第三章 流体运动学

合集下载

第三章流体运动学

第三章流体运动学
第三章 流体运动学
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动

第三章 流体运动学.ppt

第三章 流体运动学.ppt
1786年,他接受法王路易十六的邀请, 定居巴黎,直至去世。近百余年来,数学领 域的许多新成就都可以直接或间接地溯源于 拉格朗日的工作。
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

第三章 流体运动学基础

第三章 流体运动学基础
一、流场:充满运动流体的空间
场:分布在空间某一区域内的物理量或数学函数。
标量场:场内定义的是标量函数 矢量场:场内定义的是矢量函数 均匀场:如果同一时刻场内各点函数的值都相等 不均匀场:如果同一时刻场内各点函数的值不相等 定常场(稳定场):如果场内函数不随时间改变 不定常场(不稳定场) :如果场内函数随时间改变
x
y
y
z
z
v



t
x
x
y
y
z
z

xvi

y
v
j z
v k

v

x
t
x
x
x
y
x
y
z
x
z
vi

y
t
x
y
x
y
dt
dt
dt
y x
xy
yx
d xy
dt
=
d yx
dt
( x
y
y )
x
y dxdt
x
剪切变形速率:两条 正交流体边单位时间 角度变化的平均值
xOy平面
xy
yx

1
2

x
y

y
x

yOz平面
yz
zy
z

z t
z (a,b, c,t)

ax

x
t

2x t 2
ax
(a,b,c,t
)
a
y

y
t

第3章1 流体运动学基础

第3章1 流体运动学基础

2、拉格朗日坐标:
在某一初始时刻t0,以不同的一组数(a,b,c)
来标记不同的流体质点,这组数 (a,b,c)就叫
拉格朗日变数。或称为拉格朗日坐标。
物理量的表示形式:若以f表示流体质点的某 一物理量,其拉格朗日描述的数学表达是: f=f(a,b,c,t)
如任意时刻t,任何质点在空间的位置(x,y,z) 都可以看成为拉格郎日变数和时间t的函数
流进的流体质量:
1u1dA1
在单位时间内从 2-2断面 流出的流体质量:
2u2 dA2
在单位时间内流入控制体的流体质量为:
dM 1u1dA1 2u2 dA2
对稳定流,各点的运动要素不随时间变化,且流体又是 无空隙的连续介质,由质量守恒定律得:
dM 0

1u1dA1 2u2 dA2
求:(1)流线方程以及t=0,1,2时的流线图
(2)迹线方程以及t=0时通过(0,0)点的迹线 dx dy dz dx dy 解:(1)由流线方程 得: 。 ux uy uz a bt 对自变量x,y积分,得: ay btx C bt y xC a 因此,流线为一簇平行的斜线。在不同的瞬时,流线的斜率不同。
后三项反映了在同一瞬时(即t不变)流体质点从 一个空间转移到另一个空间点,即流体质点所在空 间位置的变化而引起的速度变化率,称迁移加速度。

欧拉法的优越性:
1. 利用欧拉法得到的是场,便于采用场论这一数学工具来研究。
2. 采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是二 阶导数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求解容
p p( x, y, z, t )

流体力学与传热:3-1_第三章 流体运动学

流体力学与传热:3-1_第三章 流体运动学

(2)任意曲线上的速度环量等于曲线两端点上速度势函数值 之差。而与曲线的形状无关。
B
B
B
AB Vds (udx vdy wdz) d B A
A
A
A
对于任意封闭曲线,若A点和B点重合,速度势函数是单
值且连续的,则流场中沿任一条封闭曲线的速度环量等于零,
即 AB 0 。
(3)在空间无旋流场中,势函数相等的面为等势面;在平面 无旋流动中,势函数相等的线是等势线。
vx
x
vy
y
vz
z
若流动无旋,则存在速度势
n
右手法则
是有向曲面 的
正向边界曲线
证明 如图
设Σ与平行于z 轴的直线
z n
:z f (x, y)
相交不多于一点, 并Σ取
上侧,有向曲线 C 为Σ的正
向边界曲线 在 xoy 的投 影.且所围区域Dxy . x
o
Dxy C
y
定理 设G是空间一维单连域,P,Q, R在G内具有
x
4x
y
0
该流动无旋,存在速度势函数。
(2)由流函数的全微分得:
d
x
dx
y
dy
uydx
uxdy
4
ydx
4xdy
积分
4xy C
由速度势函数的全微分得:
d
x
dx
y
dy
uxdx
uydy
different directions of motion.
• 代入流线微分方程式中,得
dx dy 0
x
y
• 即 d 0
• 所以 C
• 上式说明流函数的等值线与流线重合。

流体运动学

流体运动学
在流体运动的某一初始时刻t = t。每一个流体质点都占有唯一确 定的空间位置,这样,我们就可以用这一质点在t = t。时刻的空间坐 标(X,Y,Z)来标记它。如对于某一流体质点,当t = t。时的坐标 为 ,则该点的轨迹 。 对于任一质点:
流体在初始时刻的坐标或(X,Y,Z)就称为拉格朗日坐标,显然,在以 上描述中 ,或
4. 在定常流中,流线和迹线重合。
所以在定常流中,可以用烟线来显示流谱,问题:在非定常流 场中,烟线是流线还是迹线?——脉线
例2:给定欧拉描述的速度场:u=x+t,v=-y-t。求: 1)t=1时过x=1,y=1点的流体质点的迹线方程;
2)过该点的流线方程。
解:由迹线的微分方程,
积分得: 1)代入t=1时过x=1,y=1点的质点的条件可确定积分常数:
将其代入数度场的关系即可得到数度场的欧拉描述:
对上式求质点到数可得加速度:
与前面得到的结果相同。
那么我们究竟采用那种描述方法呢,仿佛拉格朗日法更符合我们 的习惯,事实是,在流体力学里,除了极特殊的情况,我们一般都采 用欧拉法而不是拉格朗日法。虽然因为拉氏法对运动的描述与理论力 学相同使我们感到熟悉,虽然欧氏法的加速度表述比较复杂,但是:
第二节 迹线和流线
一、 迹线
流体质点运动的轨迹叫迹线。在拉格 朗日法中,流体质点的位移方程就是迹线 方程: 。在欧拉法中,流体质 。 点运动的微分方程为:
可知,迹线是基于拉格朗日观点的流 体运动描述。 欧拉法在直角坐标中的分量表述可以写成:
所以:
二、 流线
流线是这样的一条空间曲线,在某一 时刻,此曲线上任一点的切线方向与流体 在该点的速度方向一致。(场,如电力线、
任一不与流管侧面平行的面被流管截

工程流体力学-第三章

工程流体力学-第三章

三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax

dux dt

dux (x, y, z,t) dt

ux t
ux
ux t
uy
ux t
uz
ux t
ay

du y dt

duy (x, y, z,t) dt

u y t
ux
u y t
uy
u y t
uz
u y t
az

du z dt

duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt

ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间变化而引起的加速度,又叫“局部加速度”。
2) vx
vx x
vy
vx y
vz
vx z
:变位导数
它是在同一时间,在空间不同点处速度不同
而引起的加速度,又叫“对流加速度”。
讨论问题:
1)什么情况下只有局部加速度?
2.什么情况下只有位移加速度? 3.什么情况下两部分加速度都有? 4.DDt ( ) :称为流体的质点导数
的速度变化率:
r
r
lim ar
V (x x, y y, z , t t, ) V (x, y, z, t)
t 0
t
rr
r
r
V V dx V dy V dz
t x dt y dt z dt
r
r
r
r
V t
ux
V x
uy
V y
uz
V z
r
DV
Dt
加速度的矢量试:
ar
r DV
r V
t t t t t
2.非定常(non-steady flow) 在流场某点处有物理量随时间变化.
定常运动与坐标的选取有关
二、轨迹线(path line)
1.定义:连续时间内流体质点在空间经过的曲 线称为轨迹线。它的着眼点是个别流体质点, 因此它是与拉格朗日法相联系的。
2. 特点:轨迹线上各点的切线方向表示的是同 一流体质点在不同时刻的速度方向。
度(accleration)为:
vx
dx dt
vx (a, b, c, t )
vy
dy dt
vy (a, b, c, t )
vz
dz dt
vz (a, b, c, t )
ax
d 2x dt 2
ax (a, b, c, t )
ay
d2y dt 2
ay (a, b, c, t )
az
d 2z dt 2
rr (V )V
Dt t
从而欧拉法表示的加速度在直角坐标系中为:
ax
dvx dt
vx t
vx
vx x
vy
vx y
vz
vx z
ay
dvy dt
vy t
vx
vy x
vy
vy y
vz
vy z
az
dvz dt
vz t
vx
vz x
vy
vz y
vz
vz z
1)vtx : 局部导数,在固定空间点处, vx随时
dx
dy
dz
dt
vx (x, y, z,t) vy (x, y, z,t) vz (x, y, z,t)
3. 轨迹线的方程式 :
dx dy dz dt
ux
uy
uz
给定速度分布积分上式可得迹线方程。
一条迹线:一个流体质点在一段时间内描 述的路径。
t1
A
A
A AA
t2
t3
t4
A
t5
ts
三、流线(stream line)
B A
B A
流体的其它物理量都可以写为质点导数的形式: 例如:
D
Dt t Vx x Vy x Vz x
§3-2 几个基本概念
一、定常运动与非定常运动
1. 定常流动(steady flow) 在任意固定空间点处,所有物理量均不随时
间而变化的流动。即有
vx vy vz p 0
• 定常运动,流线的形状,不随时间变化,流 体质点沿流线前进,流线与轨迹线重合。
• 流线一般不相交
• 流线不转折,为光滑曲线。
3. 流线的微分方程
dx dy dz vx (x, y, z,t) vy (x, y, z,t) vz (x, y, z,t)
上述可组成一微分方程组,给定速度分布积 分可得一族流线,确定积分常数后可得一条流 线。 注意:积分时时间作为参量。
§3-1 研究流体运动的两种方法
两个基本概念:
流体质点(particle)——体积很小的流体微团 流体就是由这种流体微团连续组成的。
流体微团在运动的过程中,在不同的瞬 时,占据不同的空间位置。
空间点: 空间点仅仅是表示空间位置的几何
点,并非实际的流体微团。空间点是不动的, 而流体微团则动。同一空间点,在某一瞬时为 某一流体微团所占据,在另一瞬时又为另一新 的流体团所占据。也就是说,在连续流动过程 中,同一空间点先后为不同的流体微团所经过
拉格朗日变量: x=x(a,b,c,t)
y=y(a,b,c,t) (a1,b1, c1,t0 )
z=z(a,b,c,t)
(a2 , b2 , c2 , t0 )
思考题:
1. 当a,b,c为常数时,代表一个流 体质点随时间的变化?还是代表一群流 体质点随时间的变化?
2.若t为常数时又代表什么情况?其速度和加速
v =v (x,y,z,t)
x
x
v =v (x,y,z,t)
y
y
v =v (x,y,z,t)
z
z
p = p(x,y,z,t)
Ρ = ρ(x,y,z,t)
r V (x, y, z,t)
A
B
r
V (x Vxdt, y Vydt, z Vzdt,t dt)
加速度(accleration):单位时间内流体质点
第三章 流体运动学
课堂提问:流体运动与刚体运动有什么差别?
流体运动学用几何的观点来研究流体的运 动,暂不涉及力。
主要内容: 1.介绍研究流体运动的两种方法 2.用这两种方法来表达流体质点的运动 3.介绍流线、迹线、速度环量等基本概念 4.建立连续性方程
5. 引入流函数的概念 6.用分析的方法将流体运动速度分解为平移 变形速度以及旋转角速度;建立旋涡运动与无 旋运动的概念并引入速度势函数。
az (a, b, c, t )
பைடு நூலகம்
二、欧拉法(Euler)(空间点法)
欧拉法不跟踪流体质点,而着眼于选定的 空间点,空间点在不同的时刻为不同的流体质 点所占据。研究与流动有关的物理量。流动物 理量是空间坐标x,y,z以及时间t的函数。
例如流体质点的速度(velocity)、压力 (pressure)和密度(density)可表示成欧拉变 量如下:
研究流体运动的两种方法
一、拉格朗日(Lagrange)法(质点法)
始终跟随每一个流体质点,研究其在运动过程 中的位置、有关物理量(速度、压力、密度等) 的变化规律。
设任意时刻,任意流体质点的空间坐标为 x,y,z,则以a,b,c标认的流体质点在t时刻 所对应的位置, x,y,z应该是a,b,c和时间t的 函数,即
1. 定义:流场中这样一条连续光滑曲线:它上 面每一点的切线方向与该点的速度矢 量方向重合。
r
Va
r
a
b
c
Vc
r
Vb
流线
r
r t=t1的流线r
Va
Vb
Vc
b
a
t1
a
t1+ Δt
c t1+ 2Δt
a
质点a的轨迹
2. 流线特点 • 流线上各点的切线方向所表示的是在同一时
刻流场中这些点上的速度方向,因而流线形 状一般都随时间而变。
相关文档
最新文档