八年级数学 一次函数学 实践与探索教案
八年级数学一次函数实践与探索导学案函数的实践与应用

课堂教学导学案25,1.y x y x 的解。
”小风却对此半信半疑。
你能帮助小风打消顾虑吗?学完本节内容后你一定会做到。
2368x y x y ,,的解为探究1 一次函数与一元一次方程之间的关系● 在给出的直角坐标系中,画出函数y=2x+2的图象,由图可知方程2x+2=0的解 。
点拨:一次函数y =kx +b 中,给定了一个变量的值,求另一个变量的值,就是解关于另一个变量的一元一次方程.体现在函数图象上,就是知道了一次函数图象上一个点的横坐标或纵坐标,求另一个坐标.特别地,当y =0时,一元一次方程kx +b =0中x 的解,就是一次函数图象与x 轴交点的横坐标;当x =0时,y =b 就是一次函数图象与y 轴交点的纵坐标探究2一次函数与二元一次方程组之间的关系。
● 利用函数图象解方程组: (1) (2)点拨:一次函数y =kx +b ,如果从方程的角度看,就是一个以变量x ,y 为未知数的二元一次方程,一次函数y =kx +b 的图象上任意一个点的坐标就对应着这个方程的一个解.因此,一次函数图象上的无穷多个点,就对应着相应的二元一次方程的无穷多个解.根据一次函数与二元一次方程的关系,两个含有相同未知数x ,y 的二元一次方程组成的方程组⎩⎪⎨⎪⎧ y =k 1x +b 1,y =k 2x +b 2(可以化成⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式)的解,就对应着两个一次函数y =k 1x +b 1,y =k 2x +b 2图象的交点坐标.所以求两条直线交点的坐标,就转化为解二元一次方程组的解.探究3 一次函数与一元一次不等式的关系● 如图,直线y =kx +b 交坐标轴于A (-3,0)、B (0,5)两点,则不等式-kx -b <0的解集为( ).A. x >-3B. x <-3C. x >3D. x <3点拨:一元一次不等式kx +b >0(或kx +b <0)的解集,就对应着一次函数y =kx +b 在函数值y >0(或y <0)时,对应自变量x 的范围,体现在函数图象上,就是x 轴的上方(或下方)的射线(不含端点)对应的x 的取值范围.探究4 数形结合的数学思想● 如果双曲线y 1=-3x与直线y 2=-x +2交于点A (-1,n )、B .{12421--=+=x y x y {225=--=+y x y x Oy x(1)求出n 的值和点B 的坐标;(2)根据图象,写出y 1>y 2时,自变量x 的取值范围.点拨:用一次函数来研究一元一次方程、二元一次方程(组)、一元一次不等式问题,主要就是借助于图形的直观性解题,所以理解一次函数与一元一次方程、二元一次方程(组)、一元一次不等式的关系是解题的关键.同时,在一次函数这个高观点之下,重新来审视一元一次方程、二元一次方程(组)的解和一元一次不等式的解集,理解它们的几何意义,对于弄清知识之间的内在联系,使知识形成体系有着重要的意义.与不等式的意义一样,对于两个函数y 1=k 1x +b 1,y 2=k 2x +b 2(或y 2=k 2x),要找出y 1>y 2的自变量的取值范围,可以先用解方程组的办法求出图象的交点坐标.当y 1>y 2时,即k 1x +b 1>k 2x +b 2(或k 1x +b 1>k 2x),在图象上对应着交点的一侧,函数图象y 1=k 1x +b 1高于y 2=k 2x +b 2(或y 2=k 2x)的部分的自变量的取值范围.基础训练:。
初二数学《一次函数》优秀教学设计

初二数学(一次函数)优秀教学设计教学任务分析教学目标知识技能 1.理解直线y=kx+b〔k≠0〕与直线y=kx〔k≠0〕之间的位置关系;2.会用两点法画出一次函数的图象;3.掌握一次函数的性质.教学思考 1.通过对应描点来研究一次函数的图象,经历知识的归纳、探究过程;2.通过一次函数的图象归纳函数性质,体验数形结合法的应用.解决问题通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.感情态度 1.通过画函数的图象,并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2.在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.重点一次函数的图象和性质难点由一次函数的图象归纳得出一次函数的性质及对性质的理解和应用。
教学流程安排活动流程图活动内容和目的活动1复习正比例函数的图象和性质活动2认识一次函数的图象活动3选取两个适宜的点画一次函数的图象活动4学习一次函数的性质活动5练习与思考活动6小结与作业回忆正比例函数的图象和性质,为学习一次函数的图象及其性质作铺垫,自然地引入课题.通过对应描点画出一次函数的图象,进而发觉它的形状及其与正比例函数图象的位置关系,强化对一次函数图象的认识.通过学生动手实践,熟悉和掌握一次函数图象的画法.类比正比例函数y=kx〔k≠0〕中k的正负对函数图象的影响并结合一次函数的图象,归纳出一次函数y=kx+b〔k≠0〕的性质.稳固一次函数的图象和性质,留给学有余力的学生进一步开展的空间.整理本节知识,强化学习反思。
教学过程设计问题与情境师生行为设计意图活动1:问题1.什么叫正比例函数、一次函数它们之间有什么关系2.正比例函数的图象形状是什么样的3.正比例函数y=kx(k是常数,k≠0)中,k的正负对函数的图象有什么影响教师提出问题,由学生口答之后,通过生生互评、师生共评,改正出现的问题.本次活动中,教师应重点关注:(1)学生在活动中的参与意识及答复以下问题的勇气;(2)能否理解直线的变化趋势(形) 与函数性质(数)之间的对应关系.设计知识“最近开展区〞——正比例函数的图象及性质,为类比、探究一次函数的图象及其性质作好铺垫.活动2:1.画图:用描点法在同一坐标系中画出函数y=-6x、y=-6x+5的图象(见教科书115页例2);2.观察:比拟上面两个函数图象的相同点和不同点,依据你的观察结果答复以下问题:(1)这两个函数的图象形状都是 ,并且倾斜程度;(2)函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点 ;即它可以看作由直线y=-6x向平移个单位长度而得到;(3)比拟两个函数的解析式,试由此解释两函数图象的位置关系.3.推广:(1)全部一次函数的图象都是直线吗(2)直线y=kx与直线y=kx+b之间存在着怎样的位置关系(3)由直线y=kx可经过怎样的平移得到直线y=kx+b活动3:实践:在同一坐标系中画出函数y=2x-1与y=-0.5x+1的图象学生对应描点、画图,并通过观察、比拟两个函数图象完成问题2,而后,对问题2进行推广.教师对学生的观察、推广等结果进行适时评价,在此根底上师生共同得出:(1)一次函数y=kx+b的图象也是一条直线,我们称它为直线y=kx+b;(2)直线y=kx+b与直线y=kx相互平行;(3)直线y=kx+b可以看作由直线y=kx 平移|b|个单位而得到.本次活动中,教师应重点关注:(1)学生在描点的过程中,是否注意到了几组对应点的位置变化规律;(2)学生能否通过函数解析式(数)对“平移〞 (形)作出解释;(3)为什么说平移|b|个单位,而不说平移b个单位;(4)从特别到一般的数学思想方法及归纳能力.学生独立用两个点画出函数的图象,并将自己所画的图象与同桌进行交流,体验选点的差异性和图象的一致性.教师指出,画一次函数的图象时,虽然不同学生所选取的点不一样,但画出的图象却是一致的,我们通常选取(o,b)和(——,0)这两个点.本次活动中,教师应重点关注:(1)学生对描点的差异性和所画图象的一致性的理解;(2)如何选择适宜的点.在学生已经了解正比例函数的图象是一条直线的根底上,通过对应描点法来画正比例函数、一次函数的图象,让学生在描点的过程中去体验两者之间的位置关系:函数y=kx+b〔k≠0〕的图象实际上是对直线y=kx〔k≠0〕的全部点进行了平移的结果.通过一系列富有层次性、探究性的问题来揭示知识(问题3)的形成过程.让学生结合函数解析式对“平移〞作出解释,进一步强化学生对一次函数图象的理性认识.熟悉和掌握一次函数图象的画法。
北师大版数学八年级上册2《一次函数》教案1

北师大版数学八年级上册2《一次函数》教案1一. 教材分析《一次函数》是北师大版数学八年级上册第2单元的内容。
本节课主要让学生了解一次函数的定义、性质及图像,能够运用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的抽象思维能力和解决问题的能力。
二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系的认识较为基础。
但他们对一次函数的定义、性质及应用可能还不够清晰。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和丰富的活动,激发学生的学习兴趣,引导学生主动探究一次函数的规律。
三. 教学目标1.了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。
2.培养学生的抽象思维能力和解决问题的能力。
3.激发学生的学习兴趣,培养他们合作、交流的良好学习习惯。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点及其应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识一次函数。
2.探究教学法:学生分组讨论,探究一次函数的性质。
3.直观教学法:利用多媒体展示一次函数图像,帮助学生理解一次函数的性质。
4.实践教学法:让学生运用一次函数解决实际问题,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.一次性函数的实例材料。
3.坐标纸、直尺、铅笔等学习用品。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与销售数量的关系等,引导学生认识一次函数。
让学生思考:这些实例中存在什么规律?怎样用数学语言来描述这些规律?呈现(10分钟)教师给出一次函数的一般形式:y = kx + b(k≠0,k、b为常数),并解释一次函数的各个组成部分。
然后,通过具体的一次函数实例,让学生观察函数图像,分析一次函数的性质。
操练(10分钟)学生分组讨论,每组选择一个实例,探究一次函数的性质。
教师巡回指导,解答学生的疑问。
巩固(10分钟)教师出示一些练习题,让学生独立完成。
八年级数学下册《一次函数的性质》教案、教学设计

1.请同学们认真完成作业,注意书写的规范性和解答的完整性。
2.对于实践应用题,鼓励同学们积极参与,充分运用所学知识解决实际问题。
3.拓展思考题旨在培养学生的思维品质和探究精神,同学们可以查阅资料,与同学、老师讨论,提高自己的理解深度。
八年级数学下册《一次函数的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握一次函数的定义,能够准确识别并描述一次函数的图像特征;
2.学会运用一次函数的性质解决实际问题,如分析变化规律、预测发展趋势等;
3.掌握一次函数的解析式,能够通过给定的两点或一点和斜率求解一次函数的方程;
4.能够运用一次函数的性质解释生活中的现象,提高数学应用能力。
针对以上学情分析,教师在教学过程中应采用多样化的教学手段,关注学生的个体差异,充分调动学生的积极性,帮助他们克服学习困难,提高数学素养。同时,注重培养学生的探究精神和解决问题的能力,为学生的全面发展奠定基础。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、性质及解析式的掌握,能够运用一次函数解决实际问题。
1.学生在图像识别和性质分析方面的能力差异,因材施教,针对性地进行指导;
2.学生在解决实际问题时,可能对一次函数的应用感到困惑,需要教师通过实例进行引导;
3.部分学生对数学学习的兴趣和积极性有待提高,教师应注重激发学生的学习兴趣,增强其学习动力;
4.学生在小组讨论和合作学习中,可能存在沟通不畅、协作不紧密等问题,教师需引导学生培养团队协作能力。
4.分析一次函数的性质,如单调性、奇偶性等,并结合图像进行讲解。
(三)学生小组讨论,500字
1.教师提出讨论题目,如:“一次函数的图像与性质之间的关系是什么?”
八年级《一次函数》教学设计

教学设计:一次函数一、教学目标:1.知识目标:掌握一次函数的定义、性质和图像特征。
2.技能目标:能够根据一次函数的表达式画出函数图像,并且根据函数图像求解实际问题。
3.情感目标:激发学生对数学学习的兴趣,培养学生分析和解决实际问题的能力。
二、教学重点和难点:1.重点:一次函数的定义和性质,以及函数图像的绘制。
2.难点:根据函数图像求解实际问题。
三、教学方法:1.演绎法:通过引导学生观察实际问题,总结一次函数的性质和特点。
2.归纳法:通过提供一些具体的例子,引导学生归纳出一次函数的定义和性质。
3.实验法:通过实际操作,让学生亲自绘制一次函数的图像。
四、教学过程:第一课时:函数的定义和性质1.导入(5分钟):教师出示一些实际问题,如小明买了5支铅笔花了10元,请学生思考解决问题的方法。
教师通过引导学生的思考,引出“函数”的概念,根据实际问题解释函数的定义,然后介绍一次函数的概念和性质。
3.性质总结(15分钟):(1)根据实际问题,教师让学生分析一次函数的特点,并总结出一次函数的定义和性质。
(2)教师给出一些具体的例子,让学生通过观察例子归纳出一次函数的特点和性质。
4.拓展(10分钟):教师通过给出更多的例子,让学生进一步巩固和加深对一次函数的理解,并练习根据函数的表达式判断函数的类型。
第二课时:函数图像的绘制1.导入(5分钟):教师出示一些一次函数的表达式,例如y=x+3,让学生思考如何根据表达式画出函数的图像。
2.绘制思路(10分钟):教师引导学生思考绘制函数图像的一般思路,并举例说明如何通过制表法和坐标法绘制一次函数的图像。
3.绘制实践(15分钟):教师让学生在纸上绘制一些一次函数的图像,然后互相交流并纠正。
教师给出更多的函数表达式,让学生亲自绘制函数图像,并练习根据图像求函数的表达式。
第三课时:实际问题的解决1.导入(5分钟):教师给出一些实际问题,如小明骑自行车从家骑到学校用了20分钟,请学生思考如何根据问题建立函数,以及如何利用函数求解问题。
一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数实践与探索微课设计说明

二、学习任务
通过观看教学录像自学,完成下列学习任务:
1.了解一次函数实践与探索的解题思路及审题方 法;
2.会画行程问题的路程图,并能结合函数图像一 起分析题干;
3.能应用本节课的解题方法进行变式训练;
4.总结一次函数行程问题的解题技巧;
实践与探索解题技巧
先看横轴纵轴代表含义
起点
再看点
拐点
终点
ቤተ መጻሕፍቲ ባይዱ
交点
相遇 追击
三、困惑与建议
困惑:交点含义有时候弄不清楚; 建议:通过画路程图,结合函数图像
来理解。
一、学习指南
1.课题名称: 华师版八下初中数学一次函数实践与探索 2.达成目标: 通过观看微课视频、完成《自主学习任务单》规定 的学习任务,使学生掌握一次函数行程问题的审题 方法和解题思路,并应用于日后的学习中. 3.学习方法建议: 独立分析、小组研讨 4.课堂学习形式预告; 先学习微课视频; 结合视频题目讲解,总结做此类问题方法; 将学到的方法应用于变式练习和实践中.
八年级数学上册《一次函数》教案、教学设计

在此环节,我将设计以下课堂练习:
1.基础练习:针对一次函数的定义、性质和图像,设计一些基础题,让学生巩固所学知识。
2.提高练习:设置一些具有挑战性的题目,让学生运用一次函数的知识解决实际问题。
3.互相批改:学生互相批改练习,发现问题,及时纠正。
(五)总结归纳
在总结归纳环节,我将进行以下工作:
(1)填空题:补充完整下列一次函数的解析式,并说明斜率和截距的值。
(2)选择题:从给出的四个选项中,选择正确的一次函数图像。
(3)解答题:已知一次函数的图像,求其斜率和截距。
2.应用题:结合实际生活,运用一次函数的知识解决问题。
(1)小明骑自行车去公园,已知自行车的速度和行驶时间,求小明行驶的路程。
1.注重引导学生从实际问题中提炼出一次函数模型,培养学生的抽象思维能力。
2.加强对一次函数图像性质的讲解,通过丰富的实例和图像演示,帮助学生更好地理解。
3.关注学生的个体差异,针对不同学生的理解程度和接受能力,进行差异化教学。
4.鼓励学生积极参与课堂讨论,提高学生的课堂参与度和思维能力。
三、教学重难点和教学设想
八年级数学上册《一次函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式:y=kx+b,并了解其中k、b的含义及作用。
2.学会判断一个函数是否为一次函数,并能根据实际问题的情境,构建一次函数模型。
3.掌握一次函数图像的性质,了解斜率k和截距b对图像的影响,能够画出一次函数的图像。
5.情感态度,培养价值观
(1)注重激发学生的学习兴趣,鼓励学生积极思考、勇于探索。
(2)强调数学在实际生活中的应用,提高学生对数学价值的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学一次函数学实践与探索(1)知识技能目标1.使学生理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解;2.让学生了解到函数是刻画和研究现实世界数量关系的重要数学模型,也是一种重要的数学思想,培养和提高学生在数学学习中的创造和应用函数的能力.过程性目标1.使学生体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律;2.通过图象获取函数相关信息,运用图象来解释实际问题中相关量的涵义;3.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.教学过程一、创设情境问题学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?二、探究归纳问“乙复印社的每月承包费”在图象上怎样反映出来?答“乙复印社的每月承包费”指当x=0时,y的值,从图中可以看出乙复印社的每月承包费是200元.问“收费相同”在图象上怎样反映出来?答“收费相同”是指当x取相同的值时,y相等,即两条射线的交点.我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.问如何在图象上看出函数值的大小?答作一条x轴的垂线,如下图,此时x的值相同,它与哪一条射线的交点较高,就表示对应函数值较大,收费就较高;反之,它与另一条射线的交点较低,就表示对应函数值较小,收费就较低.从图中可以看出,如果每月复印页数在1200页左右,那么应选择乙复印社收费较低.三、实践应用例1小X准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.小X的同学小王以前没有存过零用钱,听到小X在存零用钱,表示从小X存款当月起每个月存18元,争取超过小X.请你写出小X和小王存款和月份之间的函数关系,并计算半年以后小王的存款是多少,能否超过小X?至少几个月后小王的存款能超过小X?解设小X存x个月的存款是y1元,小王的存x个月的存款是y2元,则y1=50+12x,y2=18x,当x =6时,y 1=50+12×6=122(元),y 2=18×6=108(元). 所以半年后小王的存款不能超过小X .由y 2>y 1,即18x > 50+12x ,得x >318,所以9个月后,小王的存款能超过小X .思考:①求⎩⎨⎧=+=.18,1250x y x y 的解.②观察两直线交点坐标与这个方程组的解有什么关系. 结论我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.例2利用图象解方程组⎩⎨⎧+-=-=.1,52x y x y 解在直角坐标系中画出两条直线,如下图所示.两条直线的交点坐标是(2,-1),所以方程组的解为⎩⎨⎧-==.1,2y x例3 下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值X 围); (2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少? (3)问快艇出发多长时间赶上轮船?解(1)设表示轮船行驶过程的函数解析式为y =kx (k ≠0), 由图象知:当x =8时,y =160. 代入上式,得8k =160, 可解得k =20.所以轮船行驶过程的函数解析式为y =20x .设表示快艇行驶过程的函数解析式为y =ax +b (a ≠0), 由图象知:当x =2时,y =0;当x =6时,y =160.代入上式,得⎩⎨⎧=+=+.1606,02b a b a可解得⎩⎨⎧-==.,8040b a所以快艇行驶过程的函数解析式为y =40x -80.(2)由图象可知,轮船在8小时内行驶了160千米,快艇在4小时内行驶了160千米,所以轮船的速度是208160=(千米/时),快艇的速度是404160=(千米/时). (3)设轮船出发x 小时快艇赶上轮船, 20x =40x -80 得x =4,x -2=2.答快艇出发了2小时赶上轮船.四、交流反思1.实际问题中数量之间的相互关系,用函数的思想去进行描述、研究其内在联系和变化规律;2.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.五、检测反馈1.利用图象解下列方程组:(1)⎪⎩⎪⎨⎧+=--=.421,12x y x y (2)⎩⎨⎧-=+=-.5,22y x y x 2.已知直线y =2x +1和y =3x +b 的交点在第三象限,写出常数b 可能的两个数值. 3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元,且都表示对学生优惠.甲旅行社表示:全部8折收费;乙旅行社表示:若人数不超过30人则按9折收费,超过30人按7折收费.(1)设学生人数为x ,甲、乙两旅行社实际收取总费用为y 1、y 2(元),试分别列出y 1、y 2与x 的函数关系式(y 2应分别就人数是否超过30两种情况列出); (2)讨论应选择哪家旅行社较优惠;(3)试在同一直角坐标系内画出(1)题两个函数的图象,并根据图象解释题(2)题讨论的结果.4.药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如下图.请你根据图象:(1)说出服药后多少时间血液中药物浓度最高?(2)分别求出血液中药物浓度上升和下降阶段y 与x 的函数关系式.实践与探索(2)知识技能目标1.使学生理解并掌握一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生能初步运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.过程性目标1.使学生体会到一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生感受到“数形结合”在数学研究和探究现实生活数量关系及其变化规律中的作用.3.能运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.教学过程一、创设情境问题画出函数y =323x 的图象,根据图象,指出:(1) x 取什么值时,函数值y 等于零? (2)x 取什么值时,函数值y 始终大于零?二、探究归纳问一元一次方程323+x =0的解与函数y =323+x 的图象有什么关系?答一元一次方程323+x =0的解就是函数y =323+x 的图象上当y =0时的x 的值.问一元一次方程323+x =0的解,不等式323+x >0的解集与函数y =323+x 的图象有什么关系?答不等式323+x >0的解集就是直线y =323+x 在x 轴上方部分的x 的取值X 围.三、实践应用例1 画出函数y =-x -2的图象,根据图象,指出: (1) x 取什么值时,函数值y 等于零? (2)x 取什么值时,函数值y 始终大于零? 解过(-2,0),(0,-2)作直线,如图.(1)当x =-2时,y =0; (2)当x <-2时,y >0.例2 利用图象解不等式(1)2x -5>-x +1,(2) 2x -5<-x +1.解设y 1=2x -5,y 2=-x +1,在直角坐标系中画出这两条直线,如下图所示.两条直线的交点坐标是(2, -1) ,由图可知:(1)2x-5>-x+1的解集是y1>y2时x的取值X围,为x>-2;(2)2x-5<-x+1的解集是y1<y2时x的取值X围,为x<-2.四、交流反思运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.五、检测反馈1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?2.画出函数y=3x-6的图象,根据图象,指出:(1) x取什么值时,函数值y等于零?(2)x取什么值时,函数值y大于零?(3)x取什么值时,函数值y小于零?3.画出函数y=-x-1的图象,根据图象,求:(1)函数图象与x轴的交点坐标;(2)函数图象在x轴上方时,x的取值X围;(3)函数图象在x轴下方时,x的取值X围.4.如图,一次函数y =kx +b 的图象与反比例函数xmy的图象交于A 、B 两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值X 围.实践与探索(3)知识技能目标1.通过对一次函数性质、一次函数与一次方程、一次不等式联系的探索,提高自主学习和对知识综合应用的能力.2.让学生用简单的已知函数来拟合实际问题中变量的函数关系.过程性目标1.让学生在探索过程中,体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值;2.让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题.教学过程一、创设情境问题为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:能否据此求出V和t的函数关系?将这些数值所对应的点在坐标系中作出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如下图所示的就是一条这样的直线,较近似的点应该是(10,1000.3)和(60,1002.3).设V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=,b=.V=t+.你也可以将直线稍稍挪动一下,不取这两点,换上更适当的两点.二、探究归纳我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究.三、实践应用例1 为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式(不要求写出x 的取值X 围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为cm ,请你判断它们是否配套?说明理由.解(1)设一次函数为y =kx +b (k ≠0),将表中数据任取两组,不妨取,70.0)和,78.0)代入,得 ⎩⎨⎧+=+=.4278,3770b k b k 解得⎩⎨⎧==.8.10,6.1b k 一次函数关系式是y =x +.(2)当x =时,y =×+=≠77.答一次函数关系式是y =x +,小明家里的写字台和凳子不配套.例2 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所买的水果量x (千克)之间的函数关系式,并写出自变量x 的取值X 围.(2)当购买量在什么X 围时,选择哪种购买方案付款最少?并说明理由.解 (1))3000(9≥x x y =甲;)3000(50008≥+=x x y 乙.(2)当乙甲=y y ,即9x =8x +5000时,解得x =5000.所以当x =5000时,两种付款一样;⎩⎨⎧+<≥<.500089,3000x x x y y 时,有当乙甲 解得3000≤x <5000.所以当3000≤x <5000时,选择甲方案付款最少;500089+>>x x y y 时,有当乙甲.解得x >5000.所以当x >5000时,选择乙方案付款最少.四、交流反思1.现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究;2.把实际问题数学化,运用数学的方法进行分析和研究,是常用的、有效的一种方法.五、检测反馈1.酒精的体积随温度的升高而增大,在一定X 围内近似于一次函数关系.现测得一定量的酒精在0℃时的体积是升,在40℃时的体积是升.求出其函数关系式,又问这些酒精在10℃和30℃时的体积各是多少?2.分别写出下列函数的关系式,指出是哪种函数,并确定其中自变量的取值X 围.(1)在时速为60km 的运动中,路程 s 关于运动时间t 的函数关系式;(2)某校要在校园中辟出一块面积为84m 2的长方形土地做花圃,这个花圃的长y (m)关于宽x (m)的函数关系式;(3)已知定活两便储蓄的月利率是0.0675%,国家规定,取款时,利息部分要交纳20%的利息税,如果某人存入2万元,取款时实际领到的金额y (元)与存入月数x 的函数关系式.3.如图,温度计上表示了摄氏温度(℃)与华氏温度(℉)的刻度.能否用一个函数关系式来表示摄氏温度y (℃)和华氏温度x (℉)的关系?如果气温是摄氏32度,那相当于华氏多少度?4.小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x (m 2)表示铺设地面的面积,用y (元)表示铺设费用,制成下图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m 2,铺设客厅的费用为元/ m 2;(2)表示铺设居室的费用y (元)与面积x (m 2)之间的函数关系式为,表示铺设客厅的费用y (元)与面积x (m 2)之间的函数关系式为;(3)已知在小亮的预算中,铺设1m 2的瓷砖比铺设1m 2的木质地板的工钱多5元;购买1m 2的瓷砖是购买1m 2的木质地板费用的43.那么铺设每平方米木质地板、瓷砖的工钱各是多少?购买每平方米的木质地板、瓷砖的费用各是多少?。