LINGO软件解整数线形规划实验报告
LINGO软件学习入门实验报告

LINGO 实验报告一.实验目的1、熟悉LINGO 软件的使用方法、功能;2、学会用LINGO 软件求解一般的线性规划问题。
二.实验内容1、求解线性规划:12121212max z x 2x 2x 5x 12s.t.x 2x 8x ,x 0=++≥⎧⎪+≤⎨⎪≥⎩2、求解线性规划:12121212min z 20x 10x 5x 4x 24s.t.2x 5x 5x ,x 0=++≤⎧⎪+≥⎨⎪≥⎩3、假设现在一个计算机厂商要生产两种型号的PC :标准型(standard)和增强型(turbo),由于生产线和劳动力工作时间的约束,使得标准型PC 最多生产100台。
增强型PC 最多生产120台;一共耗时劳动力时间不能超过160小时。
已知每台标准型PC 可获利润$100,耗掉1小时劳动力工作时间;每台增强型PC 可获利润$150,耗掉2小时劳动力工作时间。
请问:该如何规划这两种计算机的生产量才能够使得最后获利最大?三. 模型建立1、求解线性规划:12121212max z x 2x 2x 5x 12s.t.x 2x 8x ,x 0=++≥⎧⎪+≤⎨⎪≥⎩2、求解线性规划:12121212min z 20x 10x 5x 4x 24s.t.2x 5x 5x ,x 0=++≤⎧⎪+≥⎨⎪≥⎩3、设生产标准型为1x 台;生产增强型2x 台,则可建立线性规划问题数学模型为12121212max z 100x 150x x 100x 120s.t.x 2x 160x ,x 0=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩四. 模型求解(含经调试后正确的源程序)1、求解线性规划:model:max=x1+2*x2;2*x1+5*x2>12;x1+2*x2<8;end结果显示:2、求解线性规划:model:min=20*x1+10*x2;5*x1+4*x2<24;2*x1+5*x2>5;End结果显示:3、求解线性规划:model:mAX=100*x1+150*x2; x1+2*x2<160;x1<100;x2<120;end结果显示:五.结果分析对于第一题中我们得出最优解:x1=0;x2=4;最优值max=8;第二题中我们得出最优解:x1=0;x2=1;最优值min=10;第三题中我们得出最优解:x1=1000;x2=30;最优值max=14500;即:生产标准型100台,生产增强型30台时,使得最后获利达最大,为14500。
实验利用Lingo求解整数规划和非线性规划问题

三、Lingo 循环编程举例
例5 用Lingo循环编程语句求解线性规划模型
max z 72x1 64x2
x1 x2 50, 132xx1 1180x0,2 480, x1 0, x2 0.
三、划 模型
max z 72x1 64x2
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign(person,task):a,x; ENDSETS DATA: a=1100,800,1000,700,
600,500,300,800, 400,800,1000,900, 1100,1000,500,700; ENDDATA min=@sum(assign:a*x); @for(person(i):@sum(task(j):x(i,j))=1); @for(task(j):@sum(person(i):x(i,j))=1); @for(assign(i,j):@bin(x(i,j))); END
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目的函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6、指派问题
企业在各地有4项业务,选定了4位业务员去处理。因为 业务能力、经验和其他情况不同,4业务员去处理4项业 务旳费用(单位:元)各不相同,见下表:
(3) 集合旳循环函数 集合旳循环函数能够使全部旳元素反复完毕某些操作.
函数
函数功能
• 形成集合全部元素需满足旳约
@for
束条件
• 计算集合中元素所在体现式旳
@sum
运筹学实验

《运筹学》上机实验报告学 院 机电工程学院 专 业 工业工程 指导教师 吴小东 班 级 工业10-1班 学生姓名 林 金 铎 学生学号实验时间 2012-2013学年第一学期实验一 使用LINGO 求解线性规划问题班级:工业10-1班 姓名:林金铎 学号: 评阅成绩: 已知如下线性规划模型:123max 303540z x x x =++1231231231233251823412229,,0x x x x x x x x x x x x ++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩ 一、利用集的方法编写上述线性规划模型的LINGO 程序。
在LINGO 软件模型中编写本题的程序如下图1-1所示所示。
图1-1 LINGO 模型窗口截图点击LINGO 菜单下的Solve 选项,LINGO 软件求解所输入的模型,得到LINGO 运行状态窗口如图1-2所示图1-2 LINGO运行状态窗口截图运行结束后,关闭LINGO运行状态窗口,获得LINGO软件的结果报告窗口,如图1-3、1-4所示。
图1-3 LINGO结果报告窗口截图(一)图1-4 LINGO结果报告窗口截图(二)二、根据编写的程序,回答以下问题:1、哪些是原始集答:var(j), const(i)是原始集2、哪个是派生集该派生集是稠密集还是稀疏集该派生集有多少个成员答:A(i,j)是派生集,属于稠密集合,共有9个成员3、属性值“5”是属于成员(b1,x3)还是(b3,x1)的属性值答:属于成员(b1,x3)的属性值三、根据程序的运行结果,回答以下问题:1、全局最优值是否已经找到该值是多少答:已经找到,最优值为1652、该模型求解一共迭代了多少次答:共迭代了2次3、在求解结果的界面中,Variable、Value、Reduced Cost、Row、Slack or Surplus 和Dual Price分别表示什么答:Variable表示运算时各定义变量的取值;Value表示给出最优解中各变量的值;Reduced Cost表示列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率;Row表示行数;Slack or Surplus 表示给出松驰变量的值;Dual Price表示当对应约束有微小变动时, 目标函数的变化率。
应用lingo软件实现线性规划和整数规划

一、 实验目的应用lingo 软件实现线性规划和整数规划。
二、 实验内容:1.线性规划方法的lingo 软件实现。
2.整数规划方法的Lingo 软件实现三、 实验环境:1 硬件要求:计算机一台2 操作系统:WindowsXP3 软件要求:lingo10四、实验步骤及程序编写:1.线性规划模型。
某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸弹32枚。
飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸弹时每升汽油可飞行3千米。
又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案。
解:设用了x 枚重型炸弹,用了y 枚轻型炸弹,攻击的是第i 个部位,再设一标志变量f 定义如下: ⎩⎨⎧=个部位不攻击第个部位攻击第i i f i 01目标函数为: ()[]∑=⨯⨯+⨯=41max i i li ih f p y px()()480002004/3/2004/2/≤++⨯+++⨯i i i i d d y d d x48≤x ,32≤y141=∑=i if2、整数规划模型。
某厂生产甲、乙两种产品,生产甲种产品每件要消耗煤9t ,电力4kw ,使用劳动力3个,获利70元;生产乙种产品每件消耗煤4t ,电力5kw ,使用劳动力10个,获利120元。
有一个生产日,这个厂可动用的煤是360t ,电力是200kw ,劳动力是300个,问应该如何安排甲、乙两种产品的生产,才能使工厂在当日的获利最大,并问该厂当日的最大获利是多少? 解:模型建立:⎪⎪⎩⎪⎪⎨⎧<+<+<++=取整x x x x x x x x x x t s f 2121212121,3001032005436049..12070max五、程序调试及实验总结1.线性规划模型。
lingo实验报告

lingo实验报告《lingo 实验报告》一、实验目的本次 lingo 实验旨在深入了解和掌握 Lingo 软件在优化问题求解中的应用,通过实际操作和案例分析,提高对数学建模和优化算法的理解与运用能力。
二、实验环境本次实验使用的计算机配置为:处理器_____,内存_____,操作系统_____。
Lingo 软件版本为_____。
三、实验内容(一)线性规划问题1、问题描述考虑一个生产计划问题,某工厂生产两种产品 A 和 B,生产 A 产品每个需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每个需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂现有原材料 100 个单位,工时 80 个单位。
A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。
求如何安排生产计划,使得总利润最大。
2、数学模型设生产 A 产品 x 个,生产 B 产品 y 个,则目标函数为:Max Z =5x + 4y约束条件为:2x + 3y <= 1003x + 2y <= 80x >= 0y >= 03、 Lingo 代码及求解结果```lingomodel:max = 5x + 4y;2x + 3y <= 100;3x + 2y <= 80;x >= 0;y >= 0;end```求解结果为:x = 20,y = 20,最大利润为 180 元。
(二)整数规划问题1、问题描述某物流公司需要安排车辆运输货物,有两种车型可供选择,大型车每辆可载货10 吨,小型车每辆可载货5 吨。
共有货物80 吨需要运输,且大型车的数量不能超过 8 辆,小型车的数量不能超过 12 辆。
大型车每辆的运输成本为 100 元,小型车每辆的运输成本为 60 元。
求如何安排车辆,使得运输成本最低。
2、数学模型设安排大型车 x 辆,小型车 y 辆,则目标函数为:Min C = 100x +60y约束条件为:10x + 5y >= 80x <= 8y <= 12x >= 0 且为整数y >= 0 且为整数3、 Lingo 代码及求解结果```lingomodel:min = 100x + 60y;10x + 5y >= 80;x <= 8;y <= 12;@gin(x);@gin(y);end```求解结果为:x = 6,y = 4,最低运输成本为 840 元。
lingo上机实验报告

lingo上机实验报告
一、实验目的
本实验的目的是通过使用 Lingo 软件学习并实践线性规划的基础知识,掌握 Lingo 软件的使用方法,以及掌握如何建立并求解线性规划问题。
二、实验内容
本次实验的内容主要包括以下几个部分:
1. Lingo 软件的安装及简单的使用操作。
2. 线性规划模型的建立与求解。
3. Lingo 软件在解决线性规划问题中的应用。
三、实验步骤
2. 运行 Lingo 软件后,打开一个新的工作表。
假设现有三种纸张,它们的价格分别为 10 元,15 元和 20 元。
在不超过 100 元的总预算下,现在需要购买这些纸张,使得纸张的总重量不少于 100 万克。
要求建立模型并求解。
4. 打开工具栏,分别输入模型所需的变量及约束条件,并设定好各个变量的范围。
5. 在“Lingo”界面上显示得到最优解。
6. 查看结果,进行分析。
四、实验结果
在 Lingo 软件中建立了一个线性规划模型,并成功求解。
将模型的结果输出,得到以下结果:
总共需要购买 25 万克的第一种纸张,50 万克的第二种纸张和 25 万克的第三种纸张。
总共花费 1100 元。
五、实验分析
本实验采用 Lingo 软件来完成线性规划问题的建立和求解。
在输入变量和约束条件后,Lingo 软件能够直观地展示出问题,并能够方便地求解出最佳解。
通过本实验,我们
可以看出 Lingo 软件在解决线性规划问题上的优势,它不仅简单易用,而且在速度上较为快捷,能够有效提高解决问题的效率。
实验1 利用Lingo求解线性规划

实验一:利用Lingo 软件求解线性规划问题实验一 利用Lingo 软件求解线性规划问题1、 实验目的和任务1.1. 进一步掌握Lingo 编程操作;1.2通过实验进一步掌握运筹学线性规划问题的建模以及求解过程,提高学生分析问题和解决问题能力。
2、 实验仪器、设备及材料计算机、Lingo3、 实验内容料场选址问题P10某公司有6个建筑工地要开工,每个工地的位置(用平面坐标a,b 表示,距离单位:km )及水泥日用量d(单位:t)由下表给出,目前有两个临时料场位于P (5,1),Q (2,7),日储量各有20t.请回答以下问题: 假设从料场到工地之间有直线道路相连,试制定每天的供应计划,即从P,Q 两料场分别向各工地运送多少吨水泥,使总的吨公量数最小。
工地的位置(a,b )及水泥日用量d建模 设工地的位置为(,)i i a b ,水泥日用量为i d ,i=1,2,…,6;料场位置为(,)j j x y ,日储量为j e ,j=1,2; 从料场j 向工地i 的运送量为ij c 。
决策变量:在问题(1)中,决策变量就是料场j 向工地i 的运送量为ij c ;在问题(2)中,决策变量除了料场j 向工地i 的运送量为ij c 外,新建料场位置(,)j j x y 也是决策变量。
目标函数:这个优化问题的目标函数f 是总砘公量数(运量乘以运输距离),所以优化目标可表为2611min j i f c ===∑∑约束条件:各工地的日用量必须满足,所以21,1,2, (6)ij ijc d i ===∑各料场的运送量不能超过日储量,所以61,1,2. ij jic e j =≤=∑求解过程编写模型程序:(介绍集合的定义及应用)model:sets:!确定变量a(1),a(2),a(3),a(4),a(5),a(6);demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!分割数据的空格与逗号或回车的作用是等价的;a=1.25 8.75 0.5 5.75 3 7.25;b=1.25,0.75,4.75,5,6.5,7.75;d=3,5,4,7,6,11;e=20,20;!a=enddatainit:!lingo对数据是按列赋值的,而不是按行;x,y=5,1,2,7;endinit[OBJ] min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));@for(demand(i):[demand_con] @sum(supply(j):c(i,j))=d(i););@for(supply(i):[supply_con] @sum(demand(j):c(j,i))<=e(i););@for(supply(i):@bnd(0.5,x(i),8.75);@bnd(0.75,y(i),7.75););End计算结果:(如果你使用的是试用版软件,则可能不能用全局求解器求解本例,因为问题规模太大了,激活全局最优求解程序的方法,是用“lingo|Options”菜单命令打开选项对话框,在“Global Solver”选项卡上选择“Use Global Solver”)Local optimal solution found.Objective value: 85.26604Total solver iterations: 61Variable Value Reduced CostA( 1) 1.250000 0.000000A( 2) 8.750000 0.000000A( 3) 0.5000000 0.000000A( 4) 5.750000 0.000000A( 5) 3.000000 0.000000A( 6) 7.250000 0.000000B( 1) 1.250000 0.000000B( 2) 0.7500000 0.000000B( 3) 4.750000 0.000000B( 4) 5.000000 0.000000B( 5) 6.500000 0.000000B( 6) 7.750000 0.000000D( 1) 3.000000 0.000000D( 2) 5.000000 0.000000D( 3) 4.000000 0.000000D( 4) 7.000000 0.000000D( 5) 6.000000 0.000000D( 6) 11.00000 0.000000X( 1) 3.254883 0.000000X( 2) 7.250000 0.6335133E-06 Y( 1) 5.652332 0.000000Y( 2) 7.750000 0.5438639E-06 E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000C( 1, 1) 3.000000 0.000000C( 1, 2) 0.000000 4.008540C( 2, 1) 0.000000 0.2051358C( 2, 2) 5.000000 0.000000C( 3, 1) 4.000000 0.000000C( 3, 2) 0.000000 4.487750C( 4, 1) 7.000000 0.000000C( 4, 2) 0.000000 0.5535090C( 5, 1) 6.000000 0.000000C( 5, 2) 0.000000 3.544853C( 6, 1) 0.000000 4.512336C( 6, 2) 11.00000 0.000000Row Slack or Surplus Dual PriceOBJ 85.26604 -1.000000DEMAND_CON( 1) 0.000000 -4.837363DEMAND_CON( 2) 0.000000 -7.158911DEMAND_CON( 3) 0.000000 -2.898893DEMAND_CON( 4) 0.000000 -2.578982DEMAND_CON( 5) 0.000000 -0.8851584DEMAND_CON( 6) 0.000000 0.000000SUPPLY_CON( 1) 0.000000 0.000000SUPPLY_CON( 2) 4.000000 0.000000如果把料厂P,Q的位置看成是已知并且固定的,这时是LP模型,只需把上面的程序中初始段的语句移到数据段就可以了。
线性规划实验报告

一、实验目的通过本次实验,了解线性规划的基本原理和方法,掌握线性规划模型的建立和求解过程,提高解决实际问题的能力。
二、实验内容1. 线性规划模型的建立2. 利用Lingo软件进行线性规划模型的求解3. 分析求解结果,进行灵敏度分析三、实验步骤1. 建立线性规划模型以某公司生产问题为例,建立线性规划模型。
设该公司有三种产品A、B、C,每种产品分别需要原材料X1、X2、X3,且原材料的价格分别为p1、p2、p3。
公司拥有一定的生产设备,每种产品的生产需要消耗一定的设备时间,设备时间的价格为p4。
设A、B、C产品的生产量分别为x1、x2、x3,原材料消耗量分别为y1、y2、y3,设备使用量分别为z1、z2、z3。
目标函数:最大化利润Z = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3)约束条件:(1)原材料消耗限制:y1 ≤ 10x1,y2 ≤ 8x2,y3 ≤ 5x3(2)设备使用限制:z1 ≤ 6x1,z2 ≤ 4x2,z3 ≤ 3x3(3)非负限制:x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,y1 ≥ 0,y2 ≥ 0,y3 ≥ 0,z1 ≥ 0,z2 ≥ 0,z3 ≥ 02. 利用Lingo软件进行线性规划模型的求解打开Lingo软件,按照以下步骤输入模型:① 在“Model”菜单中选择“Enter Model”;② 输入目标函数:@max = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3);③ 输入约束条件:@and(y1 <= 10x1, y2 <= 8x2, y3 <= 5x3);@and(z1 <= 6x1, z2 <= 4x2, z3 <= 3x3);@and(x1 >= 0, x2 >= 0, x3 >= 0, y1 >= 0, y2 >= 0, y3 >= 0, z1 >= 0, z2 >= 0, z3 >= 0);④ 在“Model”菜单中选择“Solve”进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011——2012学年第二学期
合肥学院数理系
实验报告
课程名称:运筹学
实验项目:求解线性规划问题
实验类别:综合性□设计性□验证性□√
专业班级: 09级数学与应用数学(1)班
姓名:王秀秀学号: 0907021006 实验地点: 9#503
实验时间: 2012-4-18 指导教师:管梅成绩:
一.实验目的
1、熟悉LINGO 软件的使用方法、功能;
2、掌握LINGO 软件以下内部函数的应用:
@free(variable)
取消默认域,使变量可以取任意实数
@gin(variable) 限制变量取整数值 @bin(variable) 限制变量取值为0,1
@bnd(low,variable,up) 限制变量于一个有限的范围 二.实验内容
1、某班有男同学30人,女同学20人,星期天准备去植树。
根据经验,一天中,男同学平均每人挖坑20个,或栽树30棵,或给25棵树浇水,女同学平均每人挖坑10个,或栽树20棵,或给15棵树浇水。
问应怎样安排,才能使植树(包括挖坑、栽树、浇水)最多。
建立该问题的数学模型,并求其解。
2、求解线性规划:
121212
212max z x 2x 2x 5x 12x 2x 8
s.t.0x 10x ,x =++≥⎧⎪+≤⎪⎨
≤≤⎪⎪⎩为整数
3、在高校篮球联赛中,我校男子篮球队要从8名队员中选择平均身高最高的出场阵容,队员的号码、身高及擅长的位置如下表:
同时,要求出场阵容满足以下条件: ⑴ 中锋最多只能上场一个。
⑵ 至少有一名后卫 。
⑶ 如果1号队员和4号队员都上场,则6号队员不能出场 ⑷ 2号队员和6号队员必须保留一个不出场。
问应当选择哪5名队员上场,才能使出场队员平均身高最高? 试写出上述问题的数学模型,并求解。
三. 模型建立
1、设1x ,2x ,3x 分别表示男生挖坑、栽树、浇水人数
1y ,2y ,3y 分别表示女生挖坑、栽树、浇水人数
则数学模型为
123123123123
1122i i max z 20x +30x +25x +10y +20y +15y x +x +x 30y +y +y =20s.t.20x 10y 30x 20y 0x 30;0y 20;i 1,2,3
==⎧⎪⎪
⎨+≥+⎪⎪≤≤≤≤=⎩
2、数学模型为:
121212
212max z x 2x 2x 5x 12x 2x 8
s.t.0x 10x ,x =++≥⎧⎪+≤⎪⎨
≤≤⎪⎪⎩为整数
3、设1,i x 0i i ⎧=⎨
⎩表示第个球员上场,表示第个球员不上场
则数学模型为
1234567812678
146268
1max z 1.92x 1.90x 1.88x 1.86x 1.85x 1.83x 1.80x 1.78x x +x 1x +x +x 1x +x +x 2x +x 1x 5x 0i i i ==+++++++≤⎧⎪≥⎪⎪≤⎪
≤⎨⎪⎪=⎪⎪
⎩∑取或1,i=1,2 (8)
四. 模型求解(含经调试后正确的源程序) 1、求解:
model:
max=20*x1+30*x2+25*x3+10*y1+20*y2+15*y3; x1+x2+x3=30; y1+y2+y3=20;
20*x1+10*y1>=30*x2+20*y2; @gin(x1);@gin(x2);@gin(x3); @gin(y1);@gin(y1);@gin(y1); @bnd(0,x1,30); @bnd(0,x2,30); @bnd(0,x3,30); @bnd(0,y1,20); @bnd(0,y2,20); @bnd(0,y3,20);
结果显示:
2、求解:
model:
max=x1+2*x2; 2*x1+5*x2>12; x1+2*x2<8;
@gin(x1);
@gin(x2);
@bnd(0,x2,10); end
结果显示:
3、求解:
model:
max=(1.92*x1+1.90*x2+1.88*x3+1.86*x4+1.85*x5+1.83*x6+1.80*x7+1.78*x8) /5;
x1+x2<=1;
x6+x7+x8>=1;
x1+x4+x6<=2;
x2+x6<=1;
x1+x2+x3+x4+x5+x6+x7+x8=5;
@bin(x1);@bin(x2);
@bin(x3);@bin(x4);
@bin(x5);@bin(x6);
@bin(x7);@bin(x8);
end
结果显示:
五.结果分析
第一题最优解:x1=20;x2=0; x3=10;y1=0;y2=20; y3=0;
最优值:max=1050;
第二题最优解:x1=0;x2=4; 最优值max=8;
第三题最优解:X=(1,0,1,1,1,0,1,0) 最优值max=1.862;
六.实验总结
通过此次实验,我掌握LINGO软件一些内部函数的应用,这些函数的应用使实际生活中的许多问题得到了解决。
学生签名:王秀秀 2012年4月18日。