化学酶工程讲解

合集下载

《酶工程基本原理》课件

《酶工程基本原理》课件

添加标题
添加标题
添加标题
添加标题
降低杂质含量:通过优化分离纯化 技术,降低杂质含量,提高酶的纯 度
提高酶的稳定性:通过优化分离纯 化技术,提高酶的稳定性,延长酶 的保存时间
酶的生产与制备技 术
酶的生产方式
微生物发酵法:通过微生 物发酵产生酶
植物提取法:从植物中提 取酶
动物提取法:从动物中提 取酶
化学合成法:通过化学合 成产生酶
基因工程法:通过基因工 程产生酶
酶固定化技术:将酶固定 在载体上,提高酶的稳定 性和活性
酶的固定化技术
固定化酶的定义:将酶固定在载体上,使其保持活性并可重复使用的技 术 固定化酶的优点:提高酶的稳定性、可重复使用、降低成本
固定化酶的种类:吸附法、交联法、共价结合法等
添加标题
温度:酶的活性随温 度升高而增加,但超 过一定温度会失活
添加标题
pH值:酶的活性随 pH值变化而变化, 通常存在最适pH值
添加标题
离子强度:高离子强 度可能影响酶的活性, 导致酶失活
添加标题
酶浓度:酶的活性随 酶浓度增加而增加, 但超过一定浓度后不 再增加
添加标题
底物浓度:底物浓度 对酶的活性有影响, 通常存在最适底物浓 度
生物能源:用于生物燃料、 生物发电等领域
生物材料:用于生物材料合 成、生物材料改性等领域
酶的分类与性质
酶的分类
按照酶的来源分类: 动物酶、植物酶、 微生物酶
按照酶的催化反应 类型分类:氧化还 原酶、水解酶、转 移酶、裂解酶、异 构酶、连接酶
按照酶的活性中心 分类:金属酶、非 金属酶
按照酶的催化反应 机制分类:单酶、 多酶、复合酶
酶在食品加工中 的应用:酶在食 品加工中主要用 于提高食品品质 和营养价值,如 酶在食品发酵、 食品加工、食品 保鲜等方面的应 用。

酶工程期末重点总结

酶工程期末重点总结

酶工程期末重点总结一、酶工程概述酶工程是将酶应用于工业领域的一门科学,通过对酶的研究和改良,可以提高酶的稳定性、催化活力、选择性和产量,以满足工业生产的需求。

酶工程的应用范围广泛,涉及生物技术、医药化学、食品工程等多个领域。

二、酶的产生和分离纯化1. 酶的产生:酶可以通过天然微生物、重组DNA技术等方法进行生产。

天然微生物通过发酵过程产生酶,而重组DNA技术可以将特定基因导入到宿主微生物中,使其产生目标酶。

2. 酶的分离纯化:酶的分离纯化通常包括细胞破碎、组织液处理、沉淀和层析等步骤。

其中,层析是一种常用的分离纯化方法,包括凝胶过滤层析、离子交换层析、亲和层析等。

三、酶的性质和特点1. 酶的性质:酶是一种特殊的蛋白质,具有催化作用。

酶的催化作用是高度选择性的,可以加速化学反应的速率并降低反应的能量活化值。

2. 酶的特点:酶具有高效、低成本、环境友好等特点。

由于酶具有高度选择性,因此可以在温和的条件下催化反应,减少能耗和废弃物产生。

四、酶的改良和优化酶的改良和优化是酶工程的核心内容之一,旨在提高酶的催化活力、选择性和稳定性,以满足工业生产的需求。

1. 酶的改造:通过理性设计和随机突变等手段,改变酶的氨基酸序列,以改善其性质。

常用的改造方法包括点突变、插入突变和删除突变等。

2. 酶的固定化:将酶固定在材料表面或载体上,增加酶的稳定性和重复使用性。

常用的固定化方法包括包埋法、凝胶包覆法和共价固定法等。

3. 酶的进化:通过模拟自然界的进化过程,通过多代选择和酶库筛选等方法,获得具有改良性质的酶。

进化方法包括DNA重组技术、DNA重组酶库和聚合酶链式反应等。

五、酶工程在工业中的应用酶工程在工业中的应用广泛,涉及到生物能源、纺织印染、制药等多个领域。

1. 生物能源:酶可以催化生物质转化为生物能源,如酶解纤维素制备生物乙醇。

2. 纺织印染:酶可以代替传统的化学处理方法,实现更加环保和高效的染色和整理。

3. 制药:酶可以用于合成药物和研发新药,如利用酶合成青霉素等抗生素。

酶工程精要

酶工程精要

《酶工程》要点1、酶工程:酶的生产、改性与应用的技术过程。

酶的生产:获得酶的技术——微生物发酵产酶、动植物培养产酶和酶的提取与分离。

酶的改性:改进酶的催化特性技术过程——酶分子修饰、酶固定化、酶非水相催化和酶定向进化。

酶的应用:获得所需物质或除去不良物质技术过程——酶反应器的选择与设计以及酶在各个领域的应用。

2、酶工程的主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。

3、酶的催化特点:(1)酶催化的专一性强——绝对与相对(2)酶催化效率高(3)作用条件温和4、影响酶催化作用的因素:(1)底物浓度——催化反应速度先随底物浓度增加而增加,达最大是趋于平衡,过量时反而下降。

(2)酶浓度——成正比。

(3)温度——过高过低影响酶活性,最适温度。

(4)PH——最适PH,极端PH酶分子空间构象改变而失活。

(5)抑制剂——可逆,不可逆。

(6)激活剂。

(7)底物结构类似物。

5、抑制机理:(1)竞争性抑制——抑制剂和底物竞争与酶分子的结合,V m不变,K m变小。

(2)非竞争性抑制——抑制剂和底物分别与酶分子结合,V m变小,K m不变。

(3)反竞争性抑制——抑制剂与中间复合体结合,V m和K m都变小。

6、酶的分类与命名:蛋白类酶——1氧化还原酶,2转移酶,3水解酶,4裂合酶,5异构酶,6连接酶(合成酶)。

四码编号法:第一个号码为六大类酶,第二个号码为亚类,第三个号码亚类中的小类,第四个号码该小类中的序号。

7、酶活力:一定条件下酶催化反应的初速度。

酶活力单位:特定条件下每1min催化1µmol的底物转化为产物的酶量为1个酶活力单位。

酶的比活力:特定条件下单位质量(mg)蛋白质或RNA所具有的酶活力单位数。

酶比活力=酶活力/mg蛋白质(RNA)8、酶的生产方法:(1)提取分离法——盐溶液提取、酸碱溶液提取、有机溶剂提取。

名词解释酶工程

名词解释酶工程

酶工程名词解释第一章:绪论1、酶的概念:酶是由生物体产生的具有催化功能的生物大分子。

按照其化学组成,可以分为蛋白类酶(P酶)和核酸类酶(R酶)两大类别。

2、酶的生产、改性与应用的技术过程成为酶工程。

3、酶的生产是指通过各种方法获得人们所需的酶的技术过程,主要包括微生物发酵产酶、动植物培养产酶和酶的提取与分离纯化等。

4、酶的改性是通过各种方法改进酶的催化特性的技术过程,主要包括酶分子修饰、酶固定化、酶非水相催化和酶定向进化等。

5、酶的专一性是指在一定的条件下,一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。

分为绝对专一性和相对专一性。

6、竞争性抑制是指抑制剂和底物竞争与酶分子结合而引起抑制作用。

7、非竞争性抑制是指抑制剂与底物分别与酶分子上的不同位点结合而引起酶活性降低的抑制作用8、反竞争性抑制:在底物与酶分子结合生成中间复合物后,抑制剂再与中间复合物结合而引起的抑制作用称为反竞争性抑制。

9、酶活力是指在一定条件下,酶所催化的反应初速度。

在外界条件相同的情况下,反应速度越大,意味着酶活力越高。

10、酶的转换数Kp,又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。

即每摩尔酶每分钟催化底物转化为产物的摩尔数。

第二章:微生物发酵产酶★1、酶的发酵生产:经过预先设计,通过人工操作,利用微生物的生命活动获需酶的技术过程称为酶的发酵生产。

2、转录是以DNA为模版,以核苷三磷酸为底物,在依赖DNA的RNA聚合酶(转录酶)的作用下,生成RNA的过程。

3、以mRNA为模版,以各种氨基酸为底物,在核糖核蛋白体上通过各种tRNA、酶和辅助因子的作用,合成多肽链的过程称为翻译。

4、分解代谢物阻遏作用:是指有些物质(主要是指葡萄糖和其他容易利用的碳源等)分解代谢的产物阻遏某些酶(主要是诱导酶)生物合成的现象。

5、酶生物合成的诱导作用:加进某些物质,使酶的生物合成开始或加速进行的现象,称为酶生物合成的诱导作用,简称诱导作用。

酶工程

酶工程

名解:酶工程:又叫酶技术,是酶制剂的大规模生产和应用的技术。

也是酶的生产、改性与应用的技术过程。

自杀性底物:底物经过酶的催化后其潜在的反应基团暴露,再作用于酶而成为酶的不可逆抑制剂,这种底物叫自杀性底物。

别构酶:调节物与酶分子的调节中心结合后,引起酶分子的构象发生变化,从而改变催化中心对底物的亲和力,这种影响被称为别构效应,具有别构效应的酶叫别构酶诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶修饰酶:在体外用一定的化学方法将酶和一些试剂进行共价连接后而形成的酶模拟酶:利用有机化学合成的方法合成的比酶结构简单的具有催化作用的非蛋白质分子叫模拟酶。

抗体酶:是一种具有催化作用的免疫球蛋白,属于化学人工酶Mol催化活性:表示在单位时间内,酶分子中每个活性中心转换的分子数目离子交换层析:利用离子交换剂作为载体这些载体在一定条件下带有一定的电荷,当带相反电荷的分子通过时,由于静电引力就会被载体吸附,这种分离方法叫离子交换层析。

固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶酶反应器:是利用生物化学原理使酶完成催化作用的装置,他为酶促反应提供合适的场所和最佳的反应条件,使底物最大限度的转化为物。

底物抑制:在酶促反应中,高底物浓度使反应速度降低的现象。

稳定pH:酶在一定的pH范围之内是稳定的,超过这个限度易变性失活,这样的pH范围为此酶的稳定pH产酶动力学:主要研究细胞产酶速率及各种因素对产酶速率的影响,包括宏观产酶动力学和微观产酶动力学。

凝胶过滤:又叫分子排阻层析,分子筛层析,在层析柱中填充分子筛,加入待纯化样品再用适当缓冲液淋洗,样品中的分子经过一定距离的层析柱后,按分子大小先后顺序流出的,彼此分开的层析方法。

非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学液体发酵法:以液体培养基为原料进行微生物的繁殖和产酶的方法,根据通风方法不同又分为液体表层发酵法和液体深层发酵法。

第八章酶工程

第八章酶工程
第八章酶工程
按现代观点,酶工程主要包括以下内容 ① 酶的大量生产和分离纯化及它们在细胞外的应用 ② 新颖酶的发现、研究和应用 ③ 酶的固定化技术和固定化酶反应器 ④ 基因工程技术应用于酶制剂的生产与遗传修饰酶的研究 ⑤ 酶分子改造与化学修饰以及酶结构与功能之间关系的研究 ⑥ 有机介质中酶的反应 ⑦ 酶的抑制剂、激活剂的开发及应用研究 ⑧ 抗体酶、核酸酶的研究 ⑨ 模拟酶、合成酶以及酶分子的人工设计、合成的研究
第八章-酶工程
2023/12/28
第八章酶工程
酶工程
一. 概述 二. 酶的命名和分类 三. 酶的化学本质、来源和生产 四. 酶催化反应机理及反应动力学 五. 酶的固定化和固定化酶反应器 六. 酶工程的应用 七. 酶工程的研究进展
第八章酶工程
一 酶和酶工程的概述
(一)、 酶的概念 (二)、 对酶的认识和研究历程 (三)、 酶工程的概念
通过适应、诱导、诱变以及基因工程等方法 培育出新的高产酶的菌株。
第八章酶工程
微生物细胞产生的酶分类 结构酶:在细胞的生长过程中出于其自身需要而表达, 诱导酶:加入相应的诱导剂后才会表达,诱导剂一般是
该酶所催化反应的底物或产物。 一般而言,野生型微生物需要经过遗传改造后,才能变
为高产酶的菌株。其方法包括 ① 物理诱变育种 ② 化学诱变育种 ③ 基因工程构建
第八章酶工程
3)发酵条件控制 营养条件 环境条件,注意溶氧浓度、温度、pH值 特别注意剪气力对蛋白质的影响,因为在高剪
切力下,蛋白质容易失活。 注意发酵的泡沫,因为蛋白质是表面活性剂,
大量的蛋白质积累在发酵液中使得在鼓泡条 件下很容易形成泡沫,影响发酵正常操作。 因此应该考虑除泡装置,并添加消泡剂。
第八章酶工程

酶工程医学知识专题讲座培训课件

酶工程医学知识专题讲座培训课件

酶工程医学知识专题讲座
30
网格型:包埋在高分子凝胶细微网格中。
将块状聚合形成的凝胶切成小块,或直接包埋在珠 状聚合物中,后者可以使固定化酶机械强度提高 10倍,并改进酶的脱落的情况。
常用的材料:
聚丙烯酰胺、聚乙烯醇和光敏树脂等合成高分子物 质
淀粉、明胶、胶原、海藻酸和角叉胶等天然高分子 物质。
酶工程医学知识专题讲座
酶工程医学知识专题讲座
14
五、酶促动力学 六、酶的分离纯化与酶的活力测定
1 酶的分离纯化
细胞外酶和细胞内酶 在生物细胞内除了目标酶还有很多其他的酶,因
此需要分离和纯化的步骤。 基本步骤: ① 破碎细胞膜 ② 抽提 ③ 纯化
酶工程医学知识专题讲座
15
比活力:纯度的量度,指每毫克质量的蛋白 质中所含的某种酶的催化活力,一般用单 位/毫克蛋白(U/mg蛋白质表示)。酶的比 活力越高,酶的纯度也就越高。
20世纪60年代,以色列科学家发现酶的固定化现象。 1969年,千畑一郎等将固定化氨基酰化酶应用于生产L-氨 基酸,开创了固定化酶应用于工业生产的先例; 1971年召开的第一届国际酶工程会议上,建议采用统一的 英文名称Immobilized Enzyme; 1973年,固定化大肠杆菌菌体中的天冬氨酸酶连续生产L天冬氨酸。 1986年,利用固定化原生质体发酵生产碱性磷酸酶和葡萄 糖氧化酶等相继获得成功。
11
酶活性中心的特点:
a) 活性中心在酶分子总体积中只占相当小的部分 (1-2%),相当于2-3个氨基酸。
b) 都是酶分子表面的一个凹穴,有一定的大小和形 状,但不是刚性的,而具有一定的柔性。
c) 活性中心为非极性的微环境,有利于与底物结合。
d) 底物与酶通过形成较弱键力的次级相互作用并结 合到酶的活性中心。

酶工程名词解释

酶工程名词解释

酶工程名词解释酶工程名词解释酶:生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化能力的生物催化剂。

酶工程:是酶学和工程学相互渗透结合形成的一门新的技术科学。

从应用目的出发研究酶,在一定的生物反应装置中利用酶的催化性质,将相应原料转化成有用的物质。

单体酶(monomeric enzyme):由一条多肽链组成,如溶菌酶;由多条肽链组成,肽链间二硫键相连构成一整体。

寡聚酶(oligomeric enzyme):由两个或两个以上的亚基组成的酶。

多酶复合体(multienzyme complex):由几种酶非共价键彼此嵌合而成。

催化转换数:每个酶分子每分钟催化底物转化的分子数。

酶活力(酶活性):指酶催化一定化学反应的能力。

酶活力的大小:一定条件下所催化的某一化学反应的反应速度,酶反应速度:单位时间内底物的减少量或产物的增加量。

酶的活力单位(U,activity unit):酶活力的大小及酶含量的多少。

酶单位:在一定条件下,一定时间内将一定量的底物转化为产物所需要的酶量。

这样酶的含量可以用每克酶制剂或每毫升酶制剂含有多少酶单位来表示(U/g或U/ml)。

Katal(Kat)单位:一个katal单位是指在最适反应条件下,1秒钟催化1moL底物转化为产物所需要的酶量。

酶的比活力(specific activity):代表酶的纯度,比活力用每mg蛋白质所含有的酶活力单位数表示。

对同一种酶比活力愈大,纯度愈高。

酶的转换数:以一定条件下每秒钟每个酶分子转换底物的分子数来表示酶的催化效率。

酶动力学:是研究酶促反应的速度以及影响此速度的各种因素的科学。

抑制剂:任何分子直接作用于酶使他的催化速度降低即称为~。

不可逆抑制作用:抑制剂与酶的必需基团以共价键结合而引起酶活性丧失,不能用透析,超滤或凝胶过滤等物理方法去除抑制剂而使酶复活。

可逆抑制作用:抑制剂与酶以非共价键结合而引起酶活性的降低或丧失,能用物理的方法除去抑制剂而使酶复活。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
二. 酶性质的了解


1. 酶活性部位情况 2. 酶的稳定条件、酶反应最适条件 3. 酶分子侧链基团的化学性质及反应活泼 性等。
7
三. 反应条件的选择

1. 反应体系中酶与修饰剂的分子比例。 2. 反应体系的溶剂性质,盐浓度和pH条件。 3. 反应温度及时间。
8
四. 酶修饰方法
35
热稳定性举例:
例:



过氧化氢酶:右旋糖酐:50℃/10min,40%90% 溶菌酶:右旋糖酐:100℃/30min,20%-90% 糜蛋白酶:右旋糖酐:37℃/6h,0%-70% 糜蛋白酶:肝素:37℃/6h,0%-80% 尿酸酶:人血清白蛋白: 37℃/48h,50%95%
36
二.抗原性
31
2.常用离子

常用二价金属离子。
金属离子置换修饰法只适用于本来在结构
中含有金属离子的酶
32
举例

将锌型蛋白酶的Zn2+除去,然后用Ca2+置换
成钙型蛋白酶,则酶活力可提高20-30%。若 将钙型蛋白酶制成结晶,则其酶活力比锌型 蛋白酶结晶的酶活力提高2-3倍。
33
(三) 修饰酶的性质及特点
26
3.活性酯法

(1)原理:根据多肽合成原理发展起来
(2)特点:反应条件温和,避免了活泼的
双功能交联剂直接与酶接触所可能产生的
酶失活,减少了副反应的产生。

(3)工艺步骤:
27
a 白蛋白琥珀酰化
28
b 活性酯形成反应
29
c 修饰反应
30
二.金属离子置换修饰

1. 概念
通过改变酶分子中所含的金属离子, 使酶的特性和功能发生改变的方法称为金 属离子置换修饰。
2
二. 酶修饰的方向

1. 核酸水平 2. 蛋白质水平(化学修饰)
3
三. 酶化学修饰的基本原理(解决4个 “ ?”)

1. 如何增强酶天然构象的稳定性与耐热性 2. 如何保护酶活性部位与抗抑制剂 3. 如何维持酶功能结构的完整性与抗蛋白水解酶 4. 如何消除酶的抗原性及稳定酶的微环境 酶化学修饰的定义:
40
六.对组织的分布能力变化

对组织的分布能力有所改变,能在血液中被靶 器官选择性地吸收。
41
六.对组织的分布能力变化举例

a-葡萄糖苷酶在体内希望尽量避免受到吞噬细胞 的破坏,利用白蛋白修饰后肝溶酶体摄入量达 35%,吞噬细胞3%

辣根过氧化物酶用聚赖氨酸修饰后,穿透细胞的 能力增强从0.2%-15.9% 天然溶菌酶几乎不被肝细胞吸收,用唾液酸糖肽 修饰溶菌酶后每分钟肝摄入量3.2%-34%。


凡通过化学基团的引入或除去,而使酶蛋白共 价结构发生改变,称为蛋白的化学修饰。
4
(二) 酶化学修饰的方法及修饰剂

一. 修饰剂的要求
二. 酶性质的了解
三. 反应条件的选择
四. 酶修饰方法
5
一. 修饰剂的要求


1. 修饰剂的分子量、修饰剂链的长度对蛋 白质的吸附性。 2. 修饰剂上反应基团的数目及位置。 3. 修饰剂上反应基团的活化方法与条件。


方法:核苷酸置换修饰
2’-位置上的羟基去除

在残基上接上氨基酸等有机化合物
21
2. 有机大分子对酶的修饰

一. 概念 利用水溶性大分子与酶结合,使酶的空间 结构发生某些精细的改变,从而改变酶的 特性与功能的方法称为大分子结合修饰法, 简称为大分子结合法。
22
二.常使用的水溶性大分子修饰剂



一.热稳定性 二.抗原性 三.体内半衰期 四.最适pH 五.酶学性质的改变 六.对组织的分布能力变化
34
一.热稳定性

例:每分子核糖核酸酶与6.5分子的右旋糖酐结
合,可使该酶的活力提高到原有酶活力的2.25倍。

原因: 1.修饰剂与酶多点交联,固定了酶的分子构象, 增强了酶的结构刚性。 2.减少了酶分子内部基团的热振动。


部分可消除。 PEG(聚二乙醇)、人血清白蛋白在消除酶抗 原性上效果明显。
原因: 1. 组成抗原决定簇的基团与修饰剂形成了共价 键,破坏了抗原决定簇的结构。 2.大分子修饰剂遮盖抗原决定决定簇和阻碍抗 原、抗体产生结合反应。
37


三.体内半衰期

体内半衰期延长
38
四.最适pH

有些酶经过化学修饰后,最适pH发生变化

糖及糖的衍生物 高分子化合物 具有生物活性的大分子物质
23
3. 蛋白质类及其它

一.蛋白质类修饰 二.金属离子置换修饰
24
一.蛋白质类修饰

什么蛋白质具有优越性? 血浆蛋白质,其中人血清白蛋白应用较多!
25
常用方法

1.戊二醛法:戊二醛双功能基团 2.碳二亚胺法:碳二亚胺作为交联剂 3.活性酯法:☆
例如: 猪肝尿酸酶的最适pH为10.5,在pH7.4生理环 境时5%-10%,但用白蛋白修饰后, 可保留 60% 吲哚-3-链烷羟化酶修饰后,最适pH从3.5变到 5.5,在pH为7时,修饰酶活比天然酶增加3倍。
39 Nhomakorabea五.酶学性质的改变

绝大多数酶经过修饰后,最大反应速度没有改变,但 有些酶在修饰后,米氏常数会增大。
第五章 化学酶工程

第一节 酶分子的化学修饰


第二节 抗体酶
第三节 印迹酶
1
第一节 酶分子的化学修饰
(一)概


一. 酶的化学修饰原因

1. 稳定性不够,不能适应大量生产的需要。(热、蛋白) 2. 作用的最适条件不符。(半衰期延长,最适PH扩大)
3. 酶的主要动力学性质的不适应。(Km增大,结合差) 4. 临床应用的特殊要求。 (异源蛋白-抗原-抗体-降低酶类药物抗原性)

1. 酶分子侧链基团的化学修饰 2. 有机大分子对酶的化学修饰 3. 蛋白质类及其他。
9
1. 酶分子侧链基团的化学修饰

一.几种重要的修饰反应
二.特定氨基酸残基侧链基团的化学修饰 三. 研究新热点
10
一.几种重要的修饰反应

1.酰化及其相关反应
11
2.烷基化反应
12
3.氧化和还原反应
13
4.芳香环取代反应
14
二.特定氨基酸残基侧链基团的化学修饰
15
1.巯基的化学修饰

常用:烷基化剂、酰化基、马来酰亚胺
16
2.氨基的化学修饰
17
3.羧基的化学修饰
18
4.咪唑基的化学修饰
19
5.胍(gua)基的化学修饰
20
三. 研究热点-核酸类酶的修饰

RNA酶的侧连基团:指组成RNA的核苷酸残基上的功能 团。主要是核糖2’-位置上的羟基和嘌呤、嘧啶碱基上的 氨基和羟基。
相关文档
最新文档