我国药用植物次生代谢产物功能基因研究概况

合集下载

利用植物次生代谢产物探索抗菌新药的生物合成机制

利用植物次生代谢产物探索抗菌新药的生物合成机制

利用植物次生代谢产物探索抗菌新药的生物合成机制随着抗生素的过度使用和细菌耐药性的不断增强,抗菌新药的研发变得尤为重要。

植物次生代谢产物作为一类天然化合物,具有潜在的抗菌活性。

因此,利用植物次生代谢产物探索抗菌新药的生物合成机制成为了当下的研究热点。

本文将从植物次生代谢产物的种类、其抗菌活性,以及生物合成机制等方面探讨相关内容。

一、植物次生代谢产物及其抗菌活性植物次生代谢产物是指植物在生长发育过程中不参与生命维持的代谢产物,如碱类、酚类、鞣质等。

这些化合物通常不参与植物生长和营养代谢,但在植物的适应环境、防御和保护机制中扮演着重要角色。

很多植物次生代谢产物具有明显的抗菌活性,如黄连素、黄酮类、单萜类等。

这些化合物通过抑制细菌细胞壁的合成、破坏细菌细胞膜的完整性、干扰细菌DNA的复制等多种方式发挥抗菌作用。

此外,植物次生代谢产物还能够抑制微生物的毒素生成,减少微生物的生长和繁殖。

二、植物次生代谢产物的生物合成机制植物次生代谢产物的生物合成主要通过植物细胞内复杂的代谢途径来实现。

这些代谢途径包括酚酮途径、二萜生物合成途径、生物碱合成途径等。

以酚酮途径为例,其是一条复杂的代谢途径,涉及多个酶的催化作用。

首先,植物细胞通过酚酮合成酶催化将酚和酮合成酚酮。

接着,酚酮通过甾醇酮还原酶的作用被还原为甾醇。

最后,甾醇通过细胞色素450酶系统的催化作用被氧化为酚酮醇。

这一系列的催化反应使植物细胞内的酚和酮得以转化为酚酮类次生代谢产物。

三、利用植物次生代谢产物探索抗菌新药的前景利用植物次生代谢产物探索抗菌新药具有广阔的前景。

首先,植物次生代谢产物作为天然化合物,具有较低的毒性和副作用,对人体相对安全。

这为将来的临床研究和应用打下了良好的基础。

其次,植物次生代谢产物丰富多样,具有广泛的抗菌活性。

这为寻找具有特定抗菌活性的新药提供了广阔的选择空间。

通过对植物次生代谢产物的筛选和优化,可以获得更具针对性和高效性的抗菌药物。

植物次生代谢产物的功能及应用概述

植物次生代谢产物的功能及应用概述

植物次生代谢产物的功能及应用概述植物次生代谢产物是植物在生长过程中产生的一类具有特定功能和应用价值的化合物。

它们不是植物生长和发育的必需物质,而是植物为了适应环境,抵御外界压力和捕食者而产生的。

这些化合物在植物体内起着调节生长发育、抵抗病害和捕食者、吸引传粉媒介等多种功能,对于植物的生存和繁衍具有重要作用。

同时,植物次生代谢产物在医药、农业、食品、化妆品等领域也有重要的应用价值。

植物次生代谢产物具有调节植物生长发育的功能。

植物在生长过程中会受到各种内外环境的影响,例如温度、光照、土壤条件等。

为了适应这些环境变化,植物会产生一系列的次生代谢产物来调节自身的生长发育。

比如,一些植物会在干旱条件下产生脯氨酸,以增加细胞膜的稳定性,抵御干旱胁迫。

另外,一些植物在受到损伤或外界压力刺激时会产生一类称为植物激素的次生代谢产物,如赤霉素、生长素等,它们能够调节植物的生长发育和生理反应。

植物次生代谢产物具有抗病害和抗捕食者的功能。

植物在自然界中面临着各种病原菌、病毒、昆虫等的侵害。

为了抵御这些病害和捕食者,植物会产生一些具有抗菌、抗病毒、抗虫性等功能的次生代谢产物。

例如,一些植物会产生一类称为次生代谢产物的挥发性有机化合物,如挥发性香气物质,它们能够吸引天敌来捕食害虫,起到抑制害虫的作用。

同时,植物还会产生一些抗菌、抗病毒的次生代谢产物,如黄酮类化合物、生物碱等,它们能够抑制病原菌和病毒的生长,保护植物免受病害的侵害。

植物次生代谢产物还具有在医药、农业、食品、化妆品等领域的广泛应用价值。

在医药领域,许多植物次生代谢产物被用于制造药物,如阿司匹林、紫杉醇等,它们具有抗炎、抗癌、抗凝血等药理活性。

在农业领域,一些植物次生代谢产物被用作农药,用于防治病虫害,提高作物产量和质量。

在食品领域,一些植物次生代谢产物被用作食品添加剂,如调味剂、色素等,以增加食品的口感和色彩。

在化妆品领域,植物次生代谢产物被用于制造护肤品、化妆品等,如芦荟、薰衣草等,具有保湿、抗氧化等功效。

药用植物次生代谢工程研究进展

药用植物次生代谢工程研究进展

药用植物次生代谢工程研究概况摘要高等植物的次生代谢产物是许多天然药物的重要来源,随着对药用植物次生代谢合成途径日渐全面的认识,采取有效的代谢工程策略对植物次生代谢途径进行遗传改良,已经取得了诸多研究成果。

本文介绍了黄酮类化合物 ( flavonoids )、萜类化合物( terpenoids )及生物碱( alkaloid )这三种重要药用植物次生代谢产物的结构及生物合成途径,说明了次生代谢工程在提取高质量药用植物活性物质中的研究现状,为今后药用植物次生代谢产物的大规模研究和利用提供借鉴。

关键词植物药;次生代谢产物;代谢工程高等植物的次生代谢产物是许多天然药物的重要来源,植物药在国际医药市场中占有重要的地位。

由于许多植物的天然活性物质的结构特殊,很难用化学方法完全合成,因此这类物质的生产必须依赖于天然植物资源。

针对植物天然药物可持续发展问题,药用植物次生代谢产物的应用吸引了国内外众多研究者的关注。

植物次生代谢的概念最早于1891年由Kossel 明确提出。

次生代谢产物(Secondary metabolites) 是由次生代谢(Secondary metablism) 产生的一类细胞生命活动或植物生长发育正常运行的非必需的小分子有机化合物,其产生和分布通常有种属、器官、组织以及生长发育时期的特异性。

次生代谢产物可分为苯丙素类、醌类、黄酮类、单宁类、萜类、甾体及其甙、生物碱七大类。

还有人根据次生产物的生源途径分为酚类化合物、萜类化合物、含氮化合物( 如生物碱) 等三大类。

代谢工程( Metabolic engineering )是生物工程的一个新的分支,通过基因工程的方法改变细胞的代谢途径,主要是针对提高某种重要的次生代谢物或其前体的含量,以期在较广范围内改善细胞性能,满足人类对生物体的特定需求。

随着现代生物工程技术的发展,充分利用基因组学的研究成果,解析和调控植物次生代谢的生物合成途径,进而利用代谢工程的方法大幅度提高药用植物中目标产物的含量,不仅具有理论上的可行性,而且已经成为改造物种的有力工具1. 植物次生代谢产物合成途径了解植物次生代谢合成途径是实施次生代谢工程的基础。

药用植物次生代谢产物生产途径的研究概述

药用植物次生代谢产物生产途径的研究概述

中药研究进展药用植物次生代谢产物生产途径的研究概述 王丹,王振月3,王宗权,陈金铭(黑龙江中医药大学,黑龙江哈尔滨150040)摘 要:对药用植物次生代谢产物的生产途径研究进行了综述,分别阐述了直接从植物中选取次生代谢产物、化学合成模拟、利用微生物发酵、利用植物组织和细胞培养以及利用基因工程生产次生代谢产物等五个方面。

通过对各方法优缺点比较,有利于其在实践的应用。

关键词:植物次生代谢产物;生产途径;微生物发酵;植物组织和细胞培养;基因工程中图分类号:R28216 文献标识码:A 文章编号:1002-2406(2008)01-0029-04基金项目:国家自然科学基金资助项目(3027156)作者简介:王丹(1982-),女,现为黑龙江中医药大学硕士研究生,主要从事生化教学研究。

通讯作者:3王振月(1956-),男,现为黑龙江中医药大学教授,硕士生导师,主要从事中药资源开发与生物技术研究。

收稿日期6修回日期 植物次生代谢的概念是在1891年由K ossei 首先明确提出的,是指有些生物体利用某些初生代谢产物为“原料”,在一系列酶的催化下,形成一些特殊的化学物质的过程,这些特殊的化学物质即为次生代谢产物(secondary metab olites ),如生物碱、黄酮类、萜类、有机酸、木质素等,它们是植物中一大类并非生长所必需的小分子有机化合物[1],但对于植物自身在复杂环境中的生存和发展却起着不可替代的作用[2,3]。

植物次生代谢产物具有一定的生理活性及药理作用,如生物碱具有抗炎、抗菌、扩张血管、强心、平喘、抗癌等作用[4];黄酮类化合物具有抗氧化、抗癌、抗艾滋病、抗菌、抗过敏、抗炎等多种生理活性及药理作用,且无毒副作用,对人类的肿瘤、衰老、心血管疾病的防治具有重要意义[5]。

几个世纪以来,人类一直从植物中获得大量的次生代谢产物用于医药卫生。

目前,世界75%的人口依赖从植物中获取药物,除化学合成之外,人类大量依赖植物次生代谢产物作为药物[6]。

植物次生代谢物的研究进展及应用前景

植物次生代谢物的研究进展及应用前景

植物次生代谢物的研究进展及应用前景植物次生代谢物指的是植物不参与生长发育、呼吸、光合作用等基本生理代谢过程的化合物。

这些化合物不仅存在于植物体内,也在人类和动物的生理中发挥重要作用。

对于人类来说,植物次生代谢物不仅是药物来源,还可以应用于化妆品、香料、食品添加剂和颜料等领域,因此在科学研究和产业界应用方面引起了广泛关注。

一、植物次生代谢物的种类和合成途径植物次生代谢物种类繁多,包括表观遗传物质、多酚类化合物、萜类化合物、生物碱、酮类化合物等。

这些化合物的合成途径主要通过植物特定的酶系统进行,受到内部和外部环境的调控(如光照、营养元素含量、环境压力等)。

以多酚类化合物为例,多酚类化合物包括茶多酚、花青素等,这些化合物的合成主要受到苯丙氨酸途径和山梨醇磷酸途径的影响。

茶多酚的合成主要由苯丙氨酸途径中的芳香族氨基酸加氧酶(PAL)起始,经过多次酰基转移和加氧,形成儿茶素酸和黄酮类物质,最后通过加合反应形成茶多酚。

而山梨醇磷酸途径主要受到水杨酸途径和异源反应的影响,从而合成花青素。

二、植物次生代谢物的研究进展不同于植物基础生理代谢的研究,植物次生代谢物的合成和功能机制研究相对较少,但近年来在这个领域取得了重要突破。

1. 基因工程和代谢工程随着人类对植物基因组的了解和基因工程技术的发展,利用生物技术手段调控植物次生代谢物生合成已经成为热门研究方向。

代谢工程是通过转基因和突变,利用生物学手段刺激或者阻遏植物次生代谢物的生合成途径。

这些研究可以帮助我们更好地了解植物次生代谢物的合成途径和机理,指导其应用和开发。

2. 逆向生物学和大数据研究逆向生物学借助现代科技手段,利用人类对基因组和生物大数据的了解,从而解决科学难题。

逆向生物学也被应用到了植物次生代谢物的研究中,借助大数据技术和人工智能算法分析植物次生代谢物的生成机制,优化其生合成途径和产量。

三、植物次生代谢物的应用前景植物次生代谢物具有广泛的应用前景,主要涵盖医药、化妆品、食品等领域。

药用植物中次生代谢产物的研究

药用植物中次生代谢产物的研究

药用植物中次生代谢产物的研究药用植物种类繁多,其中的作用机理和药效受次生代谢产物的影响。

次生代谢产物是生物体内不参与生命维持的化学物质,对植物生长和生存的环境具有重要意义。

然而,这些化合物在研究中具有一定的难度,因为在植物体内和外部环境中形成、转运和储存这些化合物的过程非常复杂。

在本文中,我们将探讨使用现代技术研究药用植物中次生代谢产物的方法和应用领域。

一、次生代谢产物的来源植物通过次生代谢产物产生关键的化学物质,其作用包括保护植物免受生物和非生物压力、吸引传粉媒介、辅助呼吸和控制生长发育。

次生代谢产物的来源主要分为两大类:内源性和外源性。

内源性次生代谢产物由植物自身合成,例如酚类、生物碱和黄酮类等。

这些化合物是通过基因调控和代谢酶的催化作用而形成的。

通过遗传分析技术和基因编辑技术,科学家可以精确地研究植物内源性次生代谢的调控和作用。

外源性次生代谢产物由外部环境刺激引起,例如诱导生物合成,此类化合物的分子结构和生物活性有所不同。

通过使用代谢组学和化学组学技术,科学家可以在植物中检测和鉴定这些化合物,以揭示植物对外部环境的响应机制和调节策略。

二、次生代谢产物的研究方法近年来,人们使用现代技术研究药用植物中的次生代谢产物,主要包括以下几种方法:1. 组学研究代谢组学是一种高通量技术,通过同时检测多种化合物,快速获得大量代谢物信息,了解植物对不同环境的响应。

科学家使用代谢组学来阐明植物次生代谢产物生物合成途径和调节机制,进一步提高药用植物产量和品质。

2. 生化研究生化研究是通过分离和纯化植物中的化合物或代谢酶,研究其结构、特性、作用和调控机制。

这种方法需要将植物分解成不同的组分,并在一定程度上改变其组成和结构,以得到较高的化学纯度和较好的稳定性。

3. 遗传研究遗传研究是通过基因编辑、转化和突变等技术,精确控制植物内源性次生代谢产物的合成过程。

这种方法适用于研究植物次生代谢途径的主要限制因素和关键酶类,从而为调控药用植物中次生代谢产物的合成提供基础。

植物次生代谢产物的研究进展

植物次生代谢产物的研究进展

植物次生代谢产物的研究进展植物次生代谢产物是指植物体内在生长发育、防御等过程中产生的非必需物质,具有广泛的生物学和药理学作用。

过去几十年,人们对植物次生代谢产物的研究不断深入,许多新型代谢产物被发现和研究,为人类医药和保健产业的发展做出了贡献。

一、植物次生代谢产物的种类植物次生代谢产物大约有10万种,其中包括黄酮类、生物碱、酚类、多糖类、皂甙等。

这些代谢产物可以分为两类,一类是用于生长和发育的生理代谢产物,另一类是为了应对外界环境的压力而产生出来的保护性代谢产物。

二、研究植物次生代谢产物的方法研究植物次生代谢产物的方法主要有物理化学方法、生化方法和遗传方法。

物理化学方法主要包括红外光谱、质谱和核磁共振等。

生化方法主要包括液相色谱、气相色谱和高效液相色谱等。

遗传方法主要是通过基因编辑技术,对植物进行编辑改造,从而生产出新型代谢产物。

三、植物次生代谢产物的应用植物次生代谢产物的应用非常广泛,其中最为重要的是在医药领域中的应用。

许多植物次生代谢产物具有重要的药理学作用,被作为药物制剂进行研究和开发,例如青翠藤素、阿司匹林等。

此外,植物次生代谢产物在食品、化妆品、农药等领域也有着重要的应用,例如黄酮类可以作为食品添加剂和化妆品原料,而生物碱则可以作为农药。

四、现阶段植物次生代谢产物研究的挑战虽然研究植物次生代谢产物已经取得了很多进展,但目前仍存在一些挑战和难点。

首先,对于许多植物次生代谢产物的合成途径和调控机制仍不清楚,这导致了研究受阻。

其次,人工合成这些复杂的代谢产物仍然是一个极具挑战性的任务,需要继续进行技术创新。

此外,这些代谢产物在体内的药理学和毒理学作用也需要进一步研究,以便更好地开发其在医药领域中的应用。

总的来说,研究植物次生代谢产物对于人类健康和生活有着极其重要的作用,未来也将会持续发展。

我们应该继续关注和支持这个领域的研究,为人类健康和福祉做出更大的贡献。

植物次生代谢产物研究进展及其在医药中的应用

植物次生代谢产物研究进展及其在医药中的应用

植物次生代谢产物研究进展及其在医药中的应用植物是自然界中的生命之源,生长中所产生的代谢产物不仅滋养人类,还具有广泛的药用价值。

植物代谢产物可以分为原生代谢产物和次生代谢产物两类,其中,次生代谢产物是植物对外界环境影响的产物,除了满足植物生长发育所需外,还带有药物、毒素、色素等特性,是植物界中重要的化学物质。

随着科学技术的不断提升,植物次生代谢产物的研究也在不断深入,其在医药领域的应用逐渐受到人们的重视。

一、植物次生代谢产物研究进展1. 植物次生代谢产物研究方法植物次生代谢产物的研究方法主要包括化学分离和结构鉴定、生物学测定和基因工程方法等。

其中化学分离和结构鉴定是研究次生代谢产物最基础的方法,通过对植物提取物的分离纯化和结构鉴定来确定代谢产物的存在和种类。

生物学测定则是通过对代谢产物的生物学作用和活性进行测定来验证代谢产物的生物学功能和应用价值。

2. 植物次生代谢产物类型和作用植物次生代谢产物种类繁多,包括生物碱、类黄酮、苯丙素、单萜类、二萜类、氨基酸及其衍生物等多类。

这些代谢产物在植物生长发育、环境适应、捕食与防御等过程中发挥着重要的作用。

例如,生物碱在草本植物中是重要的防御物质;类黄酮在植物中则起到了色彩和花色等美学角色;而单萜类和二萜类的化合物具有广谱的药理活性,被广泛用于医药、食品添加剂、化妆品等领域。

3. 植物次生代谢产物的生物合成途径植物次生代谢产物的生物合成途径复杂,需要多个酶和基因的协同作用。

近年来,基因工程技术的发展使得研究者们可以通过转基因技术来改变植物代谢产物的合成途径,以此来制造出更为纯净的代谢产物或产生人工合成代谢产物。

二、植物次生代谢产物在医药中的应用1. 植物次生代谢产物的药用价值植物次生代谢产物是自然界中的重要化合物,其中很多具有非常明显的药物活性。

例如,白藜芦醇在植物中作为一种黄酮类物质,具有抗氧化、增强免疫力、抗肿瘤等多重药理作用,并被广泛应用于药物和保健品中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国药用植物次生代谢产物功能基因研究概况(作者:___________单位: ___________邮编: ___________)【摘要】综述了近年来我国药用植物次生代谢产物功能基因的研究方法和内容,着重介绍了萜类、黄酮类、生物碱类、酚类、多糖类、凝集素等次生代谢产物合成相关功能基因的研究现状,对药用植物次生代谢产物合成相关功能基因的应用前景作了介绍,为今后药用植物功能基因的大规模研究和利用提供借鉴。

【关键词】药用植物次生代谢产物功能基因Abstract:The content and methods of our country’s latest functional genomics study of medicinal plant secondary metabolism were reviewed, by focusing on the synthesis of terpinoids, flavonoids, alkaloids etc. The research progress and potential application in this new area were also commented.Key words:Medicinal Plant; Secondary metabolism; Functional genomics; Research progress1995年生物学家提出“后基因组(postgenome)”的概念,即在基因组静态的作图、碱基序列分析基础上转入对基因组动态的生物学功能的研究。

随着人类基因组计划(HGP)的顺利进行,基因组学的研究从结构基因组学(structural genomics)开始过渡到功能基因组学(functional genomics),结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨遗传、物理图谱为主;功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息,发展和应用新的实验手段系统地研究基因功能,它以高通量、大规模实验方法及统计和计算机分析为特征。

目前人类、酵母的功能基因组研究已全面展开,植物的功能基因组研究起步较晚,现正处于结构基因组学和功能基因组学并重的时代,但近几年植物功能基因组学研究得到了迅速发展[1~3]。

1 药用植物次生代谢产物合成相关功能基因组学研究方法植物在长期进化过程中,逐渐形成了一些适应环境的生理生态功能,其中之一就是根据初生生长的需要产生各种类型的次生代谢产物。

次生代谢产物是植物在长期进化中与其生存环境相互作用的结果,既能够在植物体内积累,抵御病原微生物等的侵害,又在植物的整个代谢活动中占有重要地位[4]。

药用植物功能基因研究是从功能基因入手阐明药用植物有效成分的生物合成途径及其调控机制,其中主要涉及到次生代谢产物生物调控的关键酶系的结构编码基因和其他功能基因。

研究中可能应用的分子生物技术有植物的表达序列标签(EST)和cDNA文库筛选;药用植物功能蛋白质组研究;特定代谢时期细胞功能簇(CRC)分析和功能蛋白质组表达图谱用于基因组功能提示的可行性;基因表达指纹(GEF);基因表达系统分析(SAGE);cDNA3′端限制酶切片段显示;分子指数的RNA指纹(MI);消减杂交(SSH);基因芯片等。

这些分子生物技术可应用于药用植物次生代谢调控机制研究,功能基因和次生代谢酶基因的克隆、表达和鉴定等[5]。

2 药用植物次生代谢产物相关功能基因组研究概况2.1 萜类物质萜类化合物(terpenoid)是一类由异戊二烯(soprene)为结构组成单元的天然烃类化合物的统称,在自然界中分布广泛、种类繁多、结构多样。

迄今为止大约有22 000种萜及萜类衍生物的化学结构已被鉴定,它们不仅在植物的生命活动中扮演重要的作用,而且还被广泛地应用于工业、医药卫生等领域[6]。

肖明贵等[7]从曼地亚红豆杉中提取分离出mRNA,然后根据已知植物的牻牛儿基牻牛儿基焦磷酸合成酶基因(GGPPS基因)DNA序列保守区设计特异简并引物。

RT-PCR获得了一条大小约600 bp的扩增谱带,回收该特异谱带并进行TA克隆,发现该序列属于GGPP合成酶的片断,与加拿大红豆杉和北美冷杉的GGPP合成酶相应区段的氨基酸序列一致性为98%和86%。

蛋白质序列分析发现该序列含有一个特征的异戊二烯合成酶保守的结构域。

进化树分析表明,曼地亚红豆杉GGPPS在进化上位于植物类,靠近古细菌类。

冯磊(《中国红豆杉紫杉烷13α-羟基化酶基因的克隆及表达》.曲阜师范大学2006硕士研究生学位论文)从中国红豆杉中克隆得到紫杉烷13α-羟基化酶基因序列,长为1 848 bp,阅读框(ORF)编码区为1 458 bp,编码485个氨基酸,分子量54.7 KD,该基因与东北红豆杉紫杉烷13α-羟基化酶有97%的相似性。

与其他已克隆的红豆杉羟基化酶有54%~60%的相似性。

该基因编码一膜锚定蛋白,推断所克隆基因编码一个执行生物合成功能的A类P450蛋白。

周明兵等[8]以杜仲树叶总RNA为模板扩增出杜仲法呢基焦磷酸合酶基因(Farnesyl PyrophasphateSynthase, EuFPS), cDNA序列全长1 271 bp,开放阅读框共编码320个氨基酸残基,其核酸序列与拟南芥、银胶菊和巴西橡胶树FPP合酶的序列同源性分别为81%,87%和82%。

刘彦(《青蒿生物合成相关基因的克隆、大肠杆菌表达与分子分析》.中国科学院研究生院2006博士学位论文)从青蒿高产株系001中克隆出全长1 886 bp的倍半萜合酶cDNA,其氨基酸序列与烟草马兜铃烯合酶、蕊若岩兰螺旋二烯合酶、棉花杜松烯合酶的一致性分别为39%,38%和41%;与青蒿柏木脑合酶、紫穗槐二烯合酶和一个推测的倍半萜合酶克隆cASC125的一致性为50%,48%和59%。

克隆了一个1 539 bp全长鲨烯合酶cDNA,青蒿鲨烯合酶氨基酸序列与拟南芥、烟草、人类、酵母鲨烯合酶的一致性分别为70%,77%,44%,39%。

赵玉军等[9]从青蒿高产株系025中的cDNA文库中克隆到了一个编码青蒿法呢基焦磷酸合酶(AaFPS1)的cDNA(af1),序列分析表明,这一cDNA编码一个含343个氨基酸残基的蛋白质,分子量为39 KD,推导出的氨基酸序列与来自其他植物、哺乳动物和酵母的FPS相似,也包含异戊烯基转移酶和聚异戊烯基合酶所共有的5个保守域,此cDNA在大肠杆菌中的表达产物表现出明显的FPS酶学活性。

刘水平等[10~12]从人参根组织中分离总RNA,使用RT-PCR扩增出人参皂苷生物合成相关基因GBR6开放阅读框(ORF)cDNA片断,并将其定向克隆入原核高效表达载体pQE30,阳性克隆经Bam1和Pst1双酶切鉴定、测序验证与已知的GBR6 ORF序列完全一致,成功构建了pQE30- GBR6ORF融合原核表达载体。

陈莉(《三七主要有效成分三萜皂苷合成关键酶FPS基因的克隆及序列分析》.广西医科大学2005硕士研究生学位论文)对三七三萜皂苷合成关键酶法呢基焦磷酸合酶(FPS)的基因进行克隆,cDNA序列全长1 409 bp,开放阅读框共编码343个氨基酸残基,氨基酸序列与积雪草、银胶菊、青篙、山艾树的FPS氨基酸序列的同源性分别为95%,87%,86%和86%,核酸序列同源性则分别为81%,66%,68%和66%。

陈珅(《三七三萜皂苷合成途径鲨烯环氧酶基因的克隆及初步表达》.广西医科大学2006硕士研究生学位论文)对三七三萜皂苷合成关键酶鲨烯环氧酶(squalene epoxidase,SE)的基因进行了克隆, cDNA 序列长1648bp,分子量约为64KD,开放阅读框共编码537个氨基酸残基,氨基酸序列与人参、管状苜蓿、毛曼陀罗、亚洲栽培稻、番茄、拟南芥和甘蓝型油菜的同源性分别为97%,76%,73%,71%,70%,70%和45%;核酸序列的同源性分别为97%,63%,62%,62%,62%,60%和48%。

朱华(《三七鲨烯合酶基因的克隆及其功能的初步研究》.广西医科大学2006硕士研究生学位论文)对三七鲨烯合酶(SS)基因及3-磷酸甘油醛脱氢酶(GAPDH)基因进行体外克隆,cDNA序列全长1270bp,开放读码框共编码415个氨基酸残基,氨基酸序列与人参、积雪草、青蒿、拟南芥、水稻的SS氨基酸序列的同源性分别为98%,89%,81%,78%,71%,核苷酸序列的同源性分别为98%,88%,77%,73%,66%。

获得了三七GAPDH基因的部分cDNA序列,长627bp,与拟南芥、烟草、人参的GAPDH氨基酸序列的同源性分别为91%,93%,95%。

核苷酸序列的同源性分别为82%,84%,85%。

杜鹃(《蹄叶橐吾萜类化合物合成相关基因克隆及功能研究》.吉林大学2007博士学位论文)从野生蹄叶橐吾中克隆出萜类化合物紫菀酮形成关键酶HMG-CoA还原酶家族(HMGR、HMGR2),成功构建了HMGR 基因植物双元高效表达载体pBSHMGR,获得了转化效率极高的转基因蹄叶橐吾植株。

转基因植株及其野生型对照蹄叶橐吾紫菀酮含量HPLC 测定结果表明,HMGR基因的超表达增加了紫菀酮在转基因植株根、茎中的积累。

刘长军等[13]从亚洲棉中分离得到倍半萜棉毒素合成相关酶法呢基焦磷酸合成酶(FPS)的cDNA。

序列分析表明,该cDNA全长1280bp,开放阅读框共编码342个氨基酸残基,分子量为39 kD,氨基酸顺序与拟南芥和青蒿的FPP合酶序列同源性为78.9%和80.7%。

2.2 黄酮类物质黄酮类化合物是植物在长期的生态适应过程中为抵御恶劣生态条件、动物、微生物等攻击而形成的一大类次生代谢产物。

它们是广泛分布于植物界的碳基本骨架化合物,在许多植物的花、果和叶中大量分布,目前发现的四千余种的黄酮类化合物可以分为以下几种:黄酮醇(flavonols)、黄酮(flavones)、异黄酮(isoflavones)和花色素苷(anthocyanins)[14]。

程水源等[15]从银杏叶中克隆得到了控制银杏叶中黄酮类化合物代谢途径中关键酶苯丙氨酸解氨酶(Phenylalanine ammo-nia-lyase, PAL)基因的部分序列,长度862 bp,氨基酸序列与长白松、海岸松、火炬松和亮石杉PAL基因的氨基酸同源性分别为93%,93%,91%和90%。

Southern杂交结果表明银杏PAL是一个多基因家族。

崔光红等[16]研究丹参毛状根不同时期的基因表达谱,将45, 60 d 丹参毛状根分别与30 d材料进行杂交,得到203个差异基因。

测序后得到172条EST,拼接聚类后形成114个Unigene,其中功能已知基因62个。

相关文档
最新文档