植树问题例2 两端都不种分析

合集下载

五年级数学上册单元讲练(人教版) 第七单元《植树问题》(解析)

五年级数学上册单元讲练(人教版) 第七单元《植树问题》(解析)

第七单元 植树问题(1)两端都种:棵数=间隔数+1(2)两端不种:棵数 = 间隔数-1(4)封闭图形:棵树 = 间隔数(3)一端种一端不种:棵数 =间隔数知识点一:两端都栽的植树问题植树问题基本解决思路:间隔数=总长÷间隔距离两端都栽:棵数=间隔数+1知识点二:两端都不栽的植树问题两端不栽:棵数=间隔数-1知识点三:封闭图形的植树问题一端栽一端不栽:棵数=间隔数在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于线段上一端栽一端不栽的情况。

【易错典例1】在一条长300米的公路两边种树,每隔5米种一棵(两端都种).一共种()棵树.A.61B.121C.122【思路引导】利用植树问题公式:如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘2,即:棵数=(段数+1)×2.根据植树棵数先求段数:300÷5=60(段),然后求植树棵数:(60+1)×2计算即可.【完整解答】解:(300÷5+1)×2=(60+1)×2=61×2=122(棵)答:一共种树122棵.故选:C.【考察注意点】本题主要考查植树问题,关键是分清段数和植树棵数的关系做题.【易错典例2】(•红安县期末)一个圆形水池的周长为150米,沿池边每隔37.5米安盏观景灯,一共要安装4盏观景灯.【思路引导】根据题意,在圆形上植树,植树的棵数与间隔数相等,直接用150除以37.5即可.【完整解答】解:根据题意可得:150÷37.5=4(盏)答:一共需要装4盏灯.故答案为:4.【考察注意点】在封闭线路上植树,棵数与间隔数相等,即:棵数=间隔数.【易错典例3】操场上等距离放了8张课桌,把相邻的两张课桌用一段绳子连接起来,一共要准备7段绳子.【思路引导】根据题意相当于两端都不植树的问题,用课桌的张数减去1,就是一共要准备的绳子的段数.【完整解答】解:8﹣1=7(段)答:一共要准备7段绳子.【考察注意点】如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数﹣1.【易错典例4】为庆祝“六一“儿童节,学校在48米长的走廊两边摆鲜花,现在从走廊的一头开始,每隔4米摆一盆鲜花,直至走廊另一头,一共要摆多少盆鲜花?【思路引导】先看一边,据题意可知,走廊长48米,每隔4米摆一盆花,也就是48米被平均分成4米长的若干小段,花摆在分点上;所以间隔数是48÷4=12个;又因为两端都摆花,所以盆数等于段数加1;然后再乘2就可求出两边的花盆数.【完整解答】解:(48÷4+1)×2=13×2=26(盆)答:一共要摆26盆鲜花.【考察注意点】此题属于植树问题.解答此类题(两端都植树)的关键要知道:植树的棵数应比要分的段数多1,即:棵数=间隔数+1.一.选择题1.(•眉山月考)一条马路长440米,在路的两旁每隔8米植一颗树,两端都要植,共植了()棵。

两头都不种的植树问题

两头都不种的植树问题

间隔数=全长÷间距 棵数=间隔数-1
间隔数:250÷5=50 棵树:50-1=49(棵) 总棵树:49×2=98(棵) 答:需要98棵杨树苗。
典型例题
跟踪训练3 公园大门前的公路长360米,要在公路两边栽上
柳树,每两棵树相距9米(两端都不种)。园林工人 共需要准备多少棵树?
间隔数:360÷9=40 棵树:40-1=39(棵) 总棵树:39×2=78(棵) 答:园林工人共需要准备78棵树。
间隔数:6+1=7 间距:49÷7=7(米)
新间隔数:63÷7=9 新棵树:9-1=8(面) 答:要插8面彩旗。
典型例题
跟踪训练1 李大爷以相同的速度在乡间布满电话线杆的小路上
散步。他从第1根电话线杆走到第12根电话线杆用了 22分钟。他如果走36分钟,应走到第几根电话线杆?
间隔数: 12-1=11 一段路的时间: 22÷11=2(分钟)
间距=全长÷间隔数 棵数=间隔数-1
间隔数:68÷2+1=35 间距:700÷35=20(米) 答:每两棵美人蕉相距20米。
间隔数=棵树+1
典型例题
跟踪训练2 在一条长250米的路两旁栽树,起点和终点都不
栽,一共栽了98棵,每两棵相邻的树之间的距离都相 等,你知道是多少米吗?
间隔数:98÷2+1=50 间距:250÷50=5(米) 答:每两棵相邻的树之间相距5米。
典型例题
跟踪训练2 在一条小河的两边每隔50米架设一根电线
杆(两端都不用设),共用电线杆58根,这 条公路全长多少米?
间隔数:58÷2+1=30 全长:50×30=1500(米) 答:这条公路全长1500米。
04 复合问题
典型例题

小学三年级奥数第6讲 植树问题(含答案分析)

小学三年级奥数第6讲 植树问题(含答案分析)

第6讲植树问题一、知识要点1、基本概念:总长:植树路线的全长。

棵距:两棵数之间的距离。

段数:总长中共有几个棵距棵数:植树的总棵树2、基本类型以及关系式:(1)路的两端都要植树棵树=线路总长÷棵距+1线路总长=棵距×(棵树-1)棵距=线路总长÷(棵数-1)(2)路的两端都没有植树棵树=线路总长÷棵距-1棵数=段数-1(3)路的一端植树,另一端不植树棵树=线路总长÷棵距棵数=段数另外,生活中还有一些问题,可以用植树问题的方法来解答。

比如锯木头、爬楼梯问题等等,这时解题的关键是要将题目中的条件和问题与植树问题中的“总距离”、“间隔长”、“棵数”对应起来。

二、精讲精练【例题1】小朋友们在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?练习1:(1)在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了20面,这条道路有多长?(2)在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了20盆,这条走廊长多少米?【例题2】在一条长42米的大路两侧栽树,从起点到终点一共栽了14棵,已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?练习2:在公园一条长30米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子的距离相等,相邻两把椅子之间相距多少米?【例题3】把一根钢管锯成小段,一共花了28分钟,已知每锯开一段需要4分钟,这根钢管被锯成了多少段?练习3:一根圆木锯成2米长的小段,一共花了12分钟。

已知每锯下一段要3分钟,这根圆木长多少米?【例题4】甲、乙两人比赛爬楼梯,甲跑到4楼时,乙恰好跑到3楼,照这样计算,甲跑到16楼时,乙跑到了多少楼?练习4:小明和小红两人爬楼梯比赛,小明跑到第4层时,小红跑到第5层,照这样计算,当小明跑到第16层时,小红跑到了第几层?【例题5】一个圆形跑道长300米,沿跑道周围每隔6米插一面红旗,每两面红旗中间插一面黄旗,跑道周围各插了多少面红旗和黄旗?练习5:(1)有一个正方形水池,周长是200米。

植树问题知识点总结

植树问题知识点总结

植树问题知识点总结在我们的日常生活和数学学习中,植树问题是一个比较常见且有趣的数学模型。

它看似简单,却蕴含着丰富的数学思维和规律。

接下来,让我们一起深入了解一下植树问题的相关知识。

一、植树问题的基本类型1、两端都植树这种情况下,树的数量比间隔数多 1。

比如,在一条 10 米长的小路两端都植树,每隔 2 米植一棵,那么间隔数为 10÷2 = 5 个,树的数量就是 5 + 1 = 6 棵。

2、一端植树,另一端不植树此时,树的数量和间隔数相等。

例如,在一条 10 米长的小路一端植树,每隔 2 米植一棵,那么间隔数为 10÷2 = 5 个,树的数量也是 5 棵。

3、两端都不植树在这种情况下,树的数量比间隔数少 1。

假如在一条 10 米长的小路两端都不植树,每隔 2 米植一棵,间隔数依然是 10÷2 = 5 个,但树的数量为 5 1 = 4 棵。

二、植树问题中的重要概念1、间隔相邻两棵树之间的距离就是间隔。

2、间隔数小路的总长度除以间隔的长度,得到的就是间隔数。

3、树的数量根据不同的植树情况,按照一定的规律计算得出。

三、解决植树问题的方法1、画图法通过简单地画图,可以更直观地理解问题,找出规律。

比如,要解决一条 20 米长的小路,每隔 4 米植树的问题,我们可以画出草图,清晰地看到间隔和树的分布情况。

2、公式法(1)两端都植树:树的数量=间隔数+ 1(2)一端植树,另一端不植树:树的数量=间隔数(3)两端都不植树:树的数量=间隔数 1在实际应用中,我们需要先判断属于哪种植树情况,然后选择相应的公式进行计算。

四、植树问题的拓展应用1、安装路灯在街道两旁安装路灯,与两端都植树的情况类似。

2、排队问题同学们排队,人与人之间的间隔就相当于植树问题中的间隔。

3、锯木头锯木头的次数相当于间隔数,锯成的段数相当于树的数量。

例如,把一根木头锯 4 次,可以锯成 5 段。

4、爬楼梯从一楼到二楼算一个间隔,楼层数相当于树的数量。

植树问题

植树问题

植树问题:植树问题三要素:植树路线:(1)总路线长度(1)封闭路线(2)间隔长(株距)(2)不封闭路线(3)棵数植树问题可分为三类:一、不封闭的路线:1、两端都植树:树的棵数=间隔个数(段数) + 12、一端植,另一端不植:树的棵数=间隔个数(段数)3、两端都不植树:树的棵数=间隔个数(段数) - 1间隔个数=全长÷间隔长度例1:有一行树,从第一棵树到最后一棵树的距离为120米,并且每两棵树之间的距离为3米,求这行树共有多少棵?两端都植树:树的棵数=间隔个数(段数)间隔个数=全长÷间隔长度120÷3=40(个) 40+1=41(棵)答:这行树共有41棵。

练习:1.一条路长3000米,在路的一旁从头至尾每隔40米栽1棵树,需要栽树多少棵?2.在一条长1000米的公路的一旁,每隔5米栽一棵树,两端栽树,要栽多少棵树?3.在一条长240米的水渠边植树,每隔30米植一棵,两端栽树,共植树多少棵?例2:在一条长1200米的公路的一旁,每隔4米栽一棵杨树,一端栽树,要栽多少棵?2、一端植,另一端不植:树的棵数=间隔个数间隔个数=全长÷间隔长度解:1200÷4=300(棵)答:要栽300棵杨树。

练习:1.小刚家门口到公路边有一条小路,长60米,小刚要在小路一旁每隔5米栽一棵树,家门口不栽,一共要栽多少棵树?2.学校计划要在一条小道旁每隔5米放一个垃圾桶,如果小道的另一端不放,一共可以放15个垃圾桶,问这条小道有多长?3、两端都不植树:树的棵数=间隔个数 - 1例3:两楼之间相距80米,在两楼之间每隔8米栽一棵柳树,共栽了几棵树? 间隔个数=全长÷间隔长度解:80÷8=10(个) 10-1=9(棵)答:共栽了9棵柳树练习:1. 在一条长1200米的公路的两旁,每隔6米栽一棵树,两端不栽树,要栽多少棵树?2.李师傅要把一根长12米的木头锯成4段,锯一次要2分钟,李师傅要用多少分钟能锯完?例题:园林计划在一条路的两边植树,为了不挡视线,路的两端不用植,现在42棵树,每隔5米植一棵,这条路多长?1、一条小路两端不放花,在中间以相等 的距离摆了22盆鲜花,两盆之间相距6米,这条小路长多少米?2.在两个大楼之间的一段200米长的空地上栽了一排树,一共49棵。

植树问题

植树问题

7.酒店里的大钟4时敲4下, 6秒敲完,10时敲响10下, 需要多长时间?
在一条全长2千米的街道两旁安装路 灯(两端也要安装),每隔50米安装 一盏,一共要安装多少盏路灯?
2000÷50=40 40+1=41(盏) 41×2=82(盏) 答:一共要安装82盏路灯。
植树问题研究报告表 (一边植树 两端都栽)
线路长 及要求
间隔长 间隔数 棵数 (米 ) (个 ) (棵 ) 5 5 4
5.园林工人沿公路一侧栽树,每 隔6米种一棵,一共种了36棵。从第1 棵到最后一棵的距离有多远?
36-1=35(段)
6×35=210(米)
答:从第1棵到最后一棵的距离有210米。
6.笔直的跑道一旁插着51面小旗,
它们的间隔是2米,现在要改为只 插26面小旗,间隔应改为多少米?
51-1=50(段) 50×2=100(米) 26-1=25(段) 100÷25=4(米) 答:间隔应改为4米。
(2)15×15 =225(名)
8× 4 - 4 =32-4 =28(盆)
(8-1)×4 =7×4 =28(盆)
答:最外一层一共摆28盆.
4× 3 + 2 =12+2 =14(人)
6+ 4× 2 =6+8 =14(人)
4× 3 + 2 =12+2 =14(人)
6+ 4× 2 =6+8 =14(人)
盘) 50÷2=25( 个
答:一共需要 25 盘花。
巩固练习:108页 做一做
棵数=间隔数
150÷15=10(盏)
试一试
数一数多少个间隔,多少棵数?
封闭线路: 间隔数= 棵数
×边数 每边棵数-1 ( ) 总棵数=
4×4=16
4×2+3×2

《两端都不栽的植树问题》(教案)人教版五年级数学上册

《两端都不栽的植树问题》(教案)人教版五年级数学上册

《两端都不栽的植树问题》(教案)人教版五年级数学上册我今天要和大家一起学习的课题是《两端都不栽的植树问题》,这是人教版五年级数学上册的一章节。

在这个问题中,我们会学习到在一条直线上进行植树时,如果两端都不栽树,应该如何计算栽树的棵数。

一、教学内容我们今天的学习内容主要围绕两端都不栽的植树问题展开。

我们会通过实际的情景,比如在一条10米长的直线上进行植树,来理解并掌握两端都不栽树时,栽树的棵数与间隔数之间的关系。

二、教学目标通过今天的学习,我希望大家能够理解并掌握两端都不栽的植树问题的解决方法,能够灵活运用到实际生活中。

三、教学难点与重点今天的教学难点是理解并掌握两端都不栽树时,栽树的棵数与间隔数之间的关系。

教学重点则是大家能够将所学的知识应用到实际问题中。

四、教具与学具准备为了更好地学习这个问题,我已经准备了一些教具和学具,包括一条10米长的绳子,一些小木棍,以及白板和记号笔。

五、教学过程我会通过一个实际的情景引入这个问题,比如在一条10米长的直线上进行植树,但两端都不栽树,然后让大家思考,应该如何计算栽树的棵数。

然后,我会给大家一些随堂练习,让大家通过实际的操作,进一步理解和掌握这个问题。

我会和大家一起讨论,如何将所学的知识应用到实际问题中。

六、板书设计在讲解的过程中,我会用白板和记号笔,将两端都不栽树时,栽树的棵数与间隔数之间的关系进行板书展示。

七、作业设计今天的作业是让大家解决一个实际的问题。

题目是:在一条15米长的直线上进行植树,但两端都不栽树,每棵树之间的间隔是3米,请问需要栽多少棵树?答案是5棵树。

八、课后反思及拓展延伸通过今天的学习,我希望大家能够理解并掌握两端都不栽的植树问题的解决方法,并能够灵活运用到实际生活中。

同时,我也希望大家能够进一步思考,还有哪些其他的问题,可以用类似的方法来解决。

重点和难点解析在今天的教学中,我认为有几个重点和难点需要我们特别关注。

我们需要深入理解并掌握两端都不栽树时,栽树的棵数与间隔数之间的关系。

植树问题(公式,讲解,及练习含答案)

植树问题(公式,讲解,及练习含答案)

植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数例题1、学校圆形花坛的周长是36米,每隔4米摆一盆兰花,一共要摆()盆兰花?分析:圆形为封闭路线的问题,株数=段数=全长÷株距36÷4=9(棵)例题2、在一条长30米的小路两旁每隔3米植一棵树,首尾都要植,一共要准备多少棵树苗?分析:先分清是非封闭路线问题,并且,首尾都要栽,株数=段数+1=全长÷株距+130÷3+1=11( 棵),但是,题目中是小路的两旁植树,所以,11×2=22(棵)综合:(30÷3+1)×2例题3、公园的一条边长48米,每隔4米,插一面彩旗,后来改为每隔6米插一面,如果第一面彩旗不动,共有多少面彩旗不需要移动?分析:这里仅仅考虑公园的一条边长,其他的不考虑,所以,认为是非封闭问题,原来,每隔4米,插一面彩旗,后来改为每隔6米插一面,第一面不需要移动的是4和6的最小公倍数12,就是第12面不移动,所以问题,转化为,48里面有多少个12,就有几面彩旗不移动。

48÷12=4(面)加上第一面不移动的彩旗所以共为4+1=5面算式:4和6的最小公倍数是1248÷12+1=5面练习:1、在长1千米的万安大桥两侧安装路灯,每隔50米安装一盏(两端都要安装),一共需要准备多少盏路灯?分析:为大桥安装路灯,为非封闭问题,并且两端都要安装的,株数=段数+1=全长÷株距+1(1000÷50+1)×2=201×2=402(盏)2、公路上一排电线杆,共25根,每相邻两根电线杆间的距离原来都是45米,现在要改为60米,可以有几根不需要移动?分析:电线杆之间为分封闭问题,并且是两头都安装电线杆全长=株距×(株数-1) 即(25-1)×45=1080米找45和60的最小公倍数是180,1080÷180+1=7根其中的1表示第一根是不移动的,并且也不是45和60的最小公倍数拓展3、一段木料锯成4段要6分钟,如果要锯成9段需要几分钟?分析: 锯木料问题,时间花在次数上,类同植树问题的株数(两头都不栽树的情况)锯成4段,需要锯4-1=3次,锯成9段,需要锯9-1=8次所以,6÷(4-3)×(9-1)4、钟楼上的大钟整点时敲相应的点数,早晨6点时敲钟用了40秒,那么12点时敲钟共用多少秒?分析:钟表敲钟,时间花在敲相应的点数上,类同植树问题,敲钟为株数,两次敲钟之间的时间为株距,时间就是用在“株距”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析:在大象馆和猩猩馆的中间栽树, 两端有大象馆和 猩猩馆 。
例2: 动物园的大象馆和猩猩馆相距60米, 绿化队要在两馆间的小路两旁栽树(两端 不种),相邻两棵树之间的距离是3米,一 共要栽几棵树?
60÷3=20(个) 20-1=19(棵) 19×2=38(棵)
答:一共要栽38棵树。 最后一步为什么要乘 2呢 ?
树的棵数:4
树的棵数 = 间隔数 1
线段图
终端
5米
探究规律
3个间隔,2棵树 4个间隔,3棵树 5个间隔,4棵树
两端不种:间隔树 - 1=棵树
例2: 动物园的大象馆和猩猩馆相距60米, 绿化队要在两馆间的小路两旁栽树(两端 不种),相邻两棵树之间的距离是3米,一 共要栽几棵树?
大象馆
猩猩馆
为什么两端不种
(两端都不种)
同学们在全长 10 米的小路一边植 树,每间隔 5米栽一棵。(两端不栽) 一共要栽多少棵?
开端
5米
5米
间隔数: 2
树的棵数: 1
树的棵数 = 间隔数 1
线段图
终端
同学们在全长 25米的小路一边植 树,每间隔 5米栽一棵。(两端不栽) 一共要栽多少棵?
开端
5米
5米
间隔数: 5
5米
5米
三、巩固练习,提升认识 1. 一条走廊长32m,每隔4m摆放
一盆植物(两端不放)。一共 要放多少盆植物?
32÷4=8(个) 8-1=7(盆) 答:一共要放 7盆植物。
. 为什么要减1呢?
2. 一根木头长10m,要把它平均 分成5段。 每锯下一段需要 8分 钟。锯完一共要花多少分钟?
5-1=4(次) 4×8=32(分) 答:锯完一共要花 32分 钟。
. 为什么要减1呢?
完善类型,巩固方法
小明家门前有一条35m的小路,绿 化队要在路旁栽一排树。每隔5m栽 一棵树(一端栽一端不栽)。一共
要栽多少棵?
35÷5=7(棵) 答:一共要栽 7棵 树。
这节课你有什么收获?
相关文档
最新文档