线面平行的判定及性质定理
线面平行面面平行的性质与判定定理

提问
一、直线与平面有什么样的位置关系?
1.直线在平面内——有无数个公共点;
2.直线与平面相交——有且只有一个公共点;
3.直线与平面平行——没有公共点。
a
a
a
精面外一条直线和这个平面内的一条直 线平行,那么这条直线和这个平面平行。
线//面
面//面
由a //, 通过构造过直线 a 的平面 与平面
相交于直线b,只要证得a // b即可。
精选课件
17
二、两个平面平行具有如下的一些性质:
⑴如果两个平面平行,那么在一个平面内的所 有直线都与另一个平面平行
⑵如果两个平行平面同时和第三个平面相交, 那么它们的交线平行.
⑶如果一条直线和两个平行平面中的一个相交, 那么它也和另一个平面相交
⑷夹在两个平行平面间的所有平行线段相等
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选课件
20
证明:∵α∩γ=a,β∩γ=b ∴aα,bβ ∵α∥β ∴a,b没有公共点, 又因为a,b同在平面γ内, 所以,a∥b
这个结论可做定理用
定理 如果两个平行平面同时和 第三个平面相交,那么它们的交 线平行。
用符号语言表示性质定理:
//=a,=ba//b
想一想:这个定理的作用是什么?
答:可以由平面与平面平 行得出直线与直线平行
小结:一、直线和平面平行的性质定理
如果一条直线和一个平面平行,经过这条直
线的任意平面和这个平面相交,那么这条直线和
交线平行。
a// ,
a
a ,
a // b
b
= b
注意:
1、定理三个条件缺一不可。
线面定理性质

线面、面面平行和垂直的定理性质
一、线面平行
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:
二、面面平行
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示:
变形:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示:
(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示:
(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)
变形:垂直于同一条直线的两个平面平行
四、面面垂直
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)
其他:两个平面相交,如果它们所成的二面角是直角,则这两个平面互相垂直。
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
线面平行的性质定理

AB1C,求线段EF的长度
应用巩固
例3、如图所示的一块木料中,棱BC平行于 面A´C´.
(1)要经过面A´C´内的一点P和棱BC将木 料锯开,应怎样画线?
(2)所画的线和平面AC有什么关系?
F
E
课堂小结:
1.直线与平面平行的性质定理
判定定理:找(作) 面内一条直线与已知
2.线线平行 直线平行
性质定理:找(作) 一个过已知直线的平 面,确定其与已知平 面的交线
应用巩固
例1、已知平面外的两条平行直线中的一 条平行于这个平面,求证:另一条也平行于这 个平面.
如图,已知直线a,b,平面 α ,且a//b, a//α, a,b都在平面α外,求证:b//α.
ab
应用巩固
例变式2、:如如图图,,用用平一行个于平四面面去体截A四B面C体D 的一组对 棱ABACBD,,C得D 的到平的面截截面此M四NP面Q体是.平求行证四:边截面 M形N.P求Q证是:平AB行//M四N边形.
若如“果共一面条”直必线平和行一,个换平句面话平说行,,如经果过过该直直线线a的平面
的某个平面与平面相交,则直线a就和这条交
线平和行这.个平面相交,那么这条直线和交线平行.
线面平行的性质定理: 一条直线和一个平面平行,则过这条直线 的任一平面与此平面的交线与该直线平行.
β a
b α
作用:判定直线与直线平行的重要依据. 关键:寻找平面与平面的交线.
*
1. 定义: 直线与平面无公共点.
2. 判定定理: 线线平行 线面平行
若平面外一条直线与此平面内的
一条直线平行,则该直线与此平面
平行.
a
b
a /
b
a
//
线面平行的判定及性质

线面平行的判定定理:
文字语言:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行
符号语言:ααα////a b a b a ⇒⎪⎭
⎪⎬⎫⊂⊄
线面平行的性质定理:
文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
符号语言:b a b a a ////⇒⎪⎭
⎪⎬⎫=⊂βαβα
面面平行的判定定理:
文字语言:一个平面内的两条相交直线与另外一个平面平行,则这两个平面平行
符号语言:βαββαα////,//,⇒⎪⎭
⎪⎬⎫=⊂⊂b a A b a b a
面面平行的性质定理:
文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行
符号语言:b a b a ////⇒⎪⎭
⎪⎬⎫==γβγαβα
线面垂直的判定定理:
文字语言:一条直线和一个平面内的两条相交直线垂直,则该直线与此平面垂直
符号语言:ααα⊥⇒⎪⎭
⎪⎬⎫⊥⊥=⊂⊂l n l m l P n m n m ,,
线面垂直的性质定理:
文字语言:垂直于同一个平面的两条直线平行
符号语言:b a b a //⇒⎭
⎬⎫⊥⊥αα
面面垂直的判定定理:
文字语言:一个平面过另外一个平面的垂线,则这两个平面垂直 符号语言:
βααβ⊥⇒⎭
⎬⎫⊂⊥a a
面面垂直的性质定理:
文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另外一个平面垂直
符号语言:ββααβα⊥⇒⎪⎪
⎭⎪⎪⎬⎫⊥=⊂⊥a b a b a。
直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.
直线与平面平行性质定理

长方体ABCD-A1 B1C1D1中,点P BB (异于 B、B1) 例 3: 1 PA BA1 M , PC BC1 N , 求证: (1)AC // 平面A1C1B (2)MN // 平面ABCD
D1 C1 A1
分析 证法1
B1 P M D N C
A
B
10
例3:证法1 (1) 连结AC、AC ,在长方体中A1 A//C1C 1 1
又 a与b都在平面内 且没有公共点
b
a // b
5
直线和平面平行的性质定理
如果一条直线和一个平面平行,经过这 条直线的平面和这个平面相交,那么这 条直线和交线平行。
a , a , b
注意:
a // b
a b
1、定理三个条件缺一不可。
2、简记:线面平行线线平行。
MN // 面ABCD
11
AC // MN
MN 平面ABCD AC 平面ABCD
证法1的思路是
(1) (2)
线//线
线//面
线//线
D1
线//面
线//面
C1
A1
B1 P M D N C
A
B
12
长方体ABCD-A1 B1C1D1中,点P BB (异于 B、B1) 例 3: 1 PA BA1 M , PC BC1 N , 求证: (1)AC // 平面A1C1B (2)MN // 平面ABCD
推理形式: b a // a // b
简记:线线平行线面平行。
b
2
思考: 如果一条直线与平面平行,那么 由直线与平面平行可知,这条直线与这个平面内
线面平行的性质定理和判定定理
线面平行的性质定理和判定定理
面面平行的性质定理:
一、线线平行
1、同位角成正比两直线平行:在同一平面内,两条直线被第三条直线所封盖,如果
内错角成正比,那么这两条直线平行。
2、内错角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行。
3、同旁内角优势互补两直线平行。
二、线面平行
1、利用定义:证明直线与平面并无公共点;
2、利用判定定理:从直线与直线平行得到直线与平面平行;
3、利用面面平行的性质:两个平面平行,则一个平面内的'直线必平行于另一个平面。
平行平面间的距离处处相等。
已知:α∥β,ab⊥α,dc⊥α,且a、d∈α,b、
c∈β求证:ab=cd证明:连接ad、bc由线面垂直的性质定理可知ab∥cd,那么ab和cd
构成了平面abcd∵平面abcd∩α=ad,平面abcd∩β=bc,且α∥β∴ad∥bc(定理2)
∴四边形abcd是平行四边形∴ab=cd。
线面平行的判定及其性质
线面平行的判定及其性质1.直线和平面的位置关系有:直线在平面内、直线与平面相交、直线与平面平行.注:直线与平面相交和直线与平面平行统称为直线在平面外.(1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点;(3) 直线与平面平行——没有公共点.①直线和平面平行的判定定理:如果不在一个平面内的一条直线与平面内的一条直线平行,那么这条直线和这个平面平行. 即,////a baa bααα⊄⊂⎫⇒⎬⎭②直线和平面平行的性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 即////ll l mmβααβ⎫⎪⊂⇒⎬⎪=⎭2.两个平面的位置关系:平行、相交(垂直是相交的一种特殊情况)(1)两个平面相交———有一条公共直线.(2)两平面平行———没有公共点(Ⅰ)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.即////a b a b Pa bαββααα⊂,⊂,=⎫⇒//⎬,⎭推论:①如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行. 即,,,,//,//a b a b A m n m n Ba mb nααββαβ⊂,⊂=⊂⊂=⎫⇒//⎬⎭②垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.即,l lαβαβ⊥⊥⇒//; //αγβγαβ//,⇒//(Ⅱ)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行. 即//,a ba bαβαγβγ//⎫⇒⎬==⎭注:平行问题常用平行转化的思想:B CDA 1B 1C 1D 1图2AFE G【例题精讲一】题型一 利用平行四边形证明线面平行例 正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B变式训练1、在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB ,=3,=1EB EF ,=13BC ,且M 是BD 的中点.求证:EM//平面ADF ;CA FEBMD2.如图,在多面体ABCD EF -中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,2AB EF =,090AED ∠=,AE ED =,H 为AD 的中点.求证://EH 平面FAC ;3.如图,PA⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点, 求证:AF⊥平面PCE.EDABCFH题型二 利用中位线证明线面平行1 如图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.求证:PQ ∥平面BCC 1B 1.变式训练如图,在正方体1111ABCD A BC D 中,E 是1AA 的中点, 求证: 1//AC 平面BDE 。
高中数学 线面、面面平行的判定与性质(教师版)
线面、面面平行的判定与性质(教师版)知识回顾1.线面平行的判定(1)直线与平面平行的定义:直线与平面无公共点. (2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 用符号表示为:a ⊄α,b ⊂α,且a ∥b ⇒a ∥α. 2.线面平行的性质直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言描述:⎭⎪⎬⎪⎫a ∥αa ⊂ββ∩α=b ⇒a ∥b . 3. 面面平行的判定(1)平面α与平面β平行的定义:两平面无公共点. (2)直线与平面平行的判定定理:下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m ,n 为直线,α,β为平面),则此条件应为m ,n 相交.⎭⎪⎬⎪⎫m ⊂αn ⊂αm ∥βn ∥β⇒α∥β 4.面面平行的性质平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号表示为:⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . 题型讲解题型一 利用三角形中位线证明线面平行例1、如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点.求证:SA∥平面MDB.答案:证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.例2、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,求证:MN∥平面PB1C.答案证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.例3、如图所示,P是▱ABCD所在平面外一点,E、F分别在PA、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.证明连接AF延长交BC于G,连接PG.在▱ABCD中,易证△BFG∽△DFA.∴GFFA=BFFD=PEEA,∴EF∥PG.而EF⊄平面PBC,PG⊂平面PBC,∴EF∥平面PBC.练习在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______.答案:平行题型二利用平行四边形证明线面平行例1、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.证明:取D1B1的中点O,连接OF,OB.∵OF 12B1C1,BE12B1C1,∴OF BE.∴四边形OFEB是平行四边形,∴EF∥BO.∵EF⊄平面BDD1B1,BO⊂平面BDD1B1,∴EF∥平面BDD1B1.例2、如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1、BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.证明方法一过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连接MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN,∵AB1=BC1,B1E=C1F,∴AE=BF,又∠B1AB=∠C1BC=45°,∴Rt△AME≌Rt△BNF,∴EM=FN.∴四边形MNFE是平行四边形,∴EF∥MN.又MN⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD.方法二过E作EG∥AB交BB1于G,连接GF,∴B1EB1A=B1GB1B,B1E=C1F,B1A=C1B,∴C1FC1B=B1GB1B,∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.又EF⊂平面EFG,∴EF∥平面ABCD.题型三利用面面平行证明线面平行例. 如图,在四棱锥中,是平行四边形,,分别是,的中点.求证:平面.答案:证明:如图,取的中点,连接,,分别是,的中点,,,P ABCDABCD M N AB PCMN//PADCD E NE ME∵M N AB PCNE PD∴//ME AD//可证明平面,平面.又,平面平面,又平面,平面.题型四面面平行的证明例1、如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?解:当Q为CC1的中点时,平面D1BQ∥平面PAO.∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P、O为DD1、DB的中点,∴D1B∥PO.又PO∩PA=P,D1B∩QB=B,D1B∥平面PAO,QB∥平面PAO,∴平面D1BQ∥平面PAO.题型五平行性质NE//PAD ME//PADNE ME E=∴MNE//PADMN⊂MNE∴MN//PAD例1、如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是()A.平行 B.相交C.异面 D.平行和异面答案:A例2、ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明如图所示,连接AC交BD于O,连接MO,∵ABCD是平行四边形,∴O是AC中点,又M是PC的中点,∴AP∥OM.根据直线和平面平行的判定定理,则有PA∥平面BMD.∵平面PAHG∩平面BMD=GH,根据直线和平面平行的性质定理,∴AP∥GH.练习、如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.证明 ∵平面AB 1M ∥平面BC 1N , 平面ACC 1A 1∩平面AB 1M =AM , 平面BC 1N∩平面ACC 1A 1=C 1N , ∴C 1N ∥AM ,又AC ∥A 1C 1, ∴四边形ANC 1M 为平行四边形, ∴AN 綊C 1M =12A 1C 1=12AC ,∴N 为AC 的中点.跟踪训练1.如右图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于直线DE ,则DE 与AB 的位置关系是( )A .异面B .平行C .相交D .以上均有可能 答案:B[解析] ∵A 1B 1∥AB ,AB ⊂平面ABC ,A 1B 1⊄平面ABC , ∴A 1B 1∥平面ABC.又A 1B 1⊂平面A 1B 1ED ,平面A 1B 1ED∩平面ABC =DE ,∴DE ∥A 1B 1. 又AB ∥A 1B 1,∴DE ∥AB.2.已知直线l ,m ,平面α,β,下列命题正确的是( ) A .l ∥β,l ⊂α⇒α∥βB .l ∥β,m ∥β,l ⊂α,m ⊂α⇒α∥βC .l ∥m ,l ⊂α,m ⊂β⇒α∥βD .l ∥β,m ∥β,l ⊂α,m ⊂α,l ∩m =M ⇒α∥β 答案:D3、直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A.至少有一条 B.至多有一条C.有且只有一条 D.没有答案:B4、给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个 B.2个 C.3个 D.4个答案:B5.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案:A6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案:平行四边形[解析]∵平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH的形状是平行四边形.7. 如图所示,在三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点,求证:BC1∥平面CA1D.证明:如图所示,连接AC1交A1C于点O,连接OD,则O是AC1的中点.∵点D是AB的中点,∴OD∥BC1.又∵OD⊂平面CA1D,BC1⊄平面CA1D,∴BC1∥平面CA1D.8.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD 1B1.证明如图所示,连接SB,SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1,又∵EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.9.(本小题满分12分)在四棱锥S-ABCD中,底面ABCD是正方形, M、N分别为AB、SC的中点,SA⊥底面ABCD.求证://MN平面SAD;答案.证明(Ⅰ): E 为SD 中点,连接AE ,NE ,因为M 、N 分别为AB 、SC 的中点,所以AM//EN ,AM=EN ,即四边形AMNE 是平行四边形,所以MN//AE ,可得//MN 平面SAD ;10. 一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A -CDEF 的体积.答案 由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且AB =BC =BF=2,DE =CF=2,∴∠CBF =. (1)证明:取BF 的中点G ,连结MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF ,又MN ⊂平面MNG ,∴MN ∥平面CDEF .(2)取DE 的中点H .∵AD =AE ,∴AH ⊥DE , 在直三棱柱ADE-BCF 中,平面ADE ⊥平面CDEF ,平面A DE ∩平面CDEF=DE .∴AH ⊥平面CDEF.∴多面体A-CDEF 是以AH 为高,以矩形CDE F 为底面的棱锥,在△ADE 中,AH =. S 矩形CDEF =DE ·EF =4,∴棱锥A-CDEF 的体积为2222V=·S 矩形CDEF ·AH =×4×= 解法2:13218222323A CDEF AED BFC A BFCAED V V V S AB S AB ---=-=⨯-⨯⨯=⨯⨯⨯⨯=△△BFC 11如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB 上是否存在一点F ,使平面C 1CF ∥平面ADD 1A 1?若存在,求点F 的位置;若不存在,请说明理由.答案 存在这样的点F ,使平面C 1CF ∥平面ADD 1A 1,此时点F 为AB的中点,证明如下:∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,∴四边形AFCD 是平行四边形,∴AD ∥CF ,又AD ⊂平面ADD 1A 1,CF ⊄平面ADD 1A 1,∴CF ∥平面ADD 1A 1.又CC 1∥DD 1,CC 1⊄平面ADD 1A 1,DD 1⊂平面ADD 1A 1,∴CC 1∥平面ADD 1A 1,又CC 1、CF ⊂平面C 1CF ,CC 1∩CF =C ,∴平面C 1CF ∥平面ADD 1A 1.12. 如图,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.答案 存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .13132283∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF ∥平面AEC .又BF ⊂平面BMF ,∴BF ∥平面AEC .13. (北京)如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.答案 (1)证明:因为D ,E 分别为AP ,AC 的中点,所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE ∥平面BCP .(2)证明:因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点所以DE ∥PC ∥FG ,DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG ,所以四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理可证四边形MENG 为矩形,其对象线交点为EG 的中点Q ,且QM =QN =12EG ,所以EG 的中点Q 是满足条件的点.。
高中数学直线、平面平行的判定与性质
例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A F E D C
B
如图,在空间四边形ABCD中,E、F分别为AB、AD上的点, 若
AE EB AF FD
,则EF与平面BCD的位置关系是 ____ A F D B
E
C
如图,点P为平行四边形ABCD所在平面外一点,M为PD 边中点,求证: PB//平面MAC.
P
M
D C O A B
[教材第56页练习第2题] 如图,正方体ABCD—A1B1C1D1中,E为DD1的中点,试判断
如何实现 三角形中位线、平行四边形、比例线段 答题规范性 交待“线在面外、线在面内”!
如图,底面为正方形的棱锥P-ABCD中,PA=PB=PC=
PD=AB,若M、N分别在PA、 BD上,
并且PM:PA=BN:BD=1:3.
P
(Ⅰ) 求证:MN//平面PBC;
(Ⅱ) 求MN与AD所成的角.
A
M D N B C
BD1与平面AEC的位置关系,
并说明理由.
A1
D1 B1
C1
E
D
C
O A
B
如图,P为平行四边形ABCD所在平面外一点,PA⊥AD,且
PA=AD, M,N分别为AB,PC的中点.
(Ⅰ) 求证:MN//平面PAD; (Ⅱ) 求异面直线MN与PD所成的角.
E
利用判定定理证明线/ 面的关键 / 在面内找一条线与已知线平行!
(2) 通过 “三角形中位线”、平行四边形判 定 D C (3) 通过 “比例线段”
A E B
AE EB AF FC
A F C
EF // BC
B
能否通过线线平行证明线面平行?
线面平行的判定
如图,平面 外的直线a平行于平面内的直线b. (1) 这两条直线共面吗?
(2) 直线 a与平面 相交吗?
P
M D C
构建平行四边形!
P
E
A N B M D N B
E
C
充分利用PA与MN确 定的平面!
A
F
D1 A1
D B1 C C1
A
B
一起来认识一下判定定理的威力
如图所示的三棱锥小木块,P在面VAC内,过P将 木块锯开使截面与VB和VC都平行,应怎样画线?
V
E
.P
C B G A F
典例.如图,空间四边形ABCD中,E、F分别是AB、AD的中点.
求证: EF∥平面BCD. 证明: 连结BD, ∵E、F分别为AB、AD的中点 ∴EF//BD 又EF 面BCD,BD 面BCD ∴EF//平面BCD
a b
a
b
直线与平面平行的判定定理
平面外的一条直线与此平面内的一条直线平行, 外 内 则该直线与此平面平行.
(线线平行线面平行) 符号表示:
a b a // a // b
a
b
ห้องสมุดไป่ตู้
一起来认识一下判定定理的威力
如图,长方体的六个面都是矩形,则 (1) 与直线AB平行的平面是: (2) 与直线AD平行的平面是: (3) 与直线AA1平行的平面是:
直线和平面的三种位置关系
直线在平面内
直线与平面相交
a A
直线与平面平行
a
a //
统称为直线在平面外 记作: a
平面和平面的两种位置关系
l
两个平面平行
两个平面相交
//
l
线面平行的一个判定: // , a a //
(1) 通过 “同位角、内错角、同旁内角”