广东省广州市海珠区2018-2019学年九年级下学期一模数学试卷
2019年广东省广州市海珠区中考数学一模试卷(含解析)

D . x5﹣ x2= x3
3.一元一次不等式组
的解集在数轴上表示正确的是(
)
A.
B.
C.
D.
4.如图,直线 a∥ b, AC⊥ AB, AC 交直线 b 于点 C,∠ 1= 55°,则∠ 2 的度数是(
)
A . 35°
B. 25°
C. 65°
D .50°
5.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是(
【点评】 本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
6. 【分析】 根据众数、中位数的定义分别进行解答即可. 【解答】 解:由表知数据 5 出现次数最多,所以众数为 5;
因为共有 20 个数据,
所以中位数为第 10、11 个数据的平均数,即中位数为
=6,
故选: B. 【点评】 本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据 的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置
切,若点 A 的坐标为( 0, 8),则圆心 M 的坐标为(
)
A .( 4, 5)
B.(﹣ 5, 4)
C.(﹣ 4, 6)
D .(﹣ 4, 5)
10.如图,以正方形 ABCD 的 AB 边为直径作半圆 O,过点 C 作直线切半圆于点 E,交 AD 边于点 F ,则 sin ∠ FCD =( )
A.
B.
25.( 14 分)已知,抛物线 y= ax2+ax+b( a≠ 0)与直线 y= 2x+m 有一个公共点 M ( 1, 0),且 a< b. ( 1)求 b 与 a 的关系式和抛物线的顶点 D 坐标(用 a 的代数式表示); ( 2)直线与抛物线的另外一个交点记为 N,求△ DMN 的面积与 a 的关系式; ( 3)a=﹣ 1 时,直线 y=﹣ 2x 与抛物线在第二象限交于点 G,点 G、H 关于原点对称,现将线段 GH 沿 y 轴向上平移 t 个单位( t> 0),若线段 GH 与抛物线有两个不同的公共点,试求 t 的取值范围.
中考数学复习:专题7-2 中考折叠问题的归类解析

专题02 中考折叠问题的归类解析【专题综述】折叠问题在近年来各地的中考试卷中频频出现,解决这一类问题主要抓住两点:折叠前后重合的角相等,重合的边也相等.【方法解读】一、折叠与平行例1:如图,在四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___.【来源】2013-2014学年江苏省宜兴市和桥学区七年级下学期期中考试数学试卷(带解析)【答案】95°在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.考点:1.平行线的性质;2.三角形内角和定理;3.翻折变换(折叠问题).【解读】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【举一反三】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:EDB EBD∠=∠;(2)判断AF与BD是否平行,并说明理由.【来源】2015中考真题分项汇编第1期专题4 图形的变换【答案】【解析】试题解析:(1)由折叠可知:∠CDB =∠EDB∵四边形ABCD是平行四边形∴DC∥AB∴∠CDB =∠EBD∴∠EDB=∠EBD(2) ∵∠EDB=∠EBD∴DE=BE由折叠可知:DC=DF∵四边形ABCD是平行四边形∴DC=AB∴AE=EF∴∠EAF=∠EFA△BED中, ∠EDB+∠EBD+∠DEB=180°即2∠EDB+∠DEB=180°同理△AEF中,2∠EFA+∠AEF=180°∵∠DEB=∠AEF∴∠EDB= ∠EFA∴AF∥BD考点:折叠变换,平行四边形的性质,等腰三角形的性质与判定,三角形的内角和二、折叠与全等例2:如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。
2019年广州市海珠区中山大学附属中学初三一模数学试卷(附答案和解析)

( 2 )求 、 两点的坐标.
( 3 )如果直线
与直线 没有公共点但与抛物线有公共点,求 的取值范围.
( 4 )当
时,在抛物线上是否存在一点 ,使得
的面积是
面积的
倍?若存在,请求出点 的坐标,若不存在,请说明理由.
【答案】( 1 )
.
( 2 )点 的坐标为
,点 的坐标为
.
(3)
且
.
( 4 )存在,
.
不存在,请说明理由. 25. 如图,已知四边形的一组对边、的延长线交于点.
( 1 )如图①,若,求证:.
图 ( 2 )如图②,若,,,,的面积为,求四边形的面积.
图 ( 3 )如图③,另一组对边、的延长线相交于点.若,,,求出的长(用含的式子表示).
图
/
2019年广东广州海珠区中山大学附属中学初三一模数学 试卷(详解)
D.
元
∵
,
∴
,
在
中,
,
,
米,
∴
米,
∴
∵这种草皮每平方米售价为 元,
∴购买这种草皮至少需要 元,
故选 .
米,
9. 如图, 是⊙ 的直径,弦 、 相交于点 ,那么 的值为( ).
A.
B.
C.
D.
【答案】 B 【解析】 连接 ,
/
则
;
∵
,
;
∴
,
∴
,
在
中,
,
又
,
∴
.
10. 如图, 是⊙ 的直径,弦 并延长交⊙ 于点 ,连接
.
13. 已知抛物线与轴有交点,则的最大整数值是
.
14. 如下图,边长为的小正方形网格中,⊙的圆心在格点上,则的余弦值是
2019届广东省广州市海珠区九年级下学期第一次模拟考试数学试卷【含答案及解析】

2019届广东省广州市海珠区九年级下学期第一次模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 如果向东走50m记为50m,那么向西走30m记为()A. -30mB. mC. -(-30)mD. m2. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.3. 如图,点A、B、C在⊙D上,∠ABC=70°,则∠ADC的度数为()A. 110°B. 140°C. 35°D. 130°4. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A. B. C. D.5. 下列计算正确的是()A. B.C. D.6. 下列命题中,假命题是()A. 对角线互相平分的四边形是平行四边形B. 两组对角分别相等的四边形是平行四边形C. 一组对边平行,另一组对边相等的四边形是平行四边形D. 对角线相等的平行四边形是矩形7. 下列函数中,y随x的增大而增大的是()A. B. C. D.8. 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A. 2B. 2C. 4D. 49. 已知抛物线的图象如图所示,顶点为(4,6),则下列说法错误的是()A. B.C. 若点(2,m)(5,n)在抛物线上,则m>nD.10. 如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A. B. C. 2 D.二、填空题11. 在不透明口袋内有形状.大小.质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是________.12. 分解因式:=_________.13. 某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这6天销售量的中位数是________.14. 某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的函数关系式为___________.15. 如图,AB是⊙O的直径,AC.BC是⊙O的弦,直径DE⊥BC于点M.若点E在优弧上,AC=8,BC=6,则EM=_______.16. 16.若一元二次方程有两个相同的实数根,则的最小值为___.三、解答题17. 解不等式组(2)解方程18. 如图,AC是菱形ABCD的对角线,点E.F分别在AB、AD上,且AE=AF.求证:△ACE≌△ACF.19. 已知A=(1)化简A;(2)若满足,求A的值.20. 中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是__________,表示“D级(不喜欢)”的扇形的圆心角为__________°;(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的 A 级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有 3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.21. 某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需 580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和 1 个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?22. 如图,在△ABC 中,∠C=90°(1)利用尺规作∠B 的角平分线交 AC于D,以BD为直径作O交AB于E(保留作图痕迹,不写作法);(2)综合应用:在(1)的条件下,连接DE①求证:CD=DE;②若sinA=,AC=6,求AD.23. 如图,在平面直角坐标系中,一次函数(≠ 0)的图象与轴相交于点A,与反比例函数(≠0)的图象相交于点B(3,2)、C(-1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出>时的取值范围;(3)在轴上是否存在点P,使△PAB为直角三角形,如果存在,请求点P的坐标,若不存在,请说明理由.24. 抛物线与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P.(1)若A(-2,0),C(0,-4),①求抛物线的解析式;②在①的情况下,若点P在第四象限运动,点D(0,-2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围;(2)若点P在第一象限运动,且,连接AP、BP分别交y轴于点E、F,则问是否与有关?若有关,用表示该比值;若无关,求出该比值.25. 如图1:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.(1)证明:;(2)延长AD到点B,使DB=AD,如图2,直径EF上有一动点C,连接CB交DF于点G,连接EG,设,.①当时,探索EG与BD的大小关系?并说明理由;②当时,求与的关系式,并用的代数式表示.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2018年广东省广州市海珠区中考数学一模试卷-有答案

(- p q )= - p q 2 5 3 ⎩ x - 3 y = 2m海珠区 2018 年第二学期九年级一模调研测试数学试题本试卷分选择题和非选择题两部分,共三大题 25 小题,满分 150 分,考试用时 120 分钟.注意事项:1.答卷前,考生务必在答题卡第 1 页、第 5 页上用黑色字迹的钢笔或签字笔填写自已的学校、姓名、考号;并用 2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用 2B 铅笔画图. 答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改 液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,不能折叠答题卡. 考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共 30 分)一、选择题(本大题共 10 题,每小题 3 分,满分 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种药品说明书上标有保存温度是(20±3)℃,则该药品在()℃范围内保存最合适。
A . 17~20B .20~23C .17~23D .17~242. 一个几何体的三视图如图所示,则这个几何体可能是()3.某班抽取 6 名同学参加体能测试,成绩如下:75,95,85,80,90,85.下列表述不正确的是()A .众数是 85B .中位数是 85C .平均数是 85D .方差是 154.下列计算正确的是( )A.a ⋅b =ab B. (a + b )2 = a 2 + b 2 C.1 1 1 + = D. x y x + y3△5.在 ABC 中,∠C=90°,AC=12,BC=5,以 AC 为轴将△ABC 旋转一周得到一个圆锥,则该圆锥的侧面积为( )A. 130πB. 60πC. 25πD. 65π⎧3x + y = m + 1 6.已知方程组 ⎨的解 x, y 满足 x + 2 y ≥ 0 ,则 m 的取值范围是( )A. m ≥ 1 1B. ≤ m ≤ 1C. m ≤ 1D. m ≥ -13 32C.122D.3A.-2≤b≤2B.1四形形AEFE'=7.如图,已知在圆O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形AOACB为菱形,还需要添加一个条件,这个条件可以是()A.OA=ACB.AD=BDC.∠CAD=∠CBDD.∠OCA=∠OCB第7题第8题第10题8.如图,有一个边长为2cm的正六边形纸片,若在该纸片上剪一个最大圆形,则这个圆形纸片的直径是()A.3cmB.23C.2cmD.4cm△9.平面直角坐标系中,ABC的顶点坐标分别是A(1,2),B(3,2),C(2,3).当直线时,b的取值范围是()3≤b≤2≤b≤≤b≤221y=x+b2与△ABC的边有交点10.正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点△E,把ADE沿AD翻折,得到△ADE',点F是DE的中点,连接AF、B F、E'F.若AE=2。
2018-2019学年广东省广州市海珠区九年级(上)期末数学试卷--附答案解析

那么m 的取值范围是 m <1 .
【考点】 AA:根的判别式
【分析】若一元二次方程有两不等根,则根的判别式△= b2 − 4ac > 0 ,建立关于m 的不等
第 6 页(共 24 页)
式,求出m 的取值范围. 【解答】解:Q方程有两个不相等的实数根, a =1,b = −2,c = m △ , ∴ = b2 − 4ac = (−2)2 − 4 ×1× m > 0 解得 m <1. 【点评】总结:一元二次方程根的情况与判别式△的关系: (1)△> 0 ⇔ 方程有两个不相等的实数根; (2)△= 0 ⇔ 方程有两个相等的实数根; (3)△< 0 ⇔ 方程没有实数根.
14.(3 分)(2018 秋•海珠区期末)如图已知二次函数 y1 = x2 + c 与一次函数 y2 = x + c 的图 象如图所示,则当 y1 < y2 时 x 的取值范围 0 < x <1 .
第 7 页(共 24 页)
【考点】 HC :二次函数与不等式(组) 【专题】1:常规题型 【分析】首先将两函数解析式联立得出其交点横坐标,进而得出当 y1 < y2 时 x 的取值范围. 【解答】解:由题意可得: x2 + c = x + c , 解得: , , x1 = 0 x2 = 1 则当 y1 < y2 时 x 的取值范围: 0 < x < 1. 故答案为:0 < x <1. 【点评】此题主要考查了二次函数与不等式(组 ) ,正确得出两函数的交点横坐标是解题关
. ∽ . A ∆ABC ∆ADE B DE / /BC
.C DE : BC = 1: 2
.D S∆ABC = 9S∆ADE
2018年广东省广州市海珠区中考数学一模试卷含答案.docx
2018 年广东省广州市海珠区中考数学一模试卷含答案海珠区 2018 年第二学期九年级一模调研测试数学试题本试卷分选择题和非选择题两部分,共三大题25 小题,满分150 分,考试用时120 分钟.注意事项:1.答卷前,考生务必在答题卡第 1 页、第 5 页上用黑色字迹的钢笔或签字笔填写自已的学校、姓名、考号;并用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图. 答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,不能折叠答题卡.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共 30 分)一、选择题(本大题共10 题,每小题 3 分,满分 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种药品说明书上标有保存温度是(20±3)℃,则该药品在()℃范围内保存最合适。
A.17~20B.20~23C.17~23D.17~242.一个几何体的三视图如图所示,则这个几何体可能是()3.某班抽取6 名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是()A.众数是 85 B.中位数是 85C.平均数是 85D.方差是 154.下列计算正确的是()A.a babB. a b 2a2b2C.111D.p2 q 3p5 q3x y x y5.在△ ABC 中,∠ C=90°, AC=12,BC=5,以AC为轴将△ ABC 旋转一周得到一个圆锥,1则该圆锥的侧面积为()A. 130πB. 60πC. 25πD.65π6.已知方程组3x y m 1的解 x, y 满足 x2y0 ,则m的取值范围是()x3y2m11m1 C. m 1 D. m1A. mB.337.如图,已知在圆O中,AB 是弦,半径 OC⊥AB,垂足为点D,要使四边形AOACB为菱形,还需要添加一个条件,这个条件可以是()A.OA=ACB.AD=BDC.∠CAD=∠CBDD.∠OCA=∠OCB第 7 题第 8 题第 10 题8.如图,有一个边长为2cm的正六边形纸片,若在该纸片上剪一个最大圆形,则这个圆形纸片的直径是()A.3cmB. 23C.2cmD.4cm9.平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(3 ,2),C(2 ,3). 当直线y1x b2与△ ABC的边有交点时,b 的取值范围是()A. 2 b 2B.1b 2C.1b3D.3b 2 222210.正方形 ABCD中,对角线 AC、BD 相交于点 O,DE平分∠ ADO交 AC于点 E,把△ ADE 沿 AD 翻折,得到△ADE ,点F是DE的中点,连接AF、BF、E F . 若 AE= 2。
2018年广州市海珠区九年级综合练习卷(中考一模)数学试题(附参考答案及评分标准)
3. 某班抽取 6 名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确 的是 ( ※ ) . A. 众数是 85 B. 中位数是 85 C. 平均数是 85 D. 方差是 15 4. 下列计算正确的是 ( ※ ) . 2 3 A. √ a ·√ b = √ab B. ( a+b) = a2 + b 2 C. 1 + 1 = 1 D. ( -p 2q) = -p 5q 3 x y x+y 5. 在 ΔA BC 中,∠C=90°,A C=12,BC=5,以 A C 为轴将△ABC 旋转一周得到一个圆锥,则 该圆锥的侧面积为 ( ※ ) . A. 130π B. 60π C. 25π D. 65π 3x+y=m+1, 6. 已知方程组 的解 x,y 满足 x+2y≥0,则 m 的取值范围是 ( ※ ) . x-3y=2m A. m≥ 1 B. 1 ≤m≤1 C. m≤1 D. m≥-1 3 3
E′ A
E
第 10 题图
第二部分
11. 分解因式 a3-ab 2 = ※ .
非选择题 (共 120 分)
二、 填空题 (本题有 6 个小题, 每小题 3 分, 共 18 分) 12. 函数 y= √x-1 自变量 x 的取值范围是 3 ※ ※ .
13. 三角形的重心是三角形的三条
14. 在平面直角坐标系中,在 x 轴、y 轴的正半轴上分别截取 OA 、OB,使 OA =OB;再分别 n= ※ 用含 m 的代数式表示) ( .
的交点.
以点 A、B 为圆心,以大于 1 A B 长为半径作弧,两弧交于点 C. 若点 C 的坐标为( m-3, 2n ) ,则 2
2018-2019学年广州市海珠区八年级下期中数学试卷(含答案解析)
2018-2019学年广东省广州市海珠区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个符合题意)1.下列运算正确的是()A.+=B.•=C.=D.=32.若,则()A.b>3B.b<3C.b≥3D.b≤33.若的整数部分为x,小数部分为y,则(x+)y的值是()A.B.3C.D.﹣34.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.6.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2C.D.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.88.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°9.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线1于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…依此规律,则A2018A2018=()A.()2018B.()2018C.2()2018D.2()2018二、填空题:(本大题共6小题,每小题3分,共18分,只要求写出最后的结果11.若式子+有意义,则x的取值范围是.12.若x,y满足+|3x+y+m|=0且y<0,则m的取值范围是.13.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=.14.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm,则该矩形的面积为.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为cm.16.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.三、解答题(本大题共7小题,共62分,作答时应写出文字说明、推理依据、演算步骤)17.(8分)(1)÷2﹣×+4;(2)(+)2﹣(3+2)(3﹣2)18.(6分)已知实数m,n满足n=,求的值.19.(8分)如图,在△ABC中,∠A=45°,∠B=30°,BC=8,求∠ACB及AC、AB的长.20.(7分)如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.21.(9分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(12分)如图1,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA =PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC;(3)如图2把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°时,连接CE,∠BAP与∠DCE有何数量关系?证明你的结论.2018-2019学年广东省广州市海珠区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个符合题意)1.下列运算正确的是()A.+=B.•=C.=D.=3【分析】利用二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.若,则()A.b>3B.b<3C.b≥3D.b≤3【分析】等式左边为非负数,说明右边3﹣b≥0,由此可得b的取值范围.【解答】解:∵,∴3﹣b≥0,解得b≤3.故选D.【点评】本题考查了二次根式的性质:≥0(a≥0),=a(a≥0).3.若的整数部分为x,小数部分为y,则(x+)y的值是()A.B.3C.D.﹣3【分析】先估算出的范围,再求出x、y的值,最后代入求出即可.【解答】解:∵2<<3,∴x=2,y=﹣2,∴(x+)y=(2+)×(﹣2)=7﹣4=3,故选:B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.4.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC【分析】直接根据平行四边形的判定定理判断即可.【解答】解:平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断,平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断;平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定;平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;故选:A.【点评】此题是平行四边形的判定,解本题的关键是掌握和灵活运用平行四边形的5个判断方法.5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.【点评】本题考查的是点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,难度适中.6.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2C.D.【分析】本题只要根据矩形的性质,利用面积法来求解.=×3×4=6,【解答】解:因为BC=4,故AD=4,AB=3,则S△DBC=×5AE,故×5AE=6,AE=.又因为BD==5,S△ABD故选:A.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.8【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=8.故选:D.【点评】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.8.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.【点评】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.9.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.10.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线1于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…依此规律,则A2018A2018=()A.()2018B.()2018C.2()2018D.2()2018【分析】由四边形ABCB1是正方形,得到AB=AB1=1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.【解答】解:∵四边形ABCB1是正方形,∴AB=AB1=1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=AB1=,AA1=2AB1=2,∴A1B2=A1B1=,∴A1A2=2A1B2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2018A2018=2()2018,故选:C.【点评】本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质,熟记各性质并求出后一个正方形的边长是前一个正方形的边长的倍是解题的关键.二、填空题:(本大题共6小题,每小题3分,共18分,只要求写出最后的结果11.若式子+有意义,则x的取值范围是x>﹣2且x≠1.【分析】直接利用二次根式有意义的条件以及分式有意义的条件分析得出答案.【解答】解:若式子+有意义,则x+2≥0,且(x﹣1)(x+2)≠0,解得:x>﹣2且x≠1.故答案为:x>﹣2且x≠1.【点评】此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确把握相关定义是解题关键.12.若x,y满足+|3x+y+m|=0且y<0,则m的取值范围是m>6.【分析】根据非负数的性质列方程求出x的值并表示出y,再根据y<0列出关于m的不等式,然后求解即可.【解答】解:由题意得,x+2=0,3x+y+m=0,解得x=﹣2,y=6﹣m,∵y<0,∴6﹣m<0,∴m>6.故答案为:m>6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=50°.【分析】首先根据两组对边分别平行的四边形是平行四边形可判定出四边形ABCD是平行四边形,再根据平行四边形两组对角相等可得∠B=∠D=50°.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠B=∠D=50°,故答案为:50°.【点评】此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形的判定定理与性质定理.14.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm,则该矩形的面积为400cm2.【分析】本题首先求证由两条对角线的所夹锐角为60°的角的为等边三角形,易求出短边边长.【解答】解:∵已知矩形的两条对角线所夹锐角为60°,矩形的对边平行且相等.∴根据矩形的性质可求得由两条对角线所夹锐角为60°的三角形为等边三角形.又∵这个角所对的边长为20cm,所以矩形短边的边长为20cm.∴对角线长40cm.根据勾股定理可得长边的长为20cm.∴矩形的面积为20×20=400cm2.故答案为400cm2.【点评】本题考查的是矩形的性质(对角线相等),先求出短边边长后根据勾股定理可求出长边边长,最后可求出矩形的面积.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为 4.8cm.【分析】直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【解答】解:∵菱形的两条对角线分别为6cm和8cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×8,解得:x=4.8.故答案为:4.8.【点评】此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.16.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt △BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.三、解答题(本大题共7小题,共62分,作答时应写出文字说明、推理依据、演算步骤)17.(8分)(1)÷2﹣×+4;(2)(+)2﹣(3+2)(3﹣2)【分析】(1)先把二次根式化为最简二次根式,再利用二次根式的乘除法则运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=4÷2﹣3×+2=2﹣3+2=2﹣;(2)原式=2+2+3﹣(18﹣12)=5+2﹣6=2﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(6分)已知实数m,n满足n=,求的值.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m=﹣2,∴n==0∴=0【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.19.(8分)如图,在△ABC中,∠A=45°,∠B=30°,BC=8,求∠ACB及AC、AB的长.【分析】根据三角形的内角和定理可得出∠ACB的度数,过点C作CD⊥AB与点D,在RT△CDB 中先求出CD、BD的长,然后在RT△ACD中可求出AD的长,继而根据AB=AD+DB可求出AB 的长.【解答】解:∠ACB=180°﹣∠A﹣∠B=105°,过点C作CD⊥AB于点D,在RT△ACD中,CD=BC sin∠B=4,BD=BC cos∠B=4,在RT△ACD中,AD=CD tan∠A=4,AC==4,∴AB=AD+BD=4+4.综上可得∠ACB=105°,AC=4,AB=4+4.【点评】本题考查解直角三角形的应用,对于此类题目一般要先构造直角三角形,作高是最直接的手段,难点在于找到过度线段CD的长.20.(7分)如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.【分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形.【解答】解:四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形.【点评】本题考查了菱形的性质及矩形的判定,解答本题的关键是掌握菱形对角线互相垂直的性质及矩形的判定定理.21.(9分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,==.∴S△【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.22.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE =45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF =BE,所以可证出GE=BE+GD成立.【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.【点评】本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.23.(12分)如图1,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA =PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC;(3)如图2把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°时,连接CE,∠BAP与∠DCE有何数量关系?证明你的结论.【分析】(1)欲证明PC=PE,只要证明△ADP≌△CDP即可.(2)只要证明∠BPC=∠BCP即可.(3)结论:∠BAP=∠DCE,只要证明△PCE是等边三角形即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP∴PA=PC,∵PA=PE,∴PC=PE.(2)证明:四边形ABCD为正方形,∴∠ADC=∠CDE=90°,∴∠E+∠DFE=90°,∵PA=PE,∴∠PAD=∠E,由(1)知△ADP≌△CDP,∴∠PAD=∠PCD,∴∠PCD=∠E,∵∠PFC=∠DFE,∴∠PCD+∠PFC=∠E+∠DFE=90°,∴∠CPE=90°,∴∠BPC+∠DPE=90°,∵PD=DE,∴∠DPE=∠E,∴∠DPE=∠PCD,∵∠BCP+∠PCD=90°,∴∠BPC=∠BCP,∴BP=BC.(3)∠BAP=∠DCE,∵四边形ABCD是菱形,BD是对角线,∴AB=BC,∠ABP=∠PBC,∠BAD=∠BCD,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∠BAP=∠BCP,∴∠PAD=∠PCD∵PA=PE,∴PC=PE,∠PAE=∠PEA,∴∠PEA=∠PCD,∵∠EFC=∠CPE+∠PCD=∠CDE+∠PEA,∴∠CPE=∠CDE,∵四边形ABCD为菱形,∠ABC=120°,∴∠BCD=60°,∠ADC=120°,∴∠CDE=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴∠PCE=60°,∴∠BCP=∠DCE,∴∠BAP=∠DCE.【点评】本题考查四边形综合题、正方形、菱形的性质、全等三角形的判定和性质,勾股定理等知识,正确寻找全等三角形是解题的关键,属于中考常考题型.。
2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)
2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,4,8B.6,7,8C.5,6,11D.1,4,73.点A(2,﹣1)关于x轴对称的点B的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.若分式有意义,则x的取值范围是()A.x≠0B.x≠1C.x≠﹣1D.x取任意实数5.下列计算正确的是()A.a2+a3=a5B.(a2)3=a6C.a6÷a2=a3D.2a×3a=6a6.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE7.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1B.a2+4C.a2+2a+1D.a2﹣4a﹣48.如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍9.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°10.如图,设k=(a>b>0),则有()A.0<k<B.<k<1C.0<k<1D.1<k<2二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
11.(4分)2﹣1=.12.(4分)如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为.13.(4分)因式分解:a2﹣2a=.14.(4分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=度.15.(4分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.16.(4分)如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为cm时,线段CQ+PQ的和为最小.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(2x+y)(2x﹣y)+y(2x+y).18.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.19.(6分)解方程:.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:÷(﹣1),其中x=﹣2018.21.(7分)如图,在△ABC中,点D在BC上,AB=AC=BD,AD=DC,将△ACD沿AD折叠至△AED,AE交BC于点F.(1)求∠C的度数;(2)求证:BF=CD.22.(7分)港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,2018年10月24日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子,第⑩个式子;(2)请用含n(n为正整数)的式子表示上述的规律,并证明:(3)求值:(1+)(1+)(1+)(1+)…(1+).24.(9分)如图,在等腰△ABC中,AB=AC,过点B作BD⊥AB,过点C作CD⊥BC,两线相交于点D,AF平分∠BAC交BC于点E,交BD于点F.(1)若∠BAC=68°,则∠DBC=°;(2)求证:点F为BD中点;(3)若AC=BD,且CD=3,求四边形ABDC的面积.25.(9分)如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A 作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省广州市海珠区2018-2019学年九年级下学期一模数学试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. -3的相反数为 ( ) A . -3 B . 3 C . D .2. 下列图形中是中心对称图形的是( )A .B .C .D .3. 把不等式组的解集表示在数轴上正确的是( )A .B .C .D .4. 在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE=6,则BC=( )A . 3B . 6C . 9D . 125. 在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………关于这组数据的说法正确的是( )A . 平均数是2B . 中位数是2C . 众数是2D . 方差是26. 若一个正多边形的一个外角是30°,则这个正多边形的边数是( ) A . 12 B . 11 C . 10 D . 97. 如图,AB△DE ,△E=62°,则△B+△C 等于( )A . 138°B . 118°C . 38°D . 62°8. 对于二次函数 ,下列说法正确的是A . 当,y 随x 的增大而增大 B . 当 x=-1 时,y 有最大值3C . 图象的顶点坐标为D . 图象与 x 轴有一个交点9. 已知圆锥的母线长是4cm ,侧面积是12πcm 2 , 则这个圆锥底面圆的半径是( ) A . 3cm B . 4cm C . 5cm D . 6cm10. 将抛物线 向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线y=-3和x 轴围成的图形的面积S (图中阴影部分)是( )A . 5B . 6C . 7D . 8第Ⅱ卷 主观题第Ⅱ卷的注释第3页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分一、填空题(共6题)1. 分解因式: .2. 计算:.3. 已知命题:“如果两个角是直角,那么它们相等”,该命题的逆命题是 命题(填“真”或“假”).4. 已知一次函数图象经过第一、二、四象限,请写出一个符合条件的一次函数解析式 .5. 如图,PA 、PB 是△O 的两条切线,A 、B 是切点,PA=OA ,阴影部分的面积为6π,则△O 的半径长为 .6. 如图把矩形ABCD 翻折,使得点A 与BC 边上的点G 重合,折痕为DE ,连结AG 交DE 于点F ,若EF=1,DG=,则BE= .评卷人 得分二、计算题(共2题)7. 解分式方程: .8. 先化简,再求值: ,其中.评卷人 得分三、解答题(共1题)9. 如图,在△ABCD 中,BE 、DF 分别是△ABC 和△CDA 的平分线.求证:四边形BEDF 是平行四边形.答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分四、综合题(共6题)10. 某校响应国家号召,鼓励学生积极参与体育锻炼.为了解学生一星期参与体育锻炼的时间情况,从全校2000名学生中,随机抽取50名学生进行调查,按参与体育锻炼的时间t (单位:小时),将学生分成五类:A 类,B 类,C 类,D 类,E 类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)样本中E 类学生有 △ 人,补全条形统计图;(2)估计全校的D 类学生有 人;(3)从该样本参与体育锻炼时间在 的学生中任选2人,求这2人参与体育锻炼时间都在中的概率.11. 如图,楼房BD 的前方竖立着旗杆AC .小亮在B 处观察旗杆顶端C 的仰角为45°,在D 处观察旗杆顶端C 的俯角为30°,楼高BD 为20米.第5页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求△BCD 的度数;(2)求旗杆AC 的高度.12. 如图,已知以Rt△ABC 的边AB 为直径作△ABC 的外接圆△O ,△B 的平分线BE 交AC 于D ,交△O 于E ,过E 作EF△AC 交BA 的延长线于F .(1)求证:EF 是△O 切线;(2)若AB=15,EF=10,求AE 的长. 13. 如图,双曲线与直线相交于A,B,点P 是x 轴上一动点.答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)当 时,直接写出 的取值范围;(2)求双曲线 与直线 的解析式;(3)当△PAB 是等腰三角形时,求点P 的坐标.14. 如图,二次函数 的图象经过点 和点 ,点(1)求二次函数 的解析式;(2)在图①中仅用尺规作图(保留作图痕迹,不要求写作法)在 轴上确定点 ,使△ =△ ,直接写出点 的坐标;(3)在(2)的条件下,如图②,过点P 的直线交二次函数的图象于D ,E ,且 ,过点D 、E 作 轴的垂线段,垂足分别是F 、G ,连接PF 、PG ,①求证:无论 为何值,总有△FPO=△PGO ; ②当PF+PG 取最小值时,求点O 到直线 的距离.15. 已知点A 、B 在△O 上,△AOB=90°,OA=,第7页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)点P 是优弧 上的一个动点,求△APB 的度数;(2)如图①,当 时,求证: ;(3)如图②,当点P 运动到优弧 的中点时,点Q 在上移动(点Q 不与点P 、B 重合),若△QPA的面积为 ,△QPB 的面积为,求的取值范围.参数答案1.【答案】:【解释】:2.【答案】:【解释】:答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】: 7.【答案】: 【解释】: 8.【答案】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:9.【答案】:【解释】:10.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】:【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:第21页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:(1)【答案】:(2)【答案】:答案第22页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:第23页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:答案第24页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:第25页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:答案第26页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:第27页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………。