小学数学奥数基础教程(六年级)--28
六年级奥林匹克数学基础教程 28 运筹学初步(二)

小学数学奥数基础教程(六年级)运筹学初步(一)本讲主要研究分配工作问题。
实际工作中经常会碰到分配工作的问题。
由于工作任务的性质不同,每个人的工作能力不同,因而完成这些任务所需的时间和花费的代价也不同。
我们希望通过合理分配工作,使所用时间最少或花费代价最小。
例1甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。
两厂合并后,每月(按30天计算)最多能生产多少套衣服?分析与解:应让善于生产上衣或裤子的厂充分发挥特长。
甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。
因为甲厂 30天可生产裤子 448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。
设乙厂用x天生产裤子,用(30-x)天生产上衣。
由甲、乙两厂生产的上衣与裤子一样多,可得方程960+720÷18×x=720÷12×(30-x),960+40x=1800-60x,100x=840,x=8.4(天)。
两厂合并后每月最多可生产衣服960+40×8.4=1296(套)。
例2某县农机厂金工车间共有77个工人。
已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。
每3个甲种部件、1个乙种部件和9个丙种部件恰好配成一套。
问:分别安排多少人加工甲、乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?分析与解:如果采用直接假设,那么就要用三个字母分别代替加工甲、乙、丙三种部件的人数,这已经超出了我们的知识范围。
由题目条件看出,每套成品中,甲、乙、丙三种部件的件数之比是3∶1∶9,因为是配套生产,所以生产出的甲、乙、丙三种部件的数量之比也应是3∶1∶9。
(六年级)小学数学奥数基础教程30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小……………………………………2-3 第2讲巧求分数……………………………………4-7第3讲分数运算的技巧……………………………………第4讲循环小数与分数……………………………………第5讲工程问题(一)……………………………………第6讲工程问题(二)……………………………………第7讲巧用单位“1”……………………………………第8讲比和比例……………………………………第9讲百分数……………………………………第10讲商业中的数学……………………………………第11讲圆与扇形……………………………………第12讲圆柱与圆锥……………………………………第13讲立体图形(一)……………………………………第14讲立体图形(二)……………………………………第15讲棋盘的覆盖……………………………………第16讲找规律……………………………………第17讲操作问题……………………………………第18讲取整计算……………………………………第19讲近似值与估算……………………………………第20讲数值代入法……………………………………第21讲枚举法……………………………………第22讲列表法……………………………………第23讲图解法……………………………………第24讲时钟问题……………………………………第25讲时间问题……………………………………第26讲牛吃草问题……………………………………第27讲运筹学初步(一)……………………………………第28讲运筹学初步(二)……………………………………第29讲运筹学初步(三)……………………………………第30讲趣题巧解……………………………………第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
小学数学6年级培优奥数讲义 第28讲-“牛吃草”问题(学生版)

第28讲“牛吃草”问题学习目标明确牛吃草问题中,必须把草的生长与牛吃的草问题,分开来分析解决,避免复杂错乱。
能够了解问题中的基本不变量并会求出,清楚牛吃草中等量的关系,能够利用求出的不变量来求解变化的问题。
知识梳理一、专题引入英国物理学家牛顿曾经编了这样一道数学题:牧场上有一片草,每天生长的一样快,这片草可供10头牛吃22天,或者供16头牛吃10天,如果供22头牛可吃几天?这道题就是有名的牛吃草问题,也叫牛顿问题。
解决这一问题的关键是:在牛吃草的同时,草每天也在不断均匀生长,所以草总量也在不断变化。
二、知识清单1、牛吃草问题中不变基本量:草的原有量、草的生长速度2、牛吃草问题中可变量:牛的数量、天数3、等量关系:草的总量与牛吃的草的总量一致草的总量=原有草量+草的生长速度×天数(或者草的总量=原有草量-草的减少速度×天数),牛吃的草量=牛头数×1×天数(一般设1头牛1天吃“1”份草)。
草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;典例分析考点一:求时间例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供27头牛吃6周,或者可供23头牛吃9周。
问:可供21头牛吃几周?考点二:求牛数例1:牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?考点三:草量匀速减少例1:由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?考点四:牛羊同吃例1:(2008年希望杯六年级二试试题)有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。
2019年小学六年级数学奥数基础教程【30讲】

1小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学六年级奥数第28讲 表面积与体积(二)(含答案分析)

第28讲表面积与体积(二)一、知识要点解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
二、精讲精练【例题1】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。
把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。
两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。
把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。
练习1:1、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?2、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?3、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积。
小学数学奥数基础教程(六年级)目30讲全.pdf

第 1 讲 比较分数的大小 第 2 讲 巧求分数 第 3 讲 分数运算的技巧
学无
止境
1.“通分子”。 当两个已知分数的分母的最小公倍数比较大,而分子的最小 公倍数比较小时,可以把它们化成同分子的分数,再比较大 小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲 的方法可以称为“通分子”。
的 10 和 30,仍是符合题意的解。 4.代数法
8.在自然数 1~60 中找出 8 个不同的数,使这 8 个数的倒 数之和等于 1。
5.分组法
答案与提示 1.3。
练习 3
分析与解:利用加法交换律和结合律,先将同分母的分 数相加。分母为 n 的分数之和为
学无 止 境
因为 40=23×5,含有 3 个 2,1 个 5,所以化成的小数 有三位。
工作效率指的是干工作的快慢,其意义是单位时间里所干的 工作量。单位时间的选取,根据题目需要,可以是天,也可 以是时、分、秒等。 工作效率的单位是一个复合单位,表示成“工作量/天”, 或“工作量/时”等。但在不引起误会的情况下,一般不写 工作效率的单位。
例 1 单独干某项工程,甲队需 100 天完成,乙队需 150 天完成。甲、乙两队合干 50 天后,剩下的工程乙队干还需 多少天? 分析与解:以全部工程量为单位 1。甲队单独干需 100 天, 甲的工作效
学无
止境
例 2 某项工程,甲单独做需 36 天完成,乙单独做需 45 天 完成。如果开工时甲、乙两队合做,中途甲队退出转做新的 工程,那么乙队又做了 18 天才完成任务。问:甲队干了多 少天? 分析:将题目的条件倒过来想,变为“乙队先干 18 天,后 面的工作甲、乙两队合干需多少天?”这样一来,问题就简
最新小学数学奥数基础教程(六年级)目30讲全[1]
![最新小学数学奥数基础教程(六年级)目30讲全[1]](https://img.taocdn.com/s3/m/d93b1eb7b4daa58da0114ab5.png)
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学数学奥数基础教程(打印版)

小学数学奥数基础教程(打印版)小学数学奥数基础教程(打印版)----------------------------------------------------------数学奥数是培养小学生数学思维能力和解决问题能力的一种特殊教学方法。
本教程旨在为小学生提供扎实的数学基础知识和奥数解题技巧,让他们在数学方面取得更好的成绩并培养对数学的兴趣。
本教程以打印版的形式呈现,方便学生进行随时随地的学习。
一、数学基础知识----------------------------------------------------------第一章:数的基本概念1.1 自然数与整数1.2 分数与小数1.3 负数与绝对值第二章:算数运算2.1 加法与减法2.2 乘法与除法2.3 平方与平方根第三章:代数与方程3.1 代数式与多项式3.2 简单方程与解集3.3 一元一次方程第四章:图形与几何4.1 点、线、线段与射线4.2 角的概念与性质4.3 三角形与四边形第五章:空间与立体几何5.1 立体图形的组成5.2 直方体、正方体与长方体5.3 圆柱体、圆锥体与球体二、奥数解题技巧----------------------------------------------------------第六章:逻辑推理6.1 量的关系6.2 条件与结论6.3 逻辑推理题示例第七章:模型建立7.1 数量关系模型7.2 平衡方程模型7.3 几何变换模型第八章:数学推理8.1 数学归纳法8.2 反证法与逆否命题8.3 数列与数表推理三、实践练习题----------------------------------------------------------第九章:填空题第十章:选择题第十一章:解答题四、奥数竞赛模拟----------------------------------------------------------第十二章:奥数竞赛模拟试题五、总结与展望----------------------------------------------------------本教程涵盖了小学数学奥数所需的基础知识和解题技巧,并提供了丰富的练习题和竞赛模拟试题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥数基础教程(六年级) --第28讲本教程共30讲运筹学初步(二)本讲主要研究分配工作问题。
实际工作中经常会碰到分配工作的问题。
由于工作任务的性质不同,每个人的工作能力不同,因而完成这些任务所需的时间和花费的代价也不同。
我们希望通过合理分配工作,使所用时间最少或花费代价最小。
例1甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。
两厂合并后,每月(按30天计算)最多能生产多少套衣服?分析与解:应让善于生产上衣或裤子的厂充分发挥特长。
甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。
因为甲厂 30天可生产裤子 448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。
设乙厂用x天生产裤子,用(30-x)天生产上衣。
由甲、乙两厂生产的上衣与裤子一样多,可得方程960+720÷18×x=720÷12×(30-x),960+40x=1800-60x,100x=840,x=8.4(天)。
两厂合并后每月最多可生产衣服960+40×8.4=1296(套)。
例2某县农机厂金工车间共有77个工人。
已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。
每3个甲种部件、1个乙种部件和9个丙种部件恰好配成一套。
问:分别安排多少人加工甲、乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?分析与解:如果采用直接假设,那么就要用三个字母分别代替加工甲、乙、丙三种部件的人数,这已经超出了我们的知识范围。
由题目条件看出,每套成品中,甲、乙、丙三种部件的件数之比是3∶1∶9,因为是配套生产,所以生产出的甲、乙、丙三种部件的数量之比也应是3∶1∶9。
设每天加工乙种部件x个,则加工甲种部件3x个,丙种部件9x个。
从而加工甲、乙、丙三种部件应分别安排12人、5人和60人。
例3有4辆汽车要派往五个地点运送货物,右图○中的数字分别表示五个地点完成任务需要的装卸工人数,五个地点共需装卸工20人。
如果有些装卸工可以跟车走,那么应如何安排跟车人数及各点的装卸工人数,使完成任务所用的装卸工总人数最少?分析与解:可用试探法。
因为五个地点中需装卸工最多的是5个人,所以如果每辆车跟5个工人,那么每辆车到达任何一个地点,都能正常进行装卸。
由此得到,跟车人数的试探范围是1~5个人。
若每车跟车5人,则各点不用安排人,共需20人;若每车跟车4人,则原来需5人的点还需各安排1人,共需18人;若每车跟车3人,则原来需5人的点还需各安排2人,原来需4人的点还需各安排1人,共需17人;同理可求出,每车跟车2人,共需18人;每车跟车1人,共需19人。
可见,安排每车跟车3人,原来需5人的两个点各安排2人,原来需4人的点安排1人,这时所用的装卸工总人数最少,需17人。
在例3中,我们采用试探法,逐一试算,比较选优。
事实上,此类题目有更简捷的解法。
假设有m个地点n辆车(n≤m),m个地点需要的人数按从多到少排列为A1≥A2≥A3≥…≥A m,则需要的最少总人数就是前n个数之和,即A1+A2+…+A n。
这时每车的跟车人数可以是A n+1至A n之间的任一数。
具体到例3,5个点4辆车,5个点中需要人数最多的4个数之和,即5+5+4+3=17(人)就是需要的最少总人数,因为A4=A5=3,所以每车跟车3人。
若在例3中只有2辆车,其它条件不变,则最少需要 5+5=10(人),因为A2=5,A3=4,所以每车跟车5人或4人。
当每车跟车5人时,所有点不再安排人;当每车跟车4人时,需要5人的两个点各安排1人,其余点不安排人。
注:如果车辆数大于地点数,即n>m,则跟车人数是0,各点需要人数之和就是总共需要的最少人数。
例4 有17根11.1米长的钢管,要截成1.0米和0.7米的甲、乙两种长度的管子,要求截成的甲、乙两种管子的数量一样多。
问:最多能截出甲、乙两种管子各多少根?分析与解:要想尽量多地截出甲、乙两种管子,残料应当尽量少。
一根钢管全部截成1.0米的,余下0.1米,全部截成0.7米的,余下0.6米。
如果这样截,再要求甲、乙管数量相等,那么残料较多。
怎样才能减少残料,甚至无残料呢?我们可以将1.0米的和0.7米的在一根钢管上搭配着截,所得残料长度(单位:米)见下表:由上表看出,方法3和方法10没有残料,如果能把这两种方法配合起来,使截出的甲、乙两种管子数量相等,那么就是残料最少的下料方案了。
设按方法3截x根钢管,按方法 10截 y根钢管。
这样共截得甲管(9x +2y)根,乙管(3x+13y)根。
由甲、乙管数量相等,得到9x+2y=3x+13y,9x-3x=13y-2y,6x=11y。
由此得到x∶y= 11∶6。
用方法3截11根钢管,用方法10截6根钢管是符合题意的截法,共可截得甲、乙管各9×11+2×6=111(根),或3×11+13×6=111(根)。
例5 给甲、乙二人分配A,B两项工作,他们完成这两项工作所需要的时间如下表:怎样分配工作才能使完成这两项工作所需的总时间最少?分析与解:因为不同的人要做不同的工作,所以上表中不同行、不同列的两数之和对应一种方案,共两种:(1)甲做 A、乙做 B,需要 7+6=13(时);(2)甲做 B、乙做 A,需要 4+8=12(时)。
显然后一种方案优于前一种方案。
为了能够处理更复杂的问题,我们将上例的数量关系尽量简化。
如果把表中第一行的两数都减去该行的最小数7,变成0和1,那么上面(1)(2)各式也各减少7,不影响它们之间的大小关系,即不影响最优方案的确定。
同理,第二行都减去该行的最小数4,变成0和2,也不影响最优方案的确定。
经上述变换后,原表变成左下表:此时,再将第二列都减去该列的最小数1,变成0和1,同样不影响最优方案的确定,原表变为右上表。
不同行、不同列的两个数之和代表一种方案,因为0+0<0+1,所以最优方案为乙做A、甲做B。
上面的化简过程可表示为:总结上面的方法:对于n个人n项工作的合理分配问题:(1)先将各行都减去该行中最小的数;(2)再将各列都减去该列中最小的数;(3)最后选择不在同一行,也不在同一列的n个0即可。
在实施上述变换后,如果仍选不出n个不同行也不同列的0,因为我们的目的是选取一组不同行、不同列的n个数,使这n个数之和尽量小,既然得不到n个0,可用表中最小的数代替0(见例6)。
例6给甲、乙、丙三人分配A,B,C三项工作,他们完成这三项工作的时间如下表:完成这三项工作所需总时间最少是多少?分析与解:因为没有三个不同行也不同列的0,我们用右下角的1代替0,此时,○内的三个数就是我们要找的最佳方案,即甲做B、乙做A、丙做C。
所需总时间为9+7+9=25(时)。
练习281.某种健身球由一个黑球和一个白球组成一套。
已知两个车间都生产这种现在两个车间联合起来生产,每月最多能生产多少套健身球?2.某车间有铣床5台、车床3台、自动机床1台,生产一种由甲、乙两种零件各1个组成的产品。
每台铣床每天生产甲零件10个,或者生产乙零件20个;每台车床每天生产甲零件20个,或者生产乙零件30个;每台自动机床每天生产甲零件30个,或者生产乙零件80个。
这些机器每天最多可生产多少套产品?3.车过河交渡费3元,马过河交渡费2元,人过河交渡费1元。
某天过河的车、马数目的比为2∶9,马、人数目的比为3∶7,共收得渡费945元。
问:这天渡河的车、马、人的数目各多少?4.有4辆汽车要派往七个地点运送货物,右图中的数字分别表示这七个地点完成任务需要的装卸工人数。
如果装卸工可以跟车,那么最少要安排多少名装卸工才能完成任务?5.有一批长4.3米的条形钢材,要截成0.7米和0.4米的甲、乙两种毛坯,要求截出的甲、乙两种毛坯数量相同。
如何下料才能使残料最少?6.用10米长的钢筋做原材料,截取3米和4米长的钢筋各100根,至少要用多少根原材料?7.给甲、乙、丙分配A,B,C三项工作,他们完成这三项工作的时间如下表。
怎样分配工作才能使完成这三项工作所需总时间最少?最少用多少时间?答案与提示练习281.600套。
因为450<900,所以应安排甲车间专门生产黑球,剩下的由乙车间生产。
乙车间生产450个白球后,剩下的时间还能生产白球900-450=450(个),因为乙车间生产1个黑球与生产2个白球的时间相同,450÷(1+2)=150,所以这段时间还能生产黑、白球各150个。
两车间联合生产每月最多生产(450+150)=600(套)。
2.100套。
甲零件。
安排自动车床专门生产乙零件,车床专门生产甲零件,铣床两种零件都生产,并使其配套。
自动车床一天生产乙零件80个,车床一天生产甲零件20×3=60(个)。
铣床一天可生产10×5=50(个)甲零件,补上车床与自动车床的差后,还有生产50-20=30(个)甲零件的时间,这个时间可生产甲、乙零件各20个。
所以,每天最多生产80+20=100(套)产品。
3.42辆车,189匹马,441个人。
解:这天过河的车、马、人的数量之比是2∶9∶21。
以2车9马21人为一组,每组收渡费3×2+2×9+1×21=45(元)。
这天共渡河945÷45=21(组),由此得到,这天渡河的数量为车:2×21=42(辆);马:9×21=189(匹);人:21×21=441(个)。
4.26人。
提示:每车跟5人。
5.解:每根钢材有下表所示的7种截法:无残料的有第2和第6两种方法。
用第2种方法的条形钢材数量与用第6种方法的条形钢材数量之比是8∶3,就可使截出的甲、乙两种毛坯的数量相同,且无残料。
6.75根。
解:有三种截法:(1)截成3米、3米、4米,无残料;(2)截成3米、3米、3米,残料1米;(3)截成4米、4米,残料2米。
尽量用方法(1)。
50根用方法(1),截出3米的100根,4米的50根,还差50根4米的。
再用方法(2)截25根原材料,截出50根4米的。
共用原材料50+25=75(根)。
7.20时。
解:由此得到,丙做A,甲做B,乙做C。
所需时间为6+6+8=20(时)。