表示为:
ux uy uz 0 x y z
u y u z u div(u ) x x y z
过水断面——与微 小流束或总流的流 线成正交的横断面
总流——在一定边界内 具有一定大小尺寸的实 际流动的水流,它是由 无数多个微小流束组成
过水断面的形状可以 是平面也可以是曲面。
返回
流量和断面平均流速
流量——单位时间内通过某一过水断面的液体体积, 常用单位m3/s,以符号Q表示。
dA
udA dQ
渐变流——沿程逐渐改变的流动。
特征:流线之间的夹角很小即流 线几乎是平行的,同时流线的曲率 半径又很大(即流线几乎是直线), 其极限是均匀流,过水断面可看作 是平面。渐变流的加速度很小,惯 性力也很小,可以忽略不计。
急变流——沿程急剧改变的流动。
特征:流线间夹角很大或曲率半径较小或二者兼而有之, 流线是曲线,过水断面不是一个平面。急变流的加速度较大, 因而惯性力不可忽略。
u p 表示为 0 ,流体运动与时间无 t t t
关。即p = p(x,y,z)
u = u(x,y,z)
观看录像>>
如:离心式水泵,如果其转
速一定,则吸水管中流体的
运动就是恒定流;
恒位水箱出水口的稳定泄流
也是恒定流。 恒定流动的流场中任何点的 流动参量不随时间改变,但 不同点的流动参量可以不同。
条光滑曲线,其上所有各点的速度向量都与该
曲线相切。
流线能反映瞬时的流动方向 恒定流与非恒定流的流线和迹线 流线性质 流线图
流线图
返回
二者区别:流线是某一瞬时处在流线上的无数流体质点的 运动情况;而迹线则是一个质点在一段时间内运动的轨迹。
恒定流中,流线形状不随时间改变,流线与迹 线重合。在非恒定流中,流线的形状随时间而改变,流线 与迹线不重合。
u
Q dQ udA
Q A
图示
断面平均流速——是一个想像的流速,如果过水断 面上各点的流速都相等并等于V,此时所通过的流量 与实际上流速为不均匀分布时所通过的流量相等, 则该流速V称为断面平均流速。
V
udA
A
A
返回
A
Q udA
即为旋转抛物体的体积
旋转抛物面
A
V A Q 即为柱体的体积
2.非恒定流
运动要素是时间和坐
标的函数,即
p = p(x,y,z,t) u = u(x,y,z,t)
如:水箱中的水位随着水 的泄出而不断下降的孔 口出流就是非恒定流 闸门突然关闭时出现的水击现象是非恒定流
迹线与流线
迹线——是指某液体质点在运动过程中,不同
时刻所流经的空间点所连成的线。
流线——是指某一瞬时,在流场中绘出的一
若给定a,b,c,即为某一质点的 运动轨迹线方程。
液体质点在任意时刻的速度。
返回
z
t时刻
M (x,y,z) O
x
y
u x u x ( x, y , z , t ) u y u y ( x, y , z , t ) u z u z ( x, y , z , t )
dux ( x, y, z, t ) ax dt du y ( x, y, z, t ) ay dt du ( x, y, z, t ) az z dt
•均匀流(包括渐变流)过水断面上的动水压强分布规律 与静水压强分布规律相同,即在同一过水断面上各点的 测压管水头为一常数;
推论:均匀流过水断面上动水总压力的计算方法与静水总 压力的计算方法相同。
返回
p+dp dA
dn
(z
p ) C1 g 1
p
α
z
z dz
(z
p ) C2 g 2
返回
(3—35) (3—36)
[例3—7] 变直径水管(图3—18),已知粗管段直径 d1=200mm, 断面平均流速度v1=0.8m/s,细管直径d 2 =100mm。试求细管 段的断面平均流速。 [解] 由液体总流连续性方程式(3—33)
v1 A1 v2 A2