八年级数学人教版上册141整式的乘法(含答案)
人教版八年级数学上册《14.1整式的乘法》练习-带参考答案

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算的结果为()A.1 B.-1 C.2 D.-23.计算:□,□内应填写()A.-10xy B.C.+40 D.+40xy4.长方形一边长为另一边比它小则长方形面积为()A.B.C.D.5.若,则的值是()A.-11 B.-7 C.-6 D.-56.已知,和,那么x,y,z满足的等量关系是()A.B.C.D.7.下列多项式中,与相乘的结果是的多项式是()A.B.C.D.8.若的展开式中常数项为-2,且不含项,则展开式中一次项的系数为()A.-2 B.2 C.3 D.-3二、填空题9..10.比较大小:11.若,则的值是.12.若与的乘积中不含x的一次项,则实数n的值为.13.如图,将两张边长分别为和的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为,n.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为.三、解答题14.计算:(1)(2)15.已知,求:(1)的值;(2)的值.16.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.17.若关于的多项式与的积为,其中,b,,d,e,f是常数,显然也是一个多项式.(1)中,最高次项为,常数项为;(2)中的三次项由,的和构成,二次项时由,和的和构成.若关于的多项式与的积中,三次项为,二次项为,试确定,的值.参考答案:1.C2.D3.D4.D5.A6.C7.B8.D9.10.<11.1812.313.14.(1)解:原式=(2)解:原式=15.(1)解:∵和.∴(2)解:∵∴.16.(1)解:由题意得所以解得(2)解:17.(1);(2)解:多项式与的积中,三次项为,二次项为由题意得:解得:故。
人教版 八年级数学上册 14.1 整式的乘法(含答案)

人教版 八年级数学上册 14.1 整式的乘法一、选择题(本大题共10道小题)1. (72)3表示的是()A .3个72相加B .2个73相加C .3个72相乘D .5个7相乘2. 下列运算正确的是()A. a 2·a 3=a 6B. (-a )4=a 4C. a 2+a 3=a 5D. (a 2)3=a 53. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 54. 下列计算正确的是()A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=5. 计算(2x )3÷x 的结果正确的是()A. 8x 2B. 6x 2C. 8x 3D. 6x 36. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .167. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .178. 下列计算错误的是()A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=9. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共5道小题) 11. 填空:54x x x ÷⨯= ;12. 填空:()()3223x x x --⋅=13. 计算:a 3·(a 3)2=________.14. 若(a m )3=a 15,则m =________.15. 填空:()()2322a b b ⋅-=;三、解答题(本大题共5道小题) 16. 计算:()1243x x x ⋅÷17. 计算:()323n n n x x x -÷⋅18. 计算:43()()()m n n m n m ---19. 已知x 满足22x +2-4x =48,求x 的值.20. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学上册 14.1 整式的乘法-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] (72)3表示的是3个72相乘.2. 【答案】B【解析】互为相反数的两个数的偶次幂相等.3. 【答案】B4. 【答案】D【解析】根据同底数幂相乘除的法则,应选D5. 【答案】A【解析】(2x )3是积的乘方,把2和x 分别乘方得8x 3再除以x ,得8x 2.6. 【答案】D[解析] 由于a m =4,因此a 2m =(a m )2=42=16.7. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.8. 【答案】C【解析】根据积的乘方运算法则,应选C9. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共5道小题) 11. 【答案】8x【解析】原式448x x x =⋅=12. 【答案】65x x -【解析】原式65x x =-13. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.14. 【答案】5[解析] 因为(a m )3=a 3m =a 15,所以3m =15.所以m =5.15. 【答案】458a b -【解析】原式()4234588a b b a b =⋅-=-三、解答题(本大题共5道小题)16. 【答案】13x【解析】原式1213x x x =⋅=17. 【答案】3x【解析】原式()3233n n n x x -+-==18. 【答案】()8n m -【解析】43438()()()()()()()m n n m n m n m n m n m n m ---=---=-19. 【答案】解:因为22x +2-4x =48, 所以(22)x +1-4x =48. 所以4x +1-4x =48. 所以4x (4-1)=48.所以4x =16. 所以4x =42. 所以x =2.20. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n nn nnnx yz x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪⎪⎝⎭⎝⎭.。
人教版数学八年级上册:14.1--14.3练习题含答案

人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2 =x 2m y 2n .(4)解:原式=(-3)4×(102)4 =81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3.8.B9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12=37x 6y 12.(3)解:原式=(-14)2 018×42 018=(-14×4)2 018=1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2=27×8+(-8)×4=184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。
人教版数学八年级上册:14.1--14.3练习题含答案

人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2=x 2m y 2n .(4)解:原式=(-3)4×(102)4=81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3. 8.B 9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12 =37x 6y 12.(3)解:原式=(-14)2 018×42 018 =(-14×4)2 018 =1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2 =27×8+(-8)×4 =184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。
八年级数学上册 整式的乘法 人教版 (2)

多项式除以单项式
例6 计算:(1) ( 4m2n16m n2)2m;
(2)( 3x2yxy21xy)(1xy) .
2
2
解:(1)原式= 4m2n2m( -16mn2) 2m = 2mn-8n2.
(2)原式= 3x2y ( -1xy) ( -xy2) ( -1xy) 1xy ( -1xy)
不是同底数的幂相除,需先将其转化为同底 数幂相除的形式,在转化的过程中要注意符号是 否改变.
单项式除以单项式
例5
计算:(1)(-5x4y6)÷
1 2
x
2
y
2
;
(2)(-3.6×1010)÷(-2×102)2;
(3)4a3m+1÷(-8a2m-1);
(解4):-24(m15)n4÷原(式-6=m-52n÷2)1÷x 412-2my6n-2 =2 -1.0x2y4.
计算单项式乘多项式时,符号的确定是关键,可把 单项式前及多项式各项前的“+”或“-”看成性质符号, 把单项式乘多项式的结果用“+”连接,最后写成省略 “+”的代数式和的形式.
多项式乘多项式
例3 计算:(1)(a+b)(a-b); (2)(a-b)(a2+ab+b2); (3)(-xy2+2x2yz2)(xy2z2-xy+1).
∵乘积中不含x2项和x3项,
p 3 0,
∴ q 3 p 8 0,
解得
p q
3, 1.
故p,q的值分别为3,1.
方法点拨 实际上,解答本题时可以不用把两个多项式直接
相乘,由于这两个多项式乘积中含x2的项可由因式中含 x2的项与常数项的积以及两因式中的一次项的积,再合 并同类项得到,而x3项只能是两个因式中含x2的项与含x 的项的积,再合并同类项得到.因此,只要找出有关项相 乘,再合并同类项,由题意列出方程或方程组求解即可.
八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)1、下列运算正确的是().A. x3⋅x3=x9B. x8÷x4=x2C. (ab3)2=ab6D. (2x)3=8x32、如果正方体的棱长是(1−2b)3,那么这个正方体的体积是().A. (1−2b)6B. (1−2b)9C. (1−2b)12D. 6(1−2b)63、计算:2(a5)2⋅(a2)2−(a2)4⋅(a3)2.4、若3x=15,3y=5,则3x−y等于().A. 5B. 3C. 15D. 105、已知2x+3y−4=0,则9x⋅27y=.6、已知:2m=a,2n=b,则22m+3n用a、b可以表示为().A. 6abB. a2+b3C. 2a+3bD. a2b37、若x,y均为正整数,且2x+1⋅4y=128,则x+y的值为().A. 3B. 5C. 4或5D. 3或4或58、如果a=355,b=444,c=533,那么a、b、c的大小关系是().A. a>b>cB. c>b>aC. b>a>cD. b>c>a9、根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明的多项式的乘法运算是().A. (a+3b)(a+b)=a2+4ab+3b2B. (a+3b)(a+b)=a2+3b2C. (b+3a)(b+a)=b2+4ab+3a2D. (a+3b)(a−b)=a2+2ab−3b210、已知a+b=m,ab=−4,化简(a−2)(b−2)的结果是().A. 6B. 2m−8C. 2mD. −2m11、已知(x−1)(x+3)=ax2+bx+c,求代数式9a−3b+c的值.12、要使(y2−ky+2y)(−y)的展开式中不含y2项,则k的值为().A. −2B. 0C. 2D. 313、计算:(−6x3+9x2−3x)÷(−3x)=().A. 2x2−3xB. 2x2−3x+1C. −2x2−3x+1D. 2x2+3x−114、下列计算正确的是().A. 10a4b3c2÷5a3bc=ab2cB. (a2bc)2÷abc=aC. (9x2y−6xy2)÷3xy=3x−2yD. (6a2b−5a2c)÷(−3a2)=−2b−53c15、下列等式错误的是().A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n516、若(2a m b n)3=8a9b15成立,则().A. m=6,n=12B. m=3,n=12C. m=3,n=5D. m=6,n=517、计算(−32)2018×(23)2019的结果为().A. 23B.32C. −23D. −3218、已知x+4y−3=0,则2x⋅16y的值为.19、若2x=5,2y=3,则22x+y=.20、若5x=16,5y=2,则5x−2y=.21、比较255、344、433的大小().A. 255<344<433B. 433<344<255C. 255<433<344D. 344<433<25522、观察等式(2a−1)a+2=1,其中a的取值可能是().A. −2B. 1或−2C. 0或1D. 1或−2或023、已知x2n=3,则(19x3n)2⋅4(x2)2n的值是().A. 12B. 13C. 27 D. 12724、已知ab=a+b+1,则(a−1)(b−1)=.25、先化简,再求值:3a(2a2−4a+3)−2a2(3a+4),其中a=−2.26、若多项式乘法(x+2y)(2x−ky−1)的结果中不含xy项,则k的值为().A. 4B. −4C. 2D. −227、下列运算正确的是().A. a3+a3=2a6B. (−2ab2)3=−6a3b6C. (28a3−14a2+7a)÷7a=4a2−2aD. a2⋅a3=a528、计算(12x3−8x2+16x)÷(−4x)的结果是().A. −3x2+2x−4B. −3x2−2x+4C. −3x2+2x+4D. 3x2−2x+41 、【答案】 D;【解析】 A选项 : x3⋅x3=x6,故选项A错误.B选项 : x8÷x4=x4,故选项B错误.C选项 : (ab3)2=a2b6,故选项C错误.D选项 : (2x)3=8x3,故选项D正确.2 、【答案】 B;【解析】[(1−2b)3]3=(1−2b)9.3 、【答案】a14.;【解析】4 、【答案】 B;【解析】3x−y=3x÷3y=15÷5=3.5 、【答案】81;【解析】9x⋅27y=32x⋅33y=32x+3y=81.6 、【答案】 D;【解析】∵2m=a,2n=b,∴22m+3n=(2m)2×(2n)3=a2b37 、【答案】 C;【解析】∵2x+1⋅4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴{x=2y=2或{x=4y=1,∴x+y=4或5.故选C.8 、【答案】 C;【解析】a=355=(35)11=24311b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.9 、【答案】 A;【解析】根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2.10 、【答案】 D;【解析】(a−2)(b−2)=ab−2a−2b+4=ab−2(a+b)+4,把ab=−4,a+b=m代入原式得原式=−4−2m+4=−2m.故选D.11 、【答案】0.;【解析】∵(x−1)(x+3)=x2+3x−x−3=x2+2x−3,∴a=1,b=2,c=−3,∴9a−3b+c=9×1−3×2−3=9−6−3=0.12 、【答案】 C;【解析】∵(y2−ky+2y)(−y)的展开式中不含y2项,∴−y3+ky2−2y2中不含y2项,∴k−2=0,解得:k=2.13 、【答案】 B;【解析】(−6x3+9x2−3x)÷(−3x)=2x2–3x+1.故选B.14 、【答案】 C;【解析】 A选项 : 10a4b3c2÷5a3bc=2ab2c,故A错误;B选项 : (a2bc)2÷abc=a4b2c2÷abc=a3bc,故B错误;C选项 : (9x2y−6xy2)÷3xy=9x2y÷3xy−6xy2÷3xy=3x−2y,故C正确;D选项 : (6a2b−5a2c)÷(−3a2)=−2b+53c,故D错误.15 、【答案】 D;【解析】(2mn)2=4m2n2,A项正确;(−2mn)2=4m2n2,B项正确;(2m2n2)3=8m6n6,C项正确;(−2m2n2)3=−8m6n6,D项错误.故选D.16 、【答案】 C;【解析】(2a m b n)3=8a9b15,m=3,n=5.17 、【答案】 A;【解析】(−32)2018×(23)2019=(−32)2018×(23)2018×23=23.故选:A.18 、【答案】8;【解析】∵x+4y−3=0,∴x+4y=3,∴2x⋅16y=2x⋅24y=2x+4y=23=8.19 、【答案】 75;【解析】 ∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75. 故答案为:75.20 、【答案】 4;【解析】 5x−2y =5x 52y =5x (5y )2=16(2)2=164=4. 21 、【答案】 C;【解析】 255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选C .22 、【答案】 D;【解析】 ∵(2a −1)a+2=1,∴①2a −1=1,a =1,13=1;②2a −1=−1,且a +2为偶数,即a =0,(−1)2=1; ③{2a −1≠0a +2=0,即a =−2,(−5)0=1; 综上,a 的值为:1,0,−2.23 、【答案】 A;【解析】 根据积的乘方法则,可将待求式化为: (19)2×(x 3n )2×4(x 2)2n , 根据幂的乘方法则,得481×x 6n ×x 4n ,根据同底数幂的乘法法则,得481x 10n , 即4×(x 2n )581,将x 2n =3代入,原式=4×35×181=4×3=12.故选A .24 、【答案】 2;【解析】 当ab =a +b +1时, 原式=ab −a −b +1=a +b +1−a −b +1 =2,故答案为:2.25 、【答案】 −98.;【解析】 3a (2a 2−4a +3)−2a 2(3a +4) =6a 3−12a 2+9a −6a 3−8a 2 =−20a 2+9a .当a =−2时,−20a 2+9a =−20×4−9×2=−98. 26 、【答案】 A;【解析】 (x +2y)(2x −ky −1), =2x 2−kxy −x +4xy −2ky 2−2y , =2x 2+(4−k)xy −x −2ky 2−2y , ∵ 结果中不含xy 项,∴ 4−k =0,解得k=4.27 、【答案】 D;【解析】 A选项 : a3+a3=2a3,故原题计算错误;B选项 : (−2ab2)3=−8a3b6,故原题计算错误;C选项 : (28a3−14a2+7a)÷7a=4a2−2a+1,故原题计算错误;D选项 : a2⋅a3=a5,故原题计算正确.28 、【答案】 A;【解析】解:(12x3−8x2+16x)÷(−4x)=−3x2+2x−4,故选:A.11。
8年级数学人教版上册同步练习14.1整式的乘法(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 42.下列计算正确的是( )A .·B .·C .D .3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( )A .7B .12C .432D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015;(2)(-)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .B .C .D .8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.3x 622x x =4x 82xx =632)(x x -=-523)(x x =192325a a a +=22(2)()2a b a b a ab b +-=--23622a a a ×=222(2)4a b a b +=+9.先阅读,再填空解题:(x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30;(x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________.(2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.11.计算:.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】1.幂的性质(1)同底数幂的乘法:(m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.236274319132)()(ab b a b a -÷-n m n m a a a +=×()m n mn a a=()n n n ab a b =(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.m n m n a a a-÷=0a =1参考答案:1.C解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .2.C 解析:·,选项A 错误;·,选项B 错误;,选项C 正确;,选项D 错误. 故选C .3.D 解析:A 中,,故A 错误;B 中,,故B 错误;C 中,,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-)2015×92014=(×9)2014×(-)=-.7.B解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得=,故B 正确;C 中,由单项式与单项式相乘的法则可得=,故C 错误;D 中,由多项式与多项式相乘的法则可得,故D 错误. 综上所述,选B .8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得b=.∴(3x 2-2x+1)(x+)=3x 3-2x 2+x+2x 2-x+=3x 3-x+.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是:3x 2235x x x +==4x 2246x x x +==23236()x x x ´-=-=-32236()x x x ´==22223a a a +=624a a a ÷=628a a a ×=1919191922(2)()22a b a b a ab ab b +-=-+-222a ab b --232322a a a +×=52a 222(2)44a b a ab b +=++232343231323一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-x+3y - 解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-x+3y -.11.解:原式12.解:(a -b )3÷(b -a )2+(-a -b )5÷(a+b )4,=(a -b )3÷(a -b )2-(a+b )5÷(a+b )4,=(a -b )-(a+b ),= a -b -a -b ,=-2b .12161216。
人教版数学八年级上册 14.1 整式的乘法

m+n个a
= a(m + n ). (乘方的意义)
归纳总结
同底数幂的乘法法则:
am ·an = am+n (m,n 都是正整数).
同底数幂相乘,底数不变,指数相加.
注意 条件:① 乘法 ② 底数相同 结果:① 底数不变 ② 指数相加
练一练 计算: (1) 105×106 = ___1_0_11__; (2) a7 ·a3 = ____a_10___; (3) x5 ·x7 =____x_12___; (4) (-b)3 ·(-b)2 =___(-_b_)_5__.
方法总结:公式 am ·an = am+n 中的底数 a 不仅可以代
表数、单项式,还可以代表多项式等其他式子. 当底
数互为相反数的幂相乘时,可先把底数统一,再进
行计算.
(a b)n
(b a)n
(b
a)
n
n 为偶数, n 为奇数.
同底数幂乘法法则的逆用
想一想:am+n 可以写成哪两个因式的积? am+n = am ·an.
人教版数学八年级上册
14.1 整式的乘法
14.1.1 同底数幂的乘法
问题引入 神威·太湖之光超级计算机是 由国家并行计算机工程技术研究中心研 制的超级计算机. 在法兰克福世界超算 大会(ISC)上,神威·太湖之光超级计算机 系统登顶榜单之首,成为世界上首台每 秒运算速度超过十亿亿次(1017 次)的超级 计算机.它工作 103 s 可进行多少次运算?
S正=边长×边长=边长2
S小 =10×10 =102
103
S大 =103×103 = (103)2
= =
103+3 = 106
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 整式的乘法与因式分解
14.1整式的乘法
专题一 幂的性质
1.下列运算中,正确的是( )
A .3a 2-a 2=2
B .(a 2)3=a 9
C .a 3•a 6=a 9
D .(2a 2)2=2a 4
2.下列计算正确的是( )
A .3x ·
622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =
3.下列计算正确的是( )
A .2a 2+a 2=3a 4
B .a 6÷a 2=a 3
C .a 6·a 2=a 12
D .( -a 6)2=a 12 专题二 幂的性质的逆用
4.若2a =3,2b =4,则23a+2b 等于( )
A .7
B .12
C .432
D .108
5.若2m=5,2n=3,求23m+2n的值.
6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015;
(2)(-19
)2015×811007.
专题三 整式的乘法
7.下列运算中正确的是( )
A .2325a a a +=
B .22(2)()2a b a b a ab b +-=--
C .23622a a a ⋅=
D .222(2)4a b a b +=+
8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.
9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30;
(x -5)(x -6)=x 2-11x +30;
(x -5)(x +6)=x 2+x -30;
(x +5)(x -6)=x 2-x -30.
(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________.
(2)根据以上的规律,用公式表示出来:________.
(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.
专题四 整式的除法
10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.
11.计算:2362743
19132
)()(ab b a b a -÷-.
12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.
状元笔记
【知识要点】
1.幂的性质
(1)同底数幂的乘法:n m n m a
a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.
(2)幂的乘方:()m n mn a a
=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n n
ab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别
乘方,再把所得的幂相乘.
2.整式的乘法
(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.
(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
3.整式的除法
(1)同底数幂相除:m n m n a a a
-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,
底数不变,指数相减.
(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.
(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.
【温馨提示】
1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.
2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.
3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.
【方法技巧】
1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.
2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.
参考答案:
1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .
2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .
3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624
a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .
4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .
5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.
6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4. (2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19
. 7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .
8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,
∵不含x 2项,
∴3b -2=0,得b=
23
. ∴(3x 2-2x+1)(x+23
) =3x 3-2x 2+x+2x 2-43x+23
=3x 3-13x+23. 9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是:
一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;
(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;
(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.
10.-
12x+3y -16
解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.
11.解:原式。
)(16919191329191322626262746
26274-=÷-÷=÷-=b a b a b a b a b a b a b a b a 12.解:(a -b )3÷(b -a )2+(-a -b )5÷(a+b )4, =(a -b )3÷(a -b )2-(a+b )5÷(a+b )4, =(a -b )-(a+b ),
= a -b -a -b ,
=-2b .。