焊接裂纹

合集下载

焊接裂纹案例

焊接裂纹案例

焊接裂纹案例
焊接裂纹是焊接过程中常见的缺陷之一,它是指焊接接头或焊缝中出现的裂纹。

焊接裂纹的出现可能影响焊接接头的强度和密封性能,因此是需要予以修复或避免的。

以下是一些常见的焊接裂纹案例:
1. 热裂纹:在焊接过程中,由于焊缝附近的材料受到高温热输入和冷却收缩的影响,可能发生热裂纹。

这种裂纹通常发生在焊接处附近的高应力区域,如焊接金属的变形区域或熔融区域。

2. 冷裂纹:冷裂纹是焊接后在冷却过程中出现的裂纹。

它通常是由于焊接接头的残余应力和局部凝固收缩引起的。

冷裂纹可能发生在焊接缺口处或焊缝附近的低温区域。

3. 热裂纹和冷裂纹的组合:在某些情况下,焊接接头可能同时出现热裂纹和冷裂纹。

这种组合形式的裂纹通常发生在高应力区域、冷却速度较快的区域和残余应力较大的区域。

4. 氢致裂纹:在焊接过程中,如果焊接金属中存在大量的氢气,它可能会导致氢致裂纹的形成。

这种裂纹通常在焊缝附近出现,并且沿着晶界或金属的弱点扩展。

5. 疲劳裂纹:疲劳裂纹是由于循环载荷引起的,通常出现在焊接接头的应力集中区域。

它们最初可能很小,但随着时间的推移,可能会扩展并导致接头失效。

上述案例只是焊接裂纹的一部分,实际情况可能更加复杂。

为了避免焊接裂纹的出现,可以采取一些措施,如选择适当的焊接材料、控制焊接工艺参数、预热工件和后续热处理等。

此外,焊接操作人员的经验和技术水平也对避免焊接裂纹至关重要。

焊接裂纹

焊接裂纹
0—晶间强度
第五章 焊接裂纹
44
T↑ ↓1 0 ↓ T→ T0 1 = 0
T0—称金属的等强温度
T>T0 时, 1 > 0 发生断裂晶间断裂
若焊缝所受拉伸应力为 2 随温度变化始终 不超过 0 ,则不会产生结晶裂纹 2 < 0
若焊缝的拉伸应力为 1, 1> 0产生结晶裂纹
断裂,也有晶间和穿晶
混合断裂
第五章 焊接裂纹
本节结束19
§5-2 焊接热裂纹
一、结晶裂纹
1、 产生机理
1)产生部位:结晶裂纹大部分都沿焊缝树 枝状结晶的交界处发生和发展的,常见沿焊 缝中心长度方向开裂即纵向裂纹,有时焊缝 内部两个树枝状晶体之间。对于低碳钢、奥 氏体不锈钢、铝合金、结晶裂纹主要发生在 焊缝上某些高强钢,含杂质较多的钢种,除 发生在焊缝之处,还出现在近缝区上。
第五章 焊接裂纹
18
三、热裂纹与冷裂纹的基本特点
裂纹 产生温度 产生部位
热裂纹 高温下产生 焊缝、热影响区
冷裂纹 低温下产生 热影响区、焊缝
宏观特征
沿焊缝的轴向成纵向 分布,也有横向分布, 断口具有发亮的金属光 裂口均有氧化色彩表 泽 面无光泽
微观特征
沿晶粒边界分布,属 晶间断裂,也有穿晶内
于沿晶断裂性质
SL—固体晶粒与残液之间的表面张力
SS—固体晶粒之间的表面张力
—固相与液相的接触角
当 SL 越小 越小
/ SL SS=0.5
=0 残液在固体晶粒以薄膜存在裂↑
=180°残液以球状形态分布裂↓
第五章 焊接裂纹
42
④一次结晶组织形态及组织对结晶裂 纹的影响
晶粒大小:晶粒粗大裂纹的倾向↑

焊接裂纹产生原因及防治措施

焊接裂纹产生原因及防治措施

以下为焊接裂纹产生原因及防治措施,一起来看看吧。

1、焊接裂纹的现象在焊缝或近缝区,由于焊接的影响,材料的原子结合遭到破坏,形成新的界面而产生的缝隙称为焊接裂缝,它具有缺口尖锐和长宽比大的特征。

按产生时的温度和时间的不同,裂纹可分为:热裂纹、冷裂纹、应力腐蚀裂纹和层状撕裂。

在焊接生产中,裂纹产生的部位有很多。

有的裂纹出现在焊缝表面,肉眼就能观察到;有的隐藏在焊缝内部,通过探伤检查才能发现;有的产生在焊缝上;有的则产生在热影响区内。

值得注意的是,裂纹有时在焊接过程中产生,有时在焊件焊后放置或运行一段时间之后才出现,后一种称为延迟裂纹,这种裂纹的危害性更为严重。

2、焊接裂纹的危害焊接裂缝是一种危害大的缺陷,除了降低焊接接头的承载能力,还因裂缝末端的尖锐缺口将引起严重的应力集中,促使裂缝扩展,最终会导致焊接结构的破坏,使产品报废,甚至会引起严重的事故。

通常,在焊接接头中,裂缝是一种不允许存在的缺陷。

一旦发现即应彻底清除,进行返修焊接。

3、焊接裂纹的产生原因及防治措施由于不同裂缝的产生原因和形成机理不同,下面就热裂缝、冷裂缝和再热裂缝三类分别予以讨论。

3.1、热裂纹热裂缝一般是指高温下(从凝固温度范围附近至铁碳平衡图上的A3线以上温度)所产生的裂纹,又称高温裂缝或结晶裂缝。

热裂缝通常在焊缝内产生,有时也可能出现在热影响区。

原因:由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层存在形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂缝。

此外,如果母材的晶界上也存在有低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂缝。

总之,热裂缝的产生是冶金因素和力学因素综合作用的结果。

防治措施:防止产生热裂缝的措施,可以从冶金因素和力学因素两个方面入手。

控制母材及焊材有害元素、杂质含量限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素及有害杂质的含量。

焊接裂纹的分析与处理

焊接裂纹的分析与处理

焊接裂纹的分析与处理焊接裂纹是焊接过程中常见的缺陷之一,它会降低焊接接头的强度和韧性,影响焊接工件的使用性能。

因此,对于焊接裂纹的分析和处理具有重要意义。

本文将从焊接裂纹的成因、检测方法、分析原因以及处理方法等方面进行综合讨论。

首先,焊接裂纹的成因可以归纳为以下几个方面:1.焊接材料的选择不当:焊接底材和填料材料的化学成分或力学性能不匹配,导致焊接接头受到内应力的影响而产生裂纹。

2.焊接过程中的温度变化:焊接过程中,由于热影响区的温度变化不均匀,会产生焊接接头内部的残余应力,从而造成裂纹。

3.焊接过程中的应力集中:焊接过程中,焊接接头处于高应力状态,如角焊接、搭接焊接等,容易造成应力集中,进而引发裂纹。

4.焊接过程中的焊接变形:焊接过程中,由于热变形和收缩的不均匀性,焊接接头可能会受到大的应力而产生裂纹。

其次,对焊接裂纹的检测方法有以下几种:1.可视检测法:用肉眼观察焊接接头表面是否有裂纹存在。

这种方法简单直观,但只能检测到较大的裂纹。

2.超声波检测法:通过超声波探测仪将超声波传递到焊接接头内部,根据超声波的传播和反射来判断是否存在裂纹。

这种方法可以检测到较小的裂纹,并且可以定量评估裂纹的大小和位置。

3.X射线检测法:通过X射线透射和X射线照相来检测焊接接头内部的裂纹。

这种方法可以检测到较小的裂纹,并且可以清晰地显示裂纹的形状和位置。

4.磁粉检测法:在焊接接头表面涂覆磁粉,通过观察磁粉的分布情况来判断是否存在裂纹。

这种方法适用于表面裂纹的检测。

然后,对焊接裂纹的分析原因可以采取以下步骤:1.裂纹形态分析:观察裂纹的形态,包括长度、宽度、走向等,可以初步判断裂纹的类型和可能的成因。

2.组织分析:通过金相显微镜观察焊接接头的组织结构,判断是否存在组织非均匀性或显微缺陷等。

3.应力分析:通过有限元分析或应力测试仪器测量焊接接头的应力分布,查找可能存在的应力集中区域。

4.化学成分分析:通过光谱分析或化学分析方法来检测焊接材料中的化学成分是否合格。

焊接裂纹的相关基础知识

焊接裂纹的相关基础知识

焊接裂纹的相关基础知识一、焊接裂纹概述焊接裂纹是焊接过程中一种常见的缺陷,它是指在焊接接头中出现的裂隙。

这种裂纹的产生通常是由于焊接过程中的热循环和应力作用导致的。

焊接裂纹对焊接接头的强度和可靠性产生严重影响,因此防止焊接裂纹的产生是焊接工作中一项重要的任务。

二、焊接裂纹类型1.热裂纹:热裂纹是指在焊接过程中,由于熔池中的杂质和凝固过程中的收缩应力作用,导致在焊缝中心出现的裂纹。

热裂纹通常发生在焊缝冷却过程中,由于凝固收缩而受到拉应力的作用,从而产生裂纹。

2.冷裂纹:冷裂纹是指在焊接完成后,由于材料淬火、应力集中等因素导致的裂纹。

冷裂纹通常发生在高强度钢、铝合金等材料中,由于这些材料具有较大的淬硬倾向,因此在焊接过程中容易产生冷裂纹。

3.再热裂纹:再热裂纹是指焊接完成后,在一定温度范围内再次加热时出现的裂纹。

再热裂纹通常发生在某些合金材料中,如不锈钢、镍基合金等,与材料的成分、微观结构和残余应力等因素有关。

三、焊接裂纹产生原因1.材料因素:材料的选择对于防止焊接裂纹的产生至关重要。

一些材料具有较大的淬硬倾向,容易产生冷裂纹;而一些材料在高温下容易产生脆化现象,导致热裂纹的产生。

因此,在选择焊接材料时,应根据材料的特性选择合适的焊接材料和工艺参数。

2.焊接工艺因素:焊接工艺的选择不当也是导致焊接裂纹的重要原因之一。

例如,焊接电流过大或过小、电弧电压过高或过低、焊接速度过快或过慢等都会影响焊缝的质量;此外,预热、层间温度控制不当也会导致冷裂纹的产生。

3.结构因素:结构的设计和控制对于防止焊接裂纹的产生也非常重要。

例如,接头形式设计不合理、焊缝过度集中、结构设计不合理等都会导致应力集中和变形,从而产生裂纹。

四、焊接裂纹的防止措施1.选择合适的焊接材料和工艺:根据材料的特性和要求选择合适的焊接材料和工艺参数,以减少焊接裂纹的产生。

例如,对于高强度钢、铝合金等材料,应选择低氢型焊条、预热和后热等措施来减少冷裂纹的产生;对于不锈钢、镍基合金等材料,应选择合适的填充材料和工艺参数来减少再热裂纹的产生。

焊接裂纹的分类

焊接裂纹的分类

焊接裂纹的分类下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!焊接是一种常用的连接方式,广泛应用于各个领域。

焊接裂纹产生的原因

焊接裂纹产生的原因

焊接裂纹产生的原因一、前言焊接裂纹是焊接过程中常见的缺陷之一,不仅会影响焊接质量,还会降低焊接件的使用寿命和安全性能。

因此,了解焊接裂纹产生的原因对于提高焊接质量和保障工程安全具有重要意义。

二、焊接裂纹的定义和分类1. 定义:焊接裂纹是指在焊缝或热影响区域中形成的裂纹,通常是由于热应力或残余应力引起的。

2. 分类:根据产生位置和形态特征,可以将焊接裂纹分为以下几种类型:(1)熔合裂纹:在熔池中形成的细小裂缝。

(2)固化裂纹:在焊缝凝固时形成的裂缝。

(3)冷裂纹:在低温环境下形成的裂缝。

(4)热裂纹:在高温环境下形成的裂缝。

三、焊接裂纹产生的原因1. 焊材问题(1)含水氢问题:水氢是影响金属材料强度和塑性最主要的元素之一,它会导致焊接裂纹的产生。

因此,焊接前必须保证焊材的含水氢量符合标准要求。

(2)夹杂物问题:夹杂物是金属中不可避免的缺陷之一,如果夹杂物过多或分布不均匀,会增加焊接裂纹的产生风险。

2. 焊接工艺问题(1)预热问题:预热是为了减少焊接残余应力而采取的措施。

如果预热温度不足或时间不够,则会导致焊接裂纹的产生。

(2)冷却速率问题:冷却速率过快会导致焊缝内部应力过大,从而引起热裂纹;而冷却速率过慢则容易形成固化裂纹。

(3)电流密度问题:电流密度过大会导致焊缝温度过高,从而引起热裂纹;而电流密度过小则容易形成固化裂纹。

(4)气体保护问题:气体保护是为了防止氧化、污染和外界环境对焊缝造成影响。

如果气体保护不到位,则会导致焊缝中夹杂物增多,从而增加焊接裂纹的产生风险。

3. 焊接材料和工件问题(1)材料厚度问题:焊接厚板时,由于板材内部残余应力较大,容易形成热裂纹。

(2)材料硬度问题:如果焊接的两个工件硬度差别较大,则在焊接过程中容易产生残余应力,从而引起焊接裂纹的产生。

(3)材料组织问题:如果焊接的两个工件组织不同,则在焊接过程中容易产生残余应力,从而引起焊接裂纹的产生。

四、结论综上所述,影响焊接裂纹产生的因素很多,其中包括了焊材、工艺和材料等方面。

焊接裂纹_精品文档

焊接裂纹_精品文档

3、防止结晶裂纹的措施
1)、冶金方面
①控制焊缝中有害杂质的含量, 限制S、P、C含量S、P<0.03-0.04 焊丝C<0.12% (低碳钢) 焊接高合金钢,焊丝超低碳焊丝 ②改善焊缝的一次结晶 细化晶粒,加入Mo、V、Ti、Nb、Zr、
Al
2)、工艺方面(减少拉应力)
应变率 , E ↑、
↑应变率 ↓
例如:强度为600MPa焊条研究
焊缝成分分析
焊缝 C
S
P Mn Si Cr Ni
成分
Ao 0.10 0.037 0.017 0.94 0.54 0.20 0.87
A1 0.09 0.015 0.014 1.25 0.44 0.19 0.83
注:A1 焊缝中加入轻稀土1%
图2 焊缝冲击断口扫描形貌
b)、C
i)、C<0.1% C↑结晶温度区间↑,裂纹↑
ii)、C>0.16% Mn/S↑无效,加剧P有害作
用 裂↑
iii)、C>0.51% 初生相
初生相
S、P在小相中溶解度低,析
出S、P集富在晶界上,裂纹↑
c)、Mn
Mn具有脱S作用
其中Mn熔
点高,早期结晶星球状分布,抗裂↑
含碳量C<0.016% S↑裂↑但加入Mn↑裂↓
结 晶 裂 纹
2)、熔池各阶段产生结晶裂纹的 倾向
在焊缝金属凝固结晶的后期,低熔点共晶物 被排挤在晶界,形成一种所谓的“液态薄膜” ,在焊接拉应力作用下,就可能在这薄弱地带 开裂,产生结晶裂纹。
产生结晶裂纹原因:①液态薄膜
②拉伸应力
液态薄膜—根本原因
拉伸应力—必要条件
以低碳钢焊接为例可把熔池的结晶分 为以下三个阶段
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 焊接裂纹1、焊接时的温度循环图图1 焊接温度循环图2、焊接接头中的裂纹肉眼或≤6:1的放大镜能够识别 借助V >6:1的显微焊接接头中的缺裂纹宏观裂微观裂冷裂裂纹形晶间裂穿晶裂裂纹形成的原热裂固 化 状 硬 致 效 出 化缩口热 (两种形成均3、接头中裂纹的形态和分布1 焊缝中纵向裂纹(多为结晶裂纹)2 焊缝中横向裂纹(多为延迟裂纹)3熔合区横向裂纹(多为延迟裂纹)4焊缝根部裂纹(延迟、热应力裂纹)5 HAZ根部裂纹(延迟裂纹)6焊趾纵向裂纹(延迟裂纹)7焊趾纵向裂纹(液化、再热裂纹)8焊道下裂纹(延迟、液化、再热裂纹)9层状撕裂10弧坑裂纹(纵向、横向、星形)图2 焊接接头中的裂纹4、热裂纹及形成机理热裂纹是在焊接时高温下产生的,特征是沿晶界开裂。

*结晶(凝固)裂纹是在焊缝结晶过程中,在固相线附近温度,由于凝固金属的收缩,残余液体金属不足而产生;主要产生在含杂质较多的碳钢、低合金钢和单相奥氏体钢焊缝中。

*高温液化裂纹是在焊接热循环峰值温度作用下,在近缝区或多层焊的层间部位低熔共晶被重新熔化,在拉伸应力作用下开裂;主要发生在铬镍高强钢、奥氏体钢中,母材和焊丝中S、P、Si、C偏高时液化裂纹倾向严重。

*多边化裂纹是在焊缝或近缝区,在固相线稍下温度的高温区,刚凝固的金属中存在晶格缺陷(形成多边化边界),使强度和塑性很差,在很小的拉伸应力下开裂;多发生在纯金属或单相奥氏体合金中。

*高温低塑性裂纹是冷却到一定高温范围时,应变与冶金元素交互作用引起塑性低落,沿晶界开裂。

*再热裂纹是在消除应力热处理或在服役过程中,在热影响区粗晶部位发生的;多发生在低合金高强钢、奥氏体钢中。

4.1凝固裂纹(结晶裂纹)焊缝上凝固裂纹(结晶裂纹)的形成:在焊缝冷却过程中,先结晶的金属较纯,后结晶的金属含杂质较多,并富集在晶界,所形成的共晶都具有较低熔点(如FeS与Fe共晶温度988℃)。

在液相线和固相线之间凝固区是一个非常关键的区域,此时在熔池中长大的柱状晶要联接在一起,结晶后期,已经长大的晶粒阻碍了尚存在的液态金属的流动,低熔共晶物被排挤在柱状晶交遇的中心部位,形成“液态薄膜”,同时由于收缩受到了拉伸应力,可能会在这个薄弱地带开裂。

碳钢、低合金高强钢和不锈钢中的P、S、Si、Ni、B、Zr都能形成低熔点共晶。

熔池结晶的阶段:1) 液固阶段:少量晶核,相邻晶粒之间有液态金属自由流动,不会开裂;2) 固液阶段:固相彼此接触,液态金属少,流动困难,稍有拉伸应力就可能产生裂纹;3) 完全凝固阶段:有较高的强度和塑性,即使有应力也不易开裂。

p-塑性y-流动性T L-液相线T S-固相线T B-脆性温度区图3 热裂纹的形成结晶裂纹的形态:结晶裂纹都是沿焊缝树枝状晶的交界处发生和发展,一般产生在焊缝中心位置,最常见的是沿焊缝中心纵向开裂,也有时发生在焊缝内的两个树枝晶之间。

裂纹面上可以看到氧化色彩。

断口表面扫描电子图像可以看到完整的、成束排列的树枝晶,表面光滑,是高温下液相结晶形成的自由表面。

裂纹产生于焊缝中心的最后结晶区裂纹断口表面平行于焊缝纵向,可看到完整成束排列的树枝晶图4 热裂纹形态4.2液化裂纹热影响区内液化裂纹的形成:焊接过程中的受热使近缝区(粗晶区)被加热到接近材料固相线附近的温度。

这样会使晶界上的低熔点物质熔化并以薄膜的形式分布在晶粒的表面上。

在较高的收缩应力的作用下,会使这种已经削弱了的晶粒之间的连接沿晶界造成开裂。

焊缝上液化裂纹的形成:多层焊时,先焊的焊道受后焊焊道的热作用(形成粗晶区),会受到与热影响区的部分区域相同的影响。

因此在较高的峰值温度作用下会使晶界上的低熔点共晶物熔化并在收缩应力的作用下造成开裂。

在近缝区产生的液化裂纹,大致与熔合线平行多层焊焊缝中产生的液化裂纹,沿柱状晶发展图5 液化裂纹走向液化裂纹的特点和产生部位:液化裂纹是奥氏体晶界开裂的微裂纹,尺寸很小(0.5mm以下),一般只有在金相磨片上作显微观察才能发现,可能成为冷裂纹、再热裂纹脆性破坏和疲劳断裂的发源地。

常出现在焊缝熔合线的凹陷区和多层焊的层间过热区(如图6)。

1凹陷区2多层焊层间图6 液化裂纹产生部位4.3再热裂纹有些含有沉淀强化元素的低合金高强钢和高温合金,在焊后热处理时,因为杂质(P、S、Sb、Sn等)在晶界析集而造成脆化,晶内析出沉淀强化元素(Cr、Mo、V、Ti、Nb)的碳氮化物而使晶内强化,应力松弛过程中,变形产生在粗晶区应力集中部位的晶界,当塑性不足时产生裂纹。

图7 再热裂纹形成再热裂纹都是发生在热影响区的粗晶区,呈晶间开裂,裂纹沿熔合线母材侧粗晶晶界扩展,遇到细晶就停止扩展。

产生再热裂纹有一个敏感温度区间,奥氏体不锈钢约在700-900℃,低合金钢约在500-700℃。

热处理前,焊接区存在较大残余应力和应力集中。

含有沉淀强化元素的材料才对再热裂纹敏感。

热处理后在焊趾和焊根应力集中部位产生再热裂纹再热裂纹断口形貌,沿晶断裂特征图8 再热裂纹产生部位和形貌特征5、热(结晶)裂纹的影响因素及防治措施5.1一般的冶金因素从金属学的角度看,冷却时的凝固区间(结晶温度区间)以及在固相线温度上固态金属和液态金属的量的比值对热裂纹的倾向起着很大作用,应尽量减小液态金属薄膜存在的区间。

随着合金元素的增加,结晶温度区间增大,结晶裂纹倾向增加。

S和P在各类钢中都会增加结晶裂纹倾向;含C量增加,结晶裂纹倾向增加;Mn有脱硫作用,可提高抗裂性;Si在小于0.4%时,有利于消除结晶裂纹;Ti能形成高熔点硫化物,有利于消除结晶裂纹;Ni在低合金钢中易于与S形成低熔共晶,会引起裂纹,但加入Mn、Ti后,可抑制S的有害作用。

另外,凝固结晶组织形态也对结晶裂纹有影响,晶粒越粗大,柱状晶方向越强,裂纹倾向越大。

因此,控制焊缝中S、P、C的含量,加入细化晶粒元素都是提高抗裂性的办法。

与低合金钢相比,高合金钢的特点根据其化学成份在结晶时既形成一次铁素体也形成奥氏体。

铁素体相对奥氏体而言对硫具有较高的溶解能力并且其膨胀系数非常低。

因此一次铁素体(δ铁素体)相对奥氏体热裂纹倾向非常低。

图9中合金2相对合金1具有较高的热裂纹倾向。

图9 72%Fe的Fe-Cr-Ni相图5.2力学因素产生结晶裂纹的充分条件是力的作用,亦即应力作用。

产生结晶裂纹的条件必须是冶金因素和力学因素共同作用。

5.3工艺因素——通过减小热输入,在焊缝中避免粗大的树枝状的组织,得到具有较小晶粒尺寸的无序的细胞状组织。

——通过降低焊接速度使晶粒的端部并列长大挤压在一起,以避免偏析的集中。

降低焊接速度会使晶粒端部成椭圆形结构,因此使晶粒在焊接方向形成较为有利的排列。

——宽的焊缝形状相对窄而深的焊缝能够防止晶粒长大时直接碰撞在一起,从而可以避免偏析的集中。

使用细直径焊条和小电流,不摆动和避免熔池过大一般能够防止热裂纹。

图10 焊接速度和焊缝形状对热裂纹的影响5.4结构设计的影响有一些关于焊接接头设计和施焊的规程和标准可供使用,这些规程和标准中有许多在容器及仪器制造方面的实例,如DIN8558等。

接头及坡口形式将影响接头的受力状态结晶条件,堆焊和熔深较浅的对接焊缝抗裂性较高(图11中a和b),熔深较大的对接和角接、搭接、T型接头抗裂性差(图11中c、d、e、f)。

图11 接头和坡口形式对热裂纹的影响6、热裂纹敏感性评定方法堆焊试验(单道堆焊用于评定镍基合金,多层堆焊用于评定不锈钢焊条)Fisco试验(用于评定低碳钢、铝合金、不锈钢焊条焊缝)环形镶块裂纹试验(用TIG焊法不加填充焊丝熔化母材评定母材)指形裂纹试验(用MIG或TIG焊法评定高合金、有色金属)鱼骨状可变拘束裂纹试验(用于评定铝合金薄板及选用的焊丝材料)可变拘束裂纹试验(用不加填充焊丝的TIG焊评定母材)横向可变拘束裂纹试验(用不加填充焊丝的TIG焊评定母材低碳钢、低合金高强钢、不锈钢等)递增应变速率热裂纹试验在焊接过程模拟机上试验(刚性拘束试验和强迫应变试验)7、冷裂纹及其形成7.1 冷裂纹特征焊后冷却过程中,在Ms点附近或更低温度区间产生,有时焊后马上产生,这主要是由于接头产生的淬硬组织;也有时延迟产生,焊后几小时、几天、或更长时间产生,这主要是由于氢的作用。

多发生在具有缺口效应的热影响区或物理化学不均匀的氢聚集局部。

根部、焊趾裂纹起源于应力集中部位,沿最大应力方向,向热影响区或焊缝发展;焊道下裂纹在粗大的马氏体组织且含氢量较高的热影响区形成,走向与焊缝平行;横向裂纹走向垂直于焊缝边界。

具有沿晶和穿晶断裂特点。

根部裂纹和焊趾裂纹,向热影响区扩展角焊缝根部裂纹,向焊缝扩展图12 冷裂纹产生的位置7.2延迟裂纹的产生和影响因素在焊接过程中带入到焊接接头中的氢,焊缝产生的淬硬组织和焊接接头的应力状态,是造成氢致延迟裂纹的三个主要因素。

7.2.1氢的作用焊接过程中,在高温下焊缝中溶解了很多氢(如图13),电弧中氢分解并以原子或离子的形式进入到液态金属中去。

氢来自焊接材料中的水分、空气中的湿气、焊件表面的铁锈及油污等。

焊缝中氢的吸入主要与氢的局部压力和温度有关,焊缝中氢的溶解能力可达每100克焊缝金属35ml。

(如图14)图13 氢的分解和溶解图14 氢在不同温度下的溶解度焊接冷却时,由于焊缝金属快速冷却,氢的浓度高于溶解能力图中相应的浓度,大部分氢重新结合成氢气逸出焊缝。

部分氢被强制地溶解在晶粒中,集中在晶界的空位和错位中,重新结合成氢气分子并具有较高气体压力,使焊缝金属中的氢处于过饱和状态,因而氢要极力扩散,这种扩散过程(包括氢的再结合)可能在几分钟到几周内完成,因此有延迟特点。

氢在不同金属组织中的溶解度和扩散系数不同,氢在奥氏体中的溶解度比在铁素体中的溶解度大,且随温度升高而增大。

而氢的扩散速度刚好相反,在不同组织中扩散系数从大到小的顺序为铁素体和珠光体、索氏体、奥氏体。

焊接一般的低合金钢时,由于焊缝的含碳量低于母材,因此焊接冷却时,焊缝首先发生相变,即由奥氏体分解为铁素体、珠光体、贝氏体、及低碳马氏体,氢的溶解度下降,在铁素体、珠光体中快速扩散,越过熔合线到还没发生分解的奥氏体热影响区,由于氢在奥氏体中的扩散速度小,熔合线附近就成了富氢地带,当滞后相变的热影响区发生马氏体转变时,氢便以过饱和状态残留在马氏体中,使马氏体脆化,如果有缺口效应,就可能产生根部裂纹或焊趾裂纹,氢的浓度更高时,也可能产生焊道下裂纹。

图15 氢的再结合和逸出图16 焊接接头中氢的扩散焊缝中氢含量过高会使晶格变脆,材料的延伸率降低而屈服强度和抗拉强度保持不变(图17)。

这种脆性行为在进行除氢处理后才消失。

鱼眼状白点是材料的一种局部断裂,在微观和宏观显微镜下表现为亮的、近似圆形的中间为脆断面(缺陷点、夹渣、气孔),周围为韧性断裂的区域。

相关文档
最新文档