拷贝数变异检测方法
拷贝数变异的研究方法及其在畜禽中的研究进展

基金项目:山东省农业良种工程(No.2010LZ013-01)、国家现代农业产业技术体系(No.CARS-36)和山东省农业产业技术体系生猪创新团队建设项目收稿日期:2012-10-12接受日期:2012-11-21评述与展望Review and Progress拷贝数变异的研究方法及其在畜禽中的研究进展王继英1郭建凤1张大龙2王彦平1陶海英1武英1*1山东省畜禽疫病防治与繁育重点实验室,山东省农业科学院畜牧兽医研究所,济南250100;2济南市畜产品质量安全监测中心,济南250002*通讯作者,wusaas@摘要拷贝数变异(copy number variation,CNV)是近年来发展起来的和SNP 互补的一种重要的基因组遗传变异形式。
它不仅与畜禽的疾病及发育异常有关,还与许多体型外貌特征及经济重要性状相关联。
联合使用SNP 和CNV 这两种遗传标记,将为深入理解畜禽复杂性状的分子机制和遗传基础提供新的思路,并在标记辅助育种中有着广阔的应用前景。
全基因组范围内的CNV 研究的技术方法主要有比较基因组杂交芯片(CGH)、高密度SNP 分型芯片及基于近年来正在兴起的新一代测序技术的全基因组重测序,对于已经检测出的CNV ,根据序列特点可以采用基于PCR 和杂交的技术方法对其基因型进行判定。
2008年以来,利用CGH 芯片、高密度SNP 芯片和新一代测序等技术对畜禽的基因组CNV 开展了一系列研究。
本文综述了目前全基因组范围内CNV 检测方法及特定CNV 的分型方法,并列举了CNV 在畜禽中的所取得的一系列研究进展,为从事同类研究的人员提供一定的参考资料。
关键词拷贝数变异,遗传变异,研究方法,畜禽Research Measures for Copy Number Variation and its Research Progress in Livestock and PoultryWANG Ji-Ying 1GUO Jian-Feng 1ZHANG Da-Long 2WANG Yan-Ping 1TAO Hai-Ying 1WU Ying 1*1Shandong Provincial Key Laboratory of Animal Disease Control and Breeding,Institute of Animal Science and Veterinary Medicine,Shandong Academy of Agricultural Sciences,Jinan 250100,China;2Jinan Monitoring Center of Animal Product Quality and Safety,Jinan 250002,China*Corresponding author,wusaas@Abstract Copy number variation (CNV)is an important source of genetic variation complementary to single nucleotide polymorphism (SNP).It has been shown not only relating with disease susceptibility and developmental abnormality,and also with appearance characteristics and economically important bined using the SNP and CNV will provide new research ideas for dissecting the molecular mechanism and genetic basement of complex traits of livestock and poultry.Additionally,CNV would have broad application in marker assistant selection in breeding of livestock and poultry.Genome-wide CNV discovery approaches include array comparative genome hybridization (CGH),high dense SNP chips and newly developed genome re-sequence based on high-throughput sequencing technologies.Since 2008,using hybridization-based chip and sequencing-based technologies,a series of studies have been performed toOnline system:农业生物技术学报Journal of Agricultural Biotechnology2013,21(4):464~474DOI:10.3969/j.issn.1674-7968.2013.04.012人类基因组上广泛存在着多种遗传变异形式与DNA 多态性。
DNA拷贝数变异CNV检测——基础概念篇

DNA拷贝数变异CNV检测——基础概念篇⼀、CNV 简介拷贝数异常(copy number variations, CNVs)是属于基因组结构变异(structural variation),根据⼤⼩可分为两个层次:显微⽔平(microscopic)和亚显微⽔平(submicroscopic)。
显微⽔平的基因组结构变异主要是指显微镜下可见的染⾊体畸变, 包括整倍体或⾮整倍体、缺失、插⼊、倒位、易位、脆性位点等结构变异。
亚微⽔平的基因组结构变异是指 DNA ⽚段长度在 1Kb-3Mb 的基因组结构变异, 包括缺失、插⼊、重复、重排、倒位、DNA 拷贝数⽬变化等,这些统称为 CNV (也称为拷贝数多态性(copy number polymorphisms, CNPs)。
CNVs最初是在病⼈的基因组中发现, 但后来的研究表明在正常⼈体中也普遍存, 说明CNV 是⼀组具有良性、致病性或未知临床意义的基因组结构改变。
有统计显⽰, ⽬前共发现CNVs约57 829个(这个数据不准确,肯定在更新,图1, 已发现的CNVs与染⾊体位置关系,http://projects.tcag.ca/variation/), 其中染⾊体倒位847; 100 bp~1 Kb的插⼊缺失为30 748个; 倒置断裂位点约14 478个。
此外, 据Hurles[1] 研究估计, CNVs⾄少占到基因组的12%, 已成为基因组多态性的⼜⼀重要来源。
有关CNVs的研究将随机个体之间的基因组差异估计值提⾼到⼤于1%, ⼤⼤改变了⼈们先前的认识, 有学者甚⾄认为这⼀发现将改变⼈类对遗传学领域的认知[3,9]。
与⼀直以来研究较多的单核苷酸多态性(SNPs)相⽐, CNVs发⽣的频率虽然较低, 但累及的序列长度却明显超过了前者, 因此对⼈类健康和疾病的影响更为显著。
染⾊体⾮等位同源重排、⾮同源突变和⾮βDNA 结构是造成基因组拷贝数变异的重要原因。
一种基于二代测序拷贝数变异检测的新方法

436 基因组学与应用生物学
that the accuracies o f X H M M ,E x o m e D e p t h a n d o u r m e t h o d is 7%, 18%, a n d 62%, respectively;a n d the c o v e r a g e o f C N V detection with the n e w m e t h o d is increased b y 55 a n d 44 p e rcentage points than X H M M a n d E x o m e D e p t h , respectively.T h e n e w C N V detection m e t h o d p r o v i d e d a theoretical basis for the disease diagnosis a n d treatment. Keywords M H C ;C N V ;S e q u e n c i n g ;C o v e r a g e ;Psoriasis
银屑病俗称牛皮鲜,是由遗传和环境因素引起的 2017)。C L A M M S 是目前较新的适用于区域捕获测 炎性皮肤病( Z h o u et al.,2018),它 是 一 种 慢 性 病 ,影 序 的 C N V 检测方 法 ,主要分为三个步骤:根 据 G C
响 皮 肤 和 关 节 ,并 且 有 多 种 表 型 ,其 中 斑 块 状 银 屑 病 是最常见的形式(Harrington et al.,2017)。经研宄发现, 银屑病的严重程度与某些基因拷贝数变异(C N V )有明 显的相关性(Prans et al.,2013)。大 多 数 C N V 是正常变 异且为良性,而 其 他 C N V 与疾病有很强的相关性(}^raksingh et al.,2017a )。如大于 1 k b 长度 D N A 片段的 扩增与缺失,是已知的导致常见遗传病如银屑病、自闭 症 、精 神 分 裂 症 等 疾 病 的 重 要 人 类 基 因 组 变 异 ( Y a o et al.,2017),因此,检测拷贝数变异十分重要。
tcga 计算拷贝数变异

标题:TCGA中的计算拷贝数变异引言:癌症是一种复杂的疾病,其发生和发展涉及到基因组的许多变异。
在过去的几十年里,人们对癌症的研究取得了重大突破。
其中,TCGA(The Cancer Genome Atlas)项目为我们提供了大量的基因组数据,帮助我们更好地理解癌症的分子机制。
计算拷贝数变异是TCGA项目中的一个重要研究内容,本文将详细介绍这一主题。
一、什么是拷贝数变异?拷贝数变异是指基因组某一区域的拷贝数发生改变,导致基因组中特定基因的拷贝数异常。
正常情况下,某一基因的拷贝数应该是稳定的,但在癌症等疾病中,拷贝数变异往往会导致基因功能的异常,进而影响细胞的正常生理活动。
二、TCGA项目中的计算拷贝数变异1. 数据来源:TCGA项目收集了大量的癌症患者样本,并通过使用DNA测序技术获取了这些样本的基因组数据。
这些数据包括了拷贝数变异的信息,为研究人员提供了研究拷贝数变异的基础。
2. 数据处理:为了准确地计算拷贝数变异,研究人员首先需要对原始数据进行预处理。
这包括去除噪声、校正测序偏差等步骤,以确保后续分析的准确性。
3. 拷贝数估计:在数据预处理完成后,研究人员可以利用各种算法来估计每个基因的拷贝数。
常用的算法包括read-depth方法和比较杂交方法。
这些算法可以根据基因组中不同区域的测序深度或杂交信号强度来推断拷贝数。
4. 数据分析:拷贝数变异的分析可以帮助研究人员发现与癌症相关的潜在基因。
通过比较癌症样本与正常样本之间的拷贝数差异,研究人员可以确定哪些基因在癌症中发生了拷贝数变异。
这些基因可能与肿瘤的发生和发展密切相关。
5. 功能注释:拷贝数变异分析的结果往往需要进行进一步的功能注释。
研究人员可以利用基因功能数据库和生物信息学工具来分析拷贝数变异的功能影响,如基因表达水平的改变、功能通路的变化等。
三、计算拷贝数变异的应用和意义1. 癌症分型:通过计算拷贝数变异,研究人员可以将癌症分为不同的亚型。
mlpa方法

MLPA方法介绍MLPA(Multiplex Ligation-dependent Probe Amplification)方法是一种用于检测基因拷贝数变异(CNV)的分子生物学技术。
CNV是指基因组中的某一段DNA序列的拷贝数发生变化,可能导致多种遗传性疾病的发生。
MLPA方法可以高效、准确地检测CNV,是目前广泛应用于临床诊断和研究领域的一种重要技术。
MLPA方法的原理1. 概述MLPA方法基于PCR(Polymerase Chain Reaction)技术,通过使用特定的引物和探针,可以同时放大多个目标序列,并且可以在同一个反应体系中检测多个位点的CNV。
MLPA方法结合了荧光标记和电泳分析,可以高通量地检测多个样本中的CNV。
2. 引物设计MLPA方法需要设计一对引物,其中一个引物包含一个特定的序列,用于特异性地连接到目标DNA序列上;另一个引物包含一个通用的序列,用于PCR扩增和荧光标记。
引物设计的关键是确保引物与目标序列的特异性和互补性。
3. 反应体系MLPA方法的反应体系包括目标DNA序列、引物、探针、DNA聚合酶、核苷酸等。
在反应体系中,引物和探针与目标DNA序列发生特异性连接,形成连接产物。
连接产物经过PCR扩增,在扩增过程中引物的通用序列被放大,同时荧光标记也被放大。
4. 电泳分析扩增产物经过电泳分析,可以根据荧光信号的强度和峰的大小来判断目标序列的拷贝数。
正常情况下,每个目标序列的拷贝数是一致的,因此荧光信号的强度应该是相似的。
如果存在CNV,那么荧光信号的强度就会发生变化。
MLPA方法的应用1. 临床诊断MLPA方法在临床诊断中广泛应用于遗传性疾病的筛查和诊断。
通过检测某些关键基因的拷贝数变异,可以确定患者是否携带有致病的突变。
例如,在肌萎缩性脊髓侧索硬化症(ALS)的诊断中,MLPA方法可以检测SMN1基因的拷贝数,从而确定患者是否患有脊髓性肌萎缩症。
2. 癌症研究MLPA方法在癌症研究中也有重要的应用。
拷贝数变异(CNV)

拷贝数变异(CNV)人类基因组由23对染色体中的60亿个碱基(或核苷酸)组成。
正常人类基因组成分通常是以2个拷贝存在,分别来自父母。
拷贝数变异(CNV)是由基因组发生重排而导致的,一般指长度为1kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复,是人类疾病的重要致病因素之一。
异常的DNA拷贝数变化(CNV)是许多人类疾病(如癌症、遗传性疾病、心血管疾病)的一种重要分子机制。
作为疾病的一项生物标志,染色体水平的缺失、扩增等变化已成为许多疾病研究的热点,然而传统的方法(比如G显带,FISH,CGH等)存在操作繁琐,分辨率低等问题,难以提供变异区段的具体信息。
CNV,即拷贝数变异,一般指长度为1kb到几个Mb基因组大片段的拷贝数复制、缺失。
CNV被定义为一段至少1kb大小DNA的拷贝数,与具有代表性的参考基因组拷贝数不同。
CNV在基因组中的存在形式主要有以下几种:2条同源染色体拷贝数同时出现缺失;1条同源染色体发生缺失,1条正常;1条同源染色体出现拷贝数重复,另1条正常;1条同源染色体出现缺失,另1条出现拷贝数重复;2条同源染色体同时出现拷贝数重复。
染色体拷贝数变异(CNV)检测:NIPT技术目前医院临床应用的为普通NIPT技术,商业上还有通过增加测序数据的升级版的NIPT产品(可以检测染色体微缺失/微重复和某些单基因病)。
对于NIPT提示的CNV可以分为两种:母源性CNV,就是母亲存在CNV(此时胎儿50%可能存在相同的CNV,50%可能不存在该CNV);第二种,胎儿CNV。
母源性CNV的阳性预测值(PPV)接近100%,因为母源游离DNA占比90%,因此阳性预测值(PPV)很高就不足为奇。
但是不同的检测机构或者有些已发表文献,并不提示母源性CNV。
对于母源性CNV,胎儿无非两种情况,和母亲一样拥有同样的CNV,或不含有该CNV。
在临床咨询中,对于这种来源于母源或父源CNV,如果父母本身没有任何表型,胎儿本身也不存在超声结构异常,我们大多认为偏良性。
拷贝数变异分析流程

拷贝数变异分析流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 数据准备:收集样本的基因组数据,通常是通过测序技术获得的。
人类遗传变异-拷贝数变异(CNVs)和疾病研究及检测

在人类细胞遗传学研究的早期,人们在显微镜下研究染色体,发现了染色体的拷贝数、重排和结构方面存在变异,而且在很多情况下这些变异可能与疾病相关。
在分辨率频谱的另一端即高分辨率区域,DNA短片段的分析和测序方法的发展导致了短串联重复序列和单核苷酸多态性(SNPs)的发现。
显而易见,人为遗传变异范围包括从序列水平上单一碱基对的变化到用显微镜检测到的几兆碱基长度的染色体差异。
最近,通过观测亚微观DNA片段中广泛颁布的拷贝数变异,我们对于人类遗传变异的认识又进一步得到了拓展。
全基因组扫描方法的实行大大推动了这种关于人为变异的新认识,这些方法给我们提供了一个在显微镜细胞遗传学(>5-10Mb)和DNA序列分析(1-700bp)之间的对基因组中间范围遗传变异进行解读的强有力工具。
正如图6所示的结构变民中的中等分辨率范围内的测亚微观部分。
现在已经发展了很多方法来检测这类中等大小范围内的DNA遗传变异,DNA生物芯片技术可能是其中最为有效的方法。
拷贝数变异(CNV)鉴定的主要方法是比较基因组杂交(CGH),而商业的标准CGH芯片在人类基因组的每1Mb长度范围有一个细菌人工染色体(BAC)克隆,这样就很难精确鉴定小于50kb的单拷贝数差异。
昂飞的人类基因组图谱SNP芯片500K和SNP 5.0芯片的标记间距离中位数为2.5kb,最近推出的SNP 6.0的中位数则少于700个碱基对。
这类基因型芯片通过将测试样本所获取的信息强度与其他个体的进行比较来确定每个位点相对基因组拷贝数。
同时,拷贝数检测运算法中将探针的长度和GC含量考虑到其中,从而进一步降低了基因型芯片检测噪音。
另外一个优点是,基因型芯片对拷贝数变异区域进行全面检测,并通过在连续的几个探针中要有重大的比率变化来确认。
所以说,这样的工具明显提高了检测的精确度。
除了提供拷贝数信息,SNP 基因型芯片提供的基因型信息不但可以用于遗传关联性研究,还可以用于检测杂合性丢失,这为缺失的存在提供支持证据,还可能提示片段性单亲二体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拷贝数变异检测方法
拷贝数变异是指基因组中某一段DNA序列在进化过程中发生了拷贝数的变异,即该序列的拷贝数增加或减少。
拷贝数变异被认为是基因组结构变异的主要形式之一,它在物种进化和个体遗传多样性中起到重要的作用。
为了准确、高效地检测拷贝数变异,科学家们开发了一系列方法。
下面将介绍几种常用的拷贝数变异检测方法。
1. MLPA(Multiplex Ligation-dependent Probe Amplification)MLPA是一种常用的拷贝数变异检测方法,它利用多重连接依赖式探针扩增技术,可以同时检测多个目标序列的拷贝数。
该方法通过引入两个特异性的引物,使目标序列的两个相邻区域连接起来,然后进行PCR扩增。
通过比较目标序列与参考基因组的扩增产物的相对强度,可以确定目标序列的拷贝数是否发生变异。
2. qPCR(Quantitative Polymerase Chain Reaction)
qPCR是一种基于聚合酶链反应的拷贝数变异检测方法,它可以快速、准确地测量目标序列的拷贝数。
该方法利用特异性引物和荧光探针,通过监测PCR反应体系中的荧光信号强度来定量目标序列的拷贝数。
相比于传统PCR方法,qPCR具有更高的灵敏度和准确性。
3. MLST(Multilocus Sequence Typing)
MLST是一种基于多基因序列分型的拷贝数变异检测方法,它通过测定多个基因的拷贝数变异来推断目标序列的拷贝数。
该方法利用PCR扩增多个基因的片段,并对扩增产物进行测序分析。
通过比较目标序列与参考基因组的片段长度和序列差异,可以确定目标序列的拷贝数是否发生变异。
4. aCGH(array Comparative Genomic Hybridization)aCGH是一种基于基因组DNA杂交的拷贝数变异检测方法,它可以全基因组范围内快速、高通量地检测拷贝数变异。
该方法利用两个不同来源的DNA样品,将其分别标记为红色和绿色,并将它们杂交到DNA芯片上。
通过比较两个样品在芯片上的荧光信号强度差异,可以确定目标序列的拷贝数是否发生变异。
5. WGS(Whole Genome Sequencing)
WGS是一种基于全基因组测序的拷贝数变异检测方法,它可以同时检测基因组中所有的拷贝数变异。
该方法通过对样本进行高通量测序,将测序数据与参考基因组进行比对和分析,可以准确地确定目标序列的拷贝数。
WGS不仅可以检测已知的拷贝数变异,还可以发现未知的拷贝数变异,具有较高的分辨率和敏感性。
拷贝数变异检测方法的选择应根据具体的研究目的和样本特点来确定。
不同的方法具有不同的优缺点,科学家们可以根据实际需求选择适合的方法进行拷贝数变异的检测与分析。
这些方法的不断发展
和改进,将为我们深入理解拷贝数变异的形成机制和功能意义提供有力的工具和方法。