第7节 函数的图象(经典练习及答案详解)

合集下载

函数的图像答案

函数的图像答案

【2014年高考会这样考】函数的图象主要考查作图、识图、用图三方面的综合能力,函数图象变换主要考查平移、对称和伸缩,多为选择题,主要考查两图象的交点与方程的解的关系.【复习指导】函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻.1.函数图象的变换 (1)平移变换 ①水平平移:y =f (x ±a )(a >0)的图象,可由y =f (x )的图象向左(+)或向右(-)平移a 个单位而得到.②竖直平移:y =f (x )±b (b >0)的图象,可由y =f (x )的图象向上(+)或向下(-)平移b 个单位而得到.(2)对称变换①y =f (-x )与y =f (x )的图象关于y 轴对称. ②y =-f (x )与y =f (x )的图象关于x 轴对称. ③y =-f (-x )与y =f (x )的图象关于原点对称. (3)伸缩变换①y =af (x )(a >0)的图象,可将y =f (x )图象上每点的纵坐标伸(a >1时)或缩(a <1时)到原来的a 倍,横坐标不变.②y =f (ax )(a >0)的图象,可将y =f (x )的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的1a倍,纵坐标不变.(4)翻折变换①作为y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f (x )|的图象;②作为y =f (x )在y 轴上及y 轴右边的图象部分,并作y 轴右边的图象关于y 轴对称的图象,即得y =f (|x |)的图象.2.等价变换例如:作出函数y =1-x 2的图象,可对解析式等价变形y =1-x 2⇔⎩⎪⎨⎪⎧y ≥01-x 2≥0y 2=1-x 2⇔⎩⎪⎨⎪⎧y ≥0y 2=1-x2⇔x 2+y 2=1(y ≥0),可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置. 两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径. (1)图象变换:平移变换、伸缩变换、对称变换. (2)函数解析式的等价变换. (3)研究函数的性质.双基自测1.(人教B 版教材习题改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( ).A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度解析 y =lg x +310=lg(x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到.答案 C 2.(2011·安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ).A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b )解析 本题主要考查对数运算法则及对数函数图象,属于简单题.当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上. 答案 D3.函数y =1-1x -1的图象是( ).解析 将y =-1x的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象. 答案 B4.(2011·陕西)函数y =x 13的图象是( ).解析 该题考查幂函数的图象与性质,解决此类问题首先是考虑函数的性质,尤其是奇偶性和单调性,再与函数y =x 比较即可.由(-x )13=-x 13知函数是奇函数.同时由当0<x <1时,x 13>x ,当x >1时,x 13<x ,知只有B 选项符合.答案 B5.(人教B 版教材习题改编)已知图①中的图象对应的函数为y =f (x ),则图②的图象对应的函数为( ).A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)解析 y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0,f (x ),x <0.答案 C考向一 作函数图象【例1】►分别画出下列函数的图象: (1)y =|lg x |;(2)y =2x +2;(3)y =x 2-2|x |-1;(4)y =x +2x -1.[审题视点] 根据函数性质通过平移,对称等变换作出函数图象.解 (1)y =⎩⎪⎨⎪⎧lg x (x ≥1),-lg x (0<x <1).图象如图①.(2)将y =2x 的图象向左平移2个单位.图象如图②. (3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0)x 2+2x -1 (x <0).图象如图③.(4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图④.(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y=x+1的函数;(2)掌握平移变换、伸缩变换、对称变换、翻折变换、x周期变换等常用的方法技巧,来帮助我们简化作图过程.【训练1】作出下列函数的图象:(1)y=2x+1-1;(2)y=sin|x|;(3)y=|log2(x+1)|.解(1)y=2x+1-1的图象可由y=2x的图象向左平移1个单位,得y=2x+1的图象,再向下平移一个单位得到y=2x+1-1的图象,如图①所示.(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,其图象关于y轴对称,如图②所示.(3)首先作出y=log2x的图象c1,然后将c1向左平移1个单位,得到y=log2(x+1)的图象c2,再把c2在x轴下方的图象翻折到x轴上方,即为所求图象c3:y=|log2(x+1)|.如图③所示(实线部分).考向二函数图象的识辨【例2】►函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图象大致是().[审题视点] 在同一个坐标系中判断两个函数的图象,可根据函数图象上的特征点以及函数的单调性来判断.解析f(x)=1+log2x的图象由函数f(x)=log2x的图象向上平移一个单位而得到,所以函数图象经过(1,1)点,且为单调增函数,显然,A项中单调递增的函数经过点(1,0),而不是(1,1),故不满足;函数g(x)=21-x=2×⎝⎛⎭⎫1x,其图象经过(0,2)点,且为单调减函数,B项中单调递减的函2数与y轴的交点坐标为(0,1),故不满足;D项中两个函数都是单调递增的,故也不满足.综上所述,排除A,B,D.故选C.答案 C函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复.利用上述方法,排除、筛选错误与正确的选项.【训练2】(2010·山东)函数y=2x-x2的图象大致是().解析 当x >0时,2x =x 2有两根x =2,4;当x <0时,根据图象法易得到y =2x 与y =x 2有一个交点,则y =2x -x 2在R 上有3个零点,故排除B 、C ;当x →-∞时,2x →0.而x 2→+∞,故y =2x -x 2<0,故选A.答案 A考向三 函数图象的应用【例3】►已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. [审题视点] 作出函数图象,由图象观察.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1, x ∈(-∞,1]∪[3,+∞),-(x -2)2+1, x ∈(1,3),作出图象如图所示.(1)递增区间为[1,2]和[3,+∞),递减区间为(-∞,1]和[2,3].(2)由图象可知,y =f (x )与y =m 图象,有四个不同的交点,则0<m <1, ∴集合M ={m |0<m <1}.(1)从图象的左右分布,分析函数的定义域;从图象的上下分布,分析函数的值域;从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.(2)利用函数的图象可解决方程和不等式的求解问题,比如判断方程是否有解,有多少个解?数形结合是常用的思想方法.【训练3】 (2010·湖北)若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ).A .[-1,1+22]B .[1-22,1+22]C .[1-22,3]D .[1-2,3] 解析在同一坐标系下画出曲线y =3-4x -x 2(注:该曲线是以点C (2,3)为圆心、2为半径的圆不在直线y =3上方的部分)与直线y =x 的图象,平移该直线,结合图形分析可知,当直线沿y 轴正方向平移到点(0,3)的过程中的任何位置相应的直线与曲线y =3-4x -x 2都有公共点;注意到与y =x 平行且过点(0,3)的直线的方程是y =x +3;当直线y =x +b 与以点C (2,3)为圆心、2为半径的圆相切时(圆不在直线y =3上方的部分),有|2-3+b |2=2,b =1-2 2.结合图形可知,满足题意的只有C 选项.答案 C。

高考数学专题《函数的图象》习题含答案解析

高考数学专题《函数的图象》习题含答案解析

专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。

高考总复习理数(人教版)第02章函数的概念与基本初等函数第7节函数的图象

高考总复习理数(人教版)第02章函数的概念与基本初等函数第7节函数的图象

第七节 函数的图象考点高考试题考查内容核心素养函数的图象2016·全国卷Ⅰ·T7·5分 已知函数解析式判断函数的图象 数学运算 逻辑推理2016·全国卷Ⅱ·T12·5分 利用函数的图象和性质求值数学运算 逻辑推理 2015·全国卷Ⅱ·T10·5分 判断函数图象 数学运算 数学建模 2014·全国卷Ⅰ·T6·5分判断函数图象数学运算 数学建模命题 分析本节内容在高考中的考查形式有两种:一种是给出函数解析式判断函数图象;一种是函数图象的应用.1.利用描点法作函数的图象 方法步骤:(1)确定函数的定义域; (2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等); (4)描点连线.2.利用图象变换法作函数的图象 (1)平移变换:(2)伸缩变换:(3)对称变换:y =f (x )――→关于x 轴对称y =-f (x );y =f (x )――→关于y 轴对称y =f (-x ); y =f (x )――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――――――――――――――→保留x 轴上方图将x 轴下方的图象翻折到上方去 y =|f (x )|. 提醒:(1)辨明三个易误点①图象左右平移仅仅是相对x 而言的,即发生变化的只是x 本身,利用“左加右减”进行操作.如果x 的系数不是1,需要把系数提出来,再进行变换.②图象上下平移仅仅是相对y 而言的,即发生变化的只是y 本身,利用“上加下减”进行操作.但平时我们是对y =f (x )中的f (x )进行操作,满足“上加下减”.③要注意一个函数的图象自身对称和两个不同的函数图象对称的区别. (2)会用两种数学思想 ①数形结合思想借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图象,还可以判断方程f (x )=g (x )的解的个数、求不等式的解集等.②分类讨论思想画函数图象时,如果解析式中含参数,还要对参数进行讨论,分别画出其图象.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( ) (2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( ) 答案:(1)× (2)× (3)× (4)√2.(教材习题改编)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:选C 距学校的距离应逐渐减小,由于小明先是匀速运动,故第一段是直线段,途中停留时距离不变,最后一段加速,最后的直线段比第一段下降得快,故应选C.3.已知函数f (x )=⎩⎪⎨⎪⎧1+ln x ,x ≥1,x 3,x <1,则f (x )的图象为( )解析:选A 由题意知函数f (x )在R 上是增函数,当x =1时,f (x )=1,当x =0时,f (x )=0,故选A.4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析:因为 f (x )=ax 3-2x 的图象过点(-1,4),所以4=a ×(-1)3-2×(-1),解得a =-2.答案:-25.(2018·大同检测)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.答案:(0,+∞)作函数的图象 [明技法]画函数图象的2种常用方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序.[提能力]【典例】 分别作出下列函数的图象. (1)y =2x +2;(2)y =x +2x -1.解:(1)将y =2x 的图象向左平移2个单位.图象如图①所示.(2)因为y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图②.① ②[母题变式] 将本例(2)的函数变为“y =x +2x +3”,函数的图象如何?解: y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如图所示.[刷好题](金榜原创)分别画出下列函数的图象: (1)y =|lg x |;(2)y =sin|x |.解:(1)∵y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y轴对称,其图象如图②.函数图象的识别与辨析[明技法]识辨函数图象的入手点(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图象的循环往复.(5)从函数的特征点,排除不合要求的图象.[提能力]【典例】(1)(2017·全国卷Ⅰ)函数y=sin 2x1-cos x的部分图象大致为()(2)如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P 所形成的轨迹为G,记G围成的区域的面积为y,则函数y=f(x)的图象大致为()解析:(1)选C 令f (x )=sin 2x1-cos x ,∵f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,∴排除选项A ,D.由1-cos x ≠0得x ≠2k π(k ∈Z ), 故函数f (x )的定义域关于原点对称.又∵f (-x )=sin (-2x )1-cos (-x )=-sin 2x1-cos x=-f (x ),∴f (x )为奇函数,其图象关于原点对称,∴排除选项B.故选C.(2)选D 方法一 由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x ,则AD =8-2x2=4-x ,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3),显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D.方法二 在判断出点P 的轨迹后,发现当x =1时,y =3-π4∈(2,3),故选D.[刷好题]1.下列四个函数中,图象如图所示的只能是( )A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x解析:选B 特殊值法:当x =1时,由图象知y >0,而C ,D 中y <0,故排除C ,D ;又当x =110时,由图象知y >0,而A 中y =110+lg 110=-910<0,排除A.故选B.2.函数y =sin x 2的图象是( )解析:选D 排除法:由y =sin x 2为偶函数判断函数图象的对称性,排除A ,C ;当x =π2时,y =sin ⎝⎛⎭⎫π22=sin π24≠1,排除B.故选D. 3.如图,矩形ABCD 的周长为4,设AB =x ,AC =y ,则y =f (x )的大致图象为( )解析:选C 方法一 由题意得y =x 2+(2-x )2=2x 2-4x +4,x ∈(0,2)不是一次函数,排除A 、B.当x →0时,y →2,故选C.方法二 由法一知y =2(x -1)2+2在(0,1]上是减函数,在[1,2)上是增函数,且非一次函数,故选C.函数图象的应用 [析考情]函数图象的应用是每年高考的必考内容,多以选择题、填空题的形式出现,考查两图象的交点、函数性质、方程解的个数、不等式的解集等,难度中档或偏上.[提能力]命题点1:利用图象研究函数的性质【典例1】 (2018·长春质检)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)解析:选C 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.命题点2:方程的根或函数图象的零点【典例2】 已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则方程2f 2(x )-3f (x )+1=0的解的个数为________.解析:方程2f 2(x )-3f (x )+1=0的解为f (x )=12或f (x )=1.作出y =f (x )的图象,由图象知直线y =12与函数y =f (x )的图象有2个公共点;直线y =1与函数y =f (x )的图象有3个公共点.故方程2f 2(x )-3f (x )+1=0有5个解.答案:5命题点3:利用图象求不等式的解集【典例3】 设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D f (x )为奇函数,所以不等式f (x )-f (-x )x <0化为f (x )x <0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).命题点4:利用函数图象的对称性解题【典例4】 (2016·全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m解析:选B 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x 的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x 1+x m =x 2+x m -1=…=0,y 1+y m =y 2+y m -1=…=2,∴∑i =1m(x i +y i )=0×m 2+2×m2=m .故选B.命题点5:利用函数图象求参数的取值范围【典例5】 函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围是________.解析:当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.当1<x ≤2时,-1<x -2≤0,f (x )=f (x -1)=f (x -2)=2-(x -2)-1.故x >0时,f (x )是周期函数,如图,欲使方程f (x )=x +a 有两解,即函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,则a 的取值范围是(-∞,1).答案:(-∞,1) [悟技法]函数图象应用中的几个问题(1)利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域;上下范围对应值域;上升、下降趋势对应单调性;对称性对应奇偶性.(2)有关不等式的问题常常转化为两函数图象的上、下关系来解.(3)有关方程解的个数问题常常转化为两个熟悉的函数的图象交点个数;利用此法也可由解的个数求参数值.[刷好题]1.(2018·潍坊检测)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .多于4个B .4个C .3个D .2个解析:选B 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示,函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.2.(2018·滁州质检)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图,要使f (x )≥g (x )恒成立,则-a ≤1,∴a ≥-1.答案:[-1,+∞)3.设函数y =2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称;④关于原点中心对称.其中正确的是________.解析:y =2x -1x -2=2(x -2)+3x -2=2+3x -2,图象如图所示.可知②③正确.答案:②③。

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图象[学习目标]1•了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. -=知识梳理自主学习知识点一正弦曲线正弦函数y = sin x(x€ R)的图象叫正弦曲线.利用几何法作正弦函数y= sin x, x€ [0,2 n]图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0, £ n,扌,…,2n等角的正弦线.6 3 2③找横坐标:把x轴上从0到2 n (2 6.28一段分成12等份.④平移:把角x的正弦线向右平移,使它的起点与x轴上的点x重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y= sin x, x€ [0,2 n]的图象.在精度要求不太高时,y= sin x, x € [0,2 诃以通过找出(0,0),(寸,1), ( n 0) , (# —1),(2 n 0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考在所给的坐标系中如何画出y= sin x, x€ [0,2 7的图象?如何得到y= sin x, x€ R的图象?只要将函数y= sin x, x€ [0,2 n的图象向左、向右平行移动(每次2n个单位长度),就可以得到正弦函数y= sin x, x€ R的图象.知识点二余弦曲线余弦函数y= cos x(x€ R)的图象叫余弦曲线.n n 根据诱导公式sin x+ 2 = cos x, x€ R.只需把正弦函数y= sin x, x€ R的图象向左平移-个单位长度即可得到余弦函数图象(如图).n 3要画出y = cos x, x€ [0,2従的图象,可以通过描出(0,1),勺,0,(n - 1), 0 , (2 n 1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y= cos x, x€ [0,2的图象.思考在下面所给的坐标系中如何画出y= cos x, x€ [0,2品的图象?答案题型探究重点突破题型一五点法”作图的应用例1利用五点法”作出函数y= 1-sin x(0 * 2曲)简图. 解(1)取值列表:⑵描点连线,如图所示:跟踪训练1作函数y = sin x , x € [0,2 n 与函数y =— 1 + sin x , x € [0,2冗的简图,并研究它 们之间的关系. 解按五个关键点列表:x 0 n2 n3 n ~22 n sin x1 0—1 0—1 + sin x—1 0—1 —2—1利用正弦函数的性质描点作图:x € [0,2 的图象.题型二利用正弦、余弦函数图象求定义域 例2 求函数f(x)= lg sin x +寸16 — x 2的定义域. sin x>0,解由题意得,x 满足不等式组216 — x 2 >0,—4 w x W 4,即作出y = sin x 的图象,如图所示.sin x>0,y =— 1 + sin x , 由图象可以发现,把结合图象可得定义域:x€ [ —4,—nU (0, n)跟踪训练2 求函数f(x)= lg cos x+ 25-x2的定义域.cos x>0解由题意得,x满足不等式组25—"0,cos x>0即—5W迄5,作出y= C0S x的图象,如图所示.结合图象可得定义域:x € —5,—3 nU题型三利用正弦、余弦函数图象判断零点个数例3在同一坐标系中,作函数y= sin x和y= lg x的图象,根据图象判断出方程sin x = lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y= sin x, x€ [0,2冗的图象,再依次向左、右连续平移2 n个单位,得到y= sin x的图象.描出点(1,0), (10,1)并用光滑曲线连接得到y= lg x的图象,如图所示.由图象可知方程sin x= lg x的解有3个.跟踪训练3方程x2—cos x = 0的实数解的个数是___________答案2解析作函数y= cos x与y= x2的图象,如图所示,由图象,可知原方程有两个实数解.思韻方法数形结合思想在三角函数中的应用例4函数f(x) = sin x+ 2|sin x|, x€ [0,2冗的图象与直线y= k有且仅有两个不同的交点,求k 的取值范围.3sin x, x € [0 , n,解f(x)= sin x+ 2|sin x|=—sin x, x€ n 2 n ].图象如图,F当堂检测自查自纠1.函数y= sin x (x€ R)图象的一条对称轴是()A. x轴B. y轴C.直线y= x D .直线x = 22.用五点法画y= sin x, x€ [0,2的图象时,下列哪个点不是关键点()1 A.(6,2)% 八B.(2, 1)C. ( , 0)D. (2 , 0)3.函数y= sin x, x€ [0,21 亠的图象与直线y= —2的交点为A(X1, y1), B(x2, y2),贝U X1 + x24. 利用五点法”画出函数y= 2-sin x, x€ [0,2的简图.5. 已知O w x< 2 n^试探索sin x与cos x的大小关系.若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据图可得k的取值范围是(1,3).A'课时精练、选择题n 3 n1函数y= —sin x, x€ —2, y 的简图是()2. 在同一平面直角坐标系内,函数y= sin x, x€ [0,2 与y= sin x, x€ [2 n 4 n的图象()A .重合B .形状相同,位置不同C.关于y轴对称sin x= 10的根的个数是3.方程4.D .形状不同,位置不同B. 8C. 9D. 10函数A'3 n n5.如图所示,函数y= cos x阳n x|(0且x③的图象是()D6. 若函数y= 2cos x(0< x< 2 n的图象和直线y= 2围成一个封闭的平面图形,则这个封闭图形的面积是()A . 4B . 8C . 2 nD . 4 n二、填空题7. __________________________________________________ 函数y= ” . log^sin x的定义域是_________________________________________________________ .&函数y= _ 2cos x+ 1的定义域是 ___________ .___ 19. 函数f(x) = >,'sin 或为 ---------------- .10. _______________________________________________________________ 设0<x< 2 n,且|cos x—sin x|= sin x—cos x,贝U x 的取值范围为 ______________________ .三、解答题111. 用“五点法”画出函数y = 2 + sin x, x€ [0,2 n的简图.12. 根据y= cos x的图象解不等式:-于三cos x< 2, x€ [0,2 n]13. 分别作出下列函数的图象.(1) y= |sin x|, x€ R;(2) y= sin|x|, x€ R.当堂检测答案1答案 D 2. 答案 A 3. 答案 3n 解析如图所示, _ 3 nx i + X 2= 2 = 3 n. 4.解(1)取值列表如下:x 0 n2 n3n~22 n sin x 0 1 0 —i 0 y = 2— sin x21232⑵描点连线,图象如图所示:由图象可知 ①当x =m 或x = 5n时,sin x = cos x ;44③当 O W x <n或5n<x< 2 n时,sin x <cos x. 课时精炼答案一、选择题 1•答案 D 2.答案 B5 •解用“五点法”作出sin x>cos x ;解析根据正弦曲线的作法可知函数y= sin x, x€ [0,2 n与y= sin x, x€ [2 n 4n的图象只是位置不同,形状相同.3. 答案Ax解析在同一坐标系内画出y= 10和y= sin x的图象如图所示:¥=血JT根据图象可知方程有7个根.4. 答案D解析由题意得n 32cos x, 0或2 n 炸2,c 冗30, 2<x<2 n.显然只有D合适.5. 答案C解析当冗当2<x< n时,y= cos x • |tan| =—sin x;当n<<3n寸,y= cos x |tax|= sin x,故其图象为C.6. 答案D解析作出函数y = 2cos x, x€ [0,2 n]图象,函数y = 2cos x,x€ [0,2 n的图象与直线y = 2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC的面积,又••• OA= 2, OC= 2n,S阴影部分=S矩形OABC = 2 X 2 n= 4 n.、填空题7. 答案{x|2k n<<2k n+ n k€ Z}1解析由log2sin x> 0知0<sin x< 1,由正弦函数图象知2kn«2k n+n k€乙… 2 2& 答案2k n—3冗,2k n+ k€ Z1 2 2解析2cos x+ 1> 0 , cos x>—2,结合图象知x€ 2k n— " n, 2k n+" n , k€ Z.9.答案(一4,— nU [0 , n]sin x > 0, 2kx < 2k n+ n,解析2?16— x 2>0 — 4<x<4? — 4<x W — n 或 0 < x W n. 解析 由题意知sin x — cos x >0, 即卩cos x W sin x ,在同一坐标系画出 y = sin x , x € [0,2 n 与三、解答题11•解(1)取值列表如下:x 0 n2 n3 2n 2 n sin x 0 1 0 —1 0 1 ,. 1 3 1 1 1 -+ sin x222222⑵描点、连线,如图所示.12.解 函数y = cos x , x € [0,2 n 的图象如图所示: 根据图象可得不等式的解集为n, ,5 n 7 n, , 5 n{x|—W x < 或一W x < }3 6 63,.10.答案n 5 n 4,~4y = cos x , x € [0,2n 观察图象知x € 4, 5 n~4 .n 的图象,sin x 2k x< 2k n+n, 13.解(1)y= |sin x|=—sin x 2k n+n<W 2k n+ 2 n(k€ Z).其图象如图所示,sin x x>0 ,(2)y= sin |x| =—sin x x<0 .其图象如图所示,。

第2章 第7节 函数的图象

第2章 第7节 函数的图象
A>1,伸为原来的A倍
y=f(ωx) ;
y=f(x)―――――――――――――→ y=Af(x) . 0<A<1,缩为原来的A倍
主干知识 自主排查
(3)对称变换 y=f(x)―――――→y= -f(x) y=f(x)―――――→y= f(-x)
关于y轴对称 关于x轴对称
; ;
关于原点对称 y=f(x) ――→ y= -f(-x) . (4)翻折变换 y=f(x)―――――――――――――→y=f(|x|);
主干知识 自主排查
2.利用图象变换法作函数的图象 (1)平移变换 y=f(x)――――――――――→ y=f(x-a)
a<0,左移|a|个单位 a>0,右移a个单位
; .
b>0,上移b个单位 y=f(x)――――――――――→ y=f(x)+b
b<0,下移|b|个单位
主干知识 自主排查
(2)伸缩变换 y=f(x)=
(1)首先作出y =lg x的图象C1,然后将 C1向右平移1个 函数图象作法的 2个关键点 单位,得到y=lg(x-1)的图象C2,再把C2在x轴下方 (1) 常见的几种函数图象如二次函数、反比例函 的图象作关于 x轴对称的图象,即为所求图象C3:y= |lg(x-1)|.如图1所示(实线部分). 数、指数函数、对数函数、幂函数、形如 y=x+ + (2)y=2x 1-1的图象可由y=2x的图象向左平移1个单 m 位,得y=2x+1的图象,再向下平移一个单位得到,如 (m>0)的函数是图象变换的基础. x 图2所示. 2 x -x-2x≥0, 2 (2) 掌握平移交换、伸缩变换、对称变换等常用方 (3)y=x -|x|-2= 2 其图象如图3所 x +x-2x<0, 法技巧,可以帮助我们简化作图过程. 示.

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质2.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<<b<1B.0<b<<1C.0<<a<1D.0<<<1【答案】A【解析】由图象知函数单调递增,所以a>1.又-1<f(0)<0,f(0)=loga (20+b-1)=logab,即-1<logab<0,所以0<<b<1,故选A.3.已知f(x)=x2+sin(+x),f′(x)为f(x)的导函数,则f′(x)的图象是()【答案】A【解析】f(x)=x2+sin(+x)=x2+cosx,f′(x)=x-sinx.易知该函数为奇函数,所以排除B、D.当x=时,f′()=×-sin=-<0,可排除C.选A.4.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.5.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.6.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.8.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.对实数a和b,定义运算“”:,设函数.若函数的图象与x轴恰好有两个共公点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】若即时,.若即或时,.画出的图象(如图)∵函数的图象与x轴恰好有两个共公点方程有两解函数与函数有两个不同的交点∴由图象可知或.11.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】A.,B.,C.,D..12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是_.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象在处有两个切点,切点坐标分别是和,此时相应的,,观察图象可知,方程有三个不同的实根时,实数的取值范围是。

高中数学一轮微专题第⑥季三角函数图像与性质第7节 三角函数对称性奇偶性与周期性

高中数学一轮微专题第⑥季三角函数图像与性质第7节  三角函数对称性奇偶性与周期性

第7节 三角函数的对称性与周期性【基础知识】 对称性:1.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;k Z ∈对称中心为.tan y x =,02k π⎛⎫ ⎪⎝⎭k Z ∈2.对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它sin )y A x ωϕ=+(()2x k k Z πωϕπ+=+∈还有无穷多个对称中心,它们是图象与轴的交点,可由,解得x ()x k k Z ωϕπ+=∈,即其对称中心为. ()k x k Z πϕω-=∈(),0k k Z πϕω-⎛⎫∈⎪⎝⎭3.相邻两对称轴间的距离为,相邻两对称中心间的距离也为,函数的对称轴一定经过图象T 2T 2的最高点或最低点. 奇偶性:1.函数的奇偶性的定义; 对定义域内任意,如果有()f x -=()f x ,则函数是偶函数,x 如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数 2.奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对y 称;3.为偶函数.()f x ()(||)f x f x ⇔=4.若奇函数的定义域包含,则.()f x 0(0)0f =5. 为奇函数,为偶函数,为奇函数. sin y x =cos y x =tan y x =周期性:1. 周期函数的定义一般地,对于函数,如果存在一个非零常数,使得定义域内的每一个值,都有()f x T x ,那么函数就叫做周期函数,非零常数 叫做这个函数的周期.()()f x T f x +=()f x T 2.最小正周期对于一个周期函数,如果它所有的周期中存在一个最小的正数 ,那么这个最小的正()f x 数 就叫做的最小正周期.()f x 2. ,周期为,周期为. sin y x =cos y x =2πtan y x =π【规律技巧】三角函数对称性先化成的形式再求解.其图象的对称轴是直线sin )y A x B ωϕ=++()(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心.三角函数周期性1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数。

第7节 函数的图象

第7节 函数的图象

第7节函数的图象课时训练练题感提知能【选题明细表】一、选择题1.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所有的点( A )(A)向右平移3个单位长度,再向下平移1个单位长度(B)向左平移3个单位长度,再向下平移1个单位长度(C)向右平移3个单位长度,再向上平移1个单位长度(D)向左平移3个单位长度,再向上平移1个单位长度解析:y=2x y=2x-3y=2x-3-1.故选A.2.已知f(x)=则函数y=f(x-1)的图象是( A )解析:先在坐标平面内画出函数y=f(x)的图象,如图所示,再将函数y=f(x)的图象向右平移1个单位长度即可得到y=f(x-1)的图象,因此选项A正确.故选A.3.(2013四川内江模拟)函数f(x)=2x-x2的图象为( D )解析:函数f(x)既不是奇函数也不是偶函数,排除选项A、C.又f(-1)=-,f(-2)=-,即f(-1)>f(-2).所以f(x)在(-∞,0)上不可能是减函数,故排除B,选D.4.(2014山东济南质检)设函数f(x)=2x,则如图所示的图象对应的函数是( C )(A)y=f(|x|)(B)y=-|f(x)|(C)y=-f(-|x|)(D)y=f(-|x|)解析:该图象是函数y=-2-|x|即y=-f(-|x|)的图象.故选C.5.(2013河南省十所名校三联)已知函数f(x)是定义在R上的增函数,则函数y=f(|x-1|)-1的图象可能是( B )解析:函数y=f(|x|)是偶函数,且在[0,+∞)上单调递增,函数y=f(|x-1|)-1的图象是把函数y=f(|x|)的图象向右平移一个单位,再向下平移一个单位得到,因此y=f(|x-1|)-1的对称轴为直线x=1,在(1,+∞)上是增函数,故选B.6.(2013乐山市第一次调研考试)函数f(x)=-(cos x)lg|x|的部分图象是下图中的( A )解析:易知f(x)为偶函数,其图象关于y轴对称,故排除选项B、D,再观察,知图象和x轴都有交点,且与x轴正方向的第一个交点为(1,0),第二个交点为,取x=,则f=-cos lg<0,排除选项C.故选A.7.(2013四川广安模拟)函数f(x)=sin 2x+e ln|x|的图象的大致形状是( B )解析:函数f(x)=sin 2x+|x|是非奇非偶函数,排除选项A、C.当x=-时,f(-)=sin(-)+=-1+<0.故排除D,选B.8.已知f(x)当x∈R时,恒满足f(2+x)=f(2-x),若方程f(x)=0恰有5个不同的实数根,则所有五个根之和是( C )(A)6 (B)8 (C)10 (D)12解析:由f(2+x)=f(2-x)知y=f(x)的图象关于直线x=2对称,如图,设方程f(x)=0的5个根从小到大依次为x1,x2,x3,x4,x5,则=2,=2,x3=2.所以x1+x2+x3+x4+x5=10.故选C.二、填空题9.若函数y=f(x+3)的图象经过点P(1,4),则函数y=f(x)的图象必经过点.解析:法一函数y=f(x)的图象是由y=f(x+3)的图象向右平移3个单位长度而得到的.故y=f(x)的图象经过点(4,4).法二由题意得f(4)=4成立,故函数y=f(x)的图象必经过点(4,4). 答案:(4,4)10.一个体积为V的棱锥被平行于底面的平面所截,设截面上部的小棱锥的体积为y,截面下部的几何体的体积为x,则y与x的函数关系可以表示为(填入正确图象的序号).解析:∵x+y=V,∴y=-x+V,∴由y=-x+V的图象可知应为③.答案:③11.已知函数f(x)满足f(x+1)=-f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围为.解析:依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内有4个零点,即函数y=f(x)与y=k(x+1)的图象在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图象(如图所示),注意直线y=k(x+1)恒过点(-1,0),可知当k∈时,相应的直线与函数y=f(x)在区间[-1,3]内有4个不同的交点,故实数k的取值范围是.答案:12.已知m、n分别是方程10x+x=10与lg x+x=10的根,则m+n= .解析:在同一坐标系中作出y=lg x,y=10x,y=10-x的图象,设其交点为A,B,如图所示.设直线y=x与直线y=10-x的交点为M,联立方程,得解得M(5,5).∵函数y=lg x和y=10x的图象关于直线y=x对称.∴m+n=x A+x B=2x M=10.答案:1013.已知定义在区间[0,1]上的函数y=f(x)的图象如图所示.对满足0<x1<x2<1的任意x1,x2,给出下列结论:①f(x1)-f(x2)>x1-x2;②f(x1)-f(x2)<x1-x2;③x2f(x1)>x1f(x2);④<f().其中正确结论的序号是.解析:由于k=表示函数图象上两点(x1,f(x1)),(x2,f(x2))连线的斜率,当x1和x2都接近于零时,由图象可知k>1,当x1和x2都接近于1时,k<1,故①②均不正确;当0<x1<x2<1时,根据斜率关系有>,即x2f(x1)>x1f(x2),所以③正确;在区间(0,1)上任取两点A、B,其横坐标分别为x1,x2,过A、B分别作x轴的垂线,与曲线交于点M、N,取AB中点C,过C作x轴的垂线,与曲线交点为P,与线段MN交点为Q,则=CQ,f()=CP,由图象易知CP>CQ,故有<f(),所以④正确.答案:③④三、解答题14.利用函数图象讨论方程|1-x|=kx的实数根的个数.解:在同一坐标系中画出y=|1-x|、y=kx的图象.由图象可知,当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.15.设函数f(x)=x+的图象为C1,C1关于点A(2,1)的对称图形为C2,C2对应的函数为g(x).(1)求函数g(x)的解析式;(2)若直线y=b与C2有且仅有一个公共点,求b的值,并求出交点的坐标.解:(1)设曲线C2上的任意一点为P(x,y),则P关于A(2,1)的对称点P'(4-x,2-y)在C1上,所以2-y=4-x+,即y=x-2+=,所以g(x)=.(2)由=b⇒(x-3)2=b(x-4)(x≠4).所以x2-(b+6)x+4b+9=0(其中x≠4)有唯一实根.(*)由Δ=[-(b+6)]2-4(4b+9)=b2-4b=0⇒b=0或b=4,把b=0代入(*)式得x=3,把b=4代入(*)式得x=5;∴当b=0或b=4时,直线y=b与C2有且仅有一个公共点,且交点的坐标为(3,0)和(5,4).16.已知函数f(x)=,g(x)=x+2,若方程f(x+a)=g(x)有两个不同实根,求a的取值范围.解:方程y=f(x+a)=,可化为∴函数y=f(x+a)的图象为以(-a,0)为圆心,半径为1的圆在x轴上和x轴上方的部分,如图所示.设过(-2,0)点和与直线y=x+2相切的半圆方程分别为y=f(x+a1)和y=f(x+a2),则可求出a=2-.由图象可观察出当-a1≤-a<-a2,即a2<a≤a1时,y=f(x+a)的图象与y=g(x)的图象有两个不同交点,即2-<a≤1时,方程f(x+a)=g(x)有两个不同的实根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7节函数的图象知识梳理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象y=log a x(a>0,且a≠1)的图象.(3)伸缩变换(4)翻折变换1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.而言,如果x的系数不是1,常需把系数提出2.图象的左右平移仅仅是相对于...x.来,再进行变换.而言的,利用“上加下减”进行.3.图象的上下平移仅仅是相对于...y.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图象不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图象不同,(2)错误.(3)y=f(x)与y=-f(x)的图象关于x轴对称,(3)错误.2.(多选题)若函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,则下列选项中正确的有()A.a>1B.0<a<1C.b>0D.b<0答案AD解析因为函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,所以其大致图象如图所示.由图象可知函数为增函数,所以a>1,当x=0时,y=1+b-1=b<0,故选AD.3.在2 h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q随时间t变化的图象是()答案B解析依题意知,在2 h内血液中药物含量Q持续增加,停止注射后,Q呈指数衰减,图象B适合.4.(2019·全国Ⅰ卷)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()答案D解析 ∵f (-x )=sin (-x )-x cos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x =π时,f (π)=π-1+π2>0,排除B ,C ,只有D 满足. 5.(2021·长沙检测)已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A.y =f (|x |)B.y =f (-|x |)C.y =|f (x )|D.y =-|f (x )|答案 B解析 观察函数图象可得,②是由①保留y 轴左侧及y 轴上的图象,然后将y 轴左侧图象翻折到右侧所得,结合函数图象的对称变换可得变换后的函数的解析式为y =f (-|x |).6.(2020·重庆联考)已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].考点一 作函数的图象【例1】作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =x 2-2|x |-1.解 (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.感悟升华 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.2.图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】分别作出下列函数的图象: (1)y =sin |x |;(2)y =2x -1x -1. 解 (1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图①.(2)y =2x -1x -1=2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图②所示. 考点二 函数图象的辨识1.(2020·浙江卷)函数y =x cos x +sin x 在区间[-π,π]的图象大致为( )答案 A解析 因为f (x )=x cos x +sin x ,则f (-x )=-x cos x -sin x =-f (x ),又x ∈[-π,π],所以f (x )为奇函数,其图象关于坐标原点对称,则C ,D 错误.且x =π时,y =πcos π+sin π=-π<0,知B 错误;只有A 满足. 2.(2021·重庆诊断)函数f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2的图象大致为( )答案 A解析 根据题意,f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2=x sin x ,定义域为R ,关于原点对称.有f (-x )=(-x )sin(-x )=x sin x =f (x ),即函数y =f (x )为偶函数,排除B ,D.当x ∈(0,π)时,x >0,sin x >0,有f (x )>0,排除C.只有A 适合. 3.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则函数y =f (1-x )的大致图象是( )答案 D解析 法一先画出函数f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象(图略),故选D.法二 由已知函数f (x )的解析式,得y =f (1-x )=⎩⎨⎧31-x,x ≥0,log 13(1-x ),x <0,故该函数过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C.选D.4.函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A.f (x )=x +sin xB.f (x )=cos xxC.f (x )=x ⎝ ⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x -3π2D.f (x )=x cos x 答案 D解析 从图象看,y =f (x )应为奇函数,排除C ; 又f ⎝ ⎛⎭⎪⎫π2=0,知f (x )=x +sin x 不正确;对于B,f(x)=cos xx ,得f′(x)=-x sin x-cos xx2,当0<x<π2时,f′(x)<0,所以f(x)=cos xx 在⎝⎛⎭⎪⎫0,π2上递减,B不正确;只有f(x)=x cos x满足图象的特征.感悟升华 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图象的应用角度1研究函数的性质【例2】(多选题)(2021·滨州一模)在平面直角坐标系xOy中,如图放置的边长为2的正方形ABCD沿x轴滚动(无滑动滚动),点D恰好经过坐标原点.设顶点B(x,y)的轨迹方程是y=f(x),则对函数y=f(x)的判断正确的是()A.函数y=f(x)是奇函数B.对任意的x∈R,都有f(x+4)=f(x-4)C.函数y=f(x)的值域为[0,22]D.函数y=f(x)在区间[6,8]上单调递增答案BCD解析由题意得,当-4≤x<-2时,点B的轨迹为以(-2,0)为圆心,2为半径的14圆;当-2≤x <2时,点B 的轨迹为以原点为圆心,22为半径的14圆; 当2≤x <4时,点B 的轨迹为以(2,0)为圆心,2为半径的14圆,如图所示; 以后依次重复,所以函数f (x )是以8为周期的周期函数.由图象可知,函数f (x )为偶函数,故A 错误;因为f (x )的周期为8,所以f (x +8)=f (x ),即f (x +4)=f (x -4),故B 正确; 由图象可知,f (x )的值域为[0,22],故C 正确;由图象可知,f (x )在[-2,0]上单调递增,因为f (x )在[6,8]的图象和在[-2,0]的图象相同,故D 正确.故选BCD.角度2 函数图象在不等式中的应用【例3】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)(2020·北京卷)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(0,1)D.(-∞,0)∪(1,+∞)答案 (1)B (2)D解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c 分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)在同一平面直角坐标系中画出h (x )=2x ,g (x )=x +1的图象如图.由图象得交点坐标为(0,1)和(1,2). 又f (x )>0等价于2x >x +1, 结合图象,可得x <0或x >1.故f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.角度3 求参数的取值范围【例4】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (1)(0,1) (2)(0,1)∪(9,+∞)解析 (1)画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的取值范围为(0,1). (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |, y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以①⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,∴⎩⎪⎨⎪⎧Δ=(3-a )2-4a >0,-3<a -32<0,(-3)2+(3-a )×(-3)+a >0,02+(3-a )×0+a >0,∴0<a <1.②⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)(x >1)有两组不同解. 消去y 得x 2+(3-a )x +a =0有两不等实根x 3、x 4, ∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1, ∴a >9.综上可知,0<a <1或a >9.感悟升华 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练2】(1)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.(2)(2020·徽州一中期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为________.(3)(多选题)(2021·淄博模拟)关于函数f(x)=|ln|2-x||,下列描述正确的有()A.函数f(x)在区间(1,2)上单调递增B.函数y=f(x)的图象关于直线x=2对称C.若x1≠x2,但f(x1)=f(x2),则x1+x2=4D.函数f(x)有且仅有两个零点答案(1)[-1,+∞)(2)(-2,-1)∪(1,2)(3)ABD解析(1)如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).(2)∵xf(x)<0,∴x和f(x)异号,由于f(x)为奇函数,补齐函数的图象如图.当x∈(-2,-1)∪(0,1)∪(2,+∞)时,f(x)>0,当x∈(-∞,-2)∪(-1,0)∪(1,2)时,f(x)<0,∴不等式xf(x)<0的解集为(-2,-1)∪(1,2).(3)函数f(x)=|ln|2-x||的图象如图所示,由图可得,函数f(x)在区间(1,2)上单调递增,A正确;函数y=f(x)的图象关于直线x=2对称,B正确;若x1≠x2,但f(x1)=f(x2),则x1+x2的值不一定等于4,C错误;函数f(x)有且仅有两个零点,D正确.函数图象的活用直观想象是发现和提出问题,分析和解决问题的重要手段,在数学研究的探索中,通过直观手段的运用以及借助直观展开想象,从而发现问题、解决问题的例子比比皆是,并贯穿于数学研究过程的始终,而数形结合思想是典型的直观想象范例.一、根据函数图象确定函数解析式【例1】(2021·长沙检测)已知某函数的图象如图所示,则下列函数中,与图象最契合的是()A.y =sin(e x +e -x )B.y =sin(e x -e -x )C.y =cos(e x -e -x )D.y =cos(e x +e -x )答案 D解析 由函数图象知,函数图象关于y 轴对称,∵y =sin(e x -e -x )为奇函数,图象关于原点对称,B 不正确; 又-1<f (0)<0,但sin 2>0,cos 0=1,故A ,C 不正确; 只有y =cos(e x +e -x )满足图象特征.故选D.素养升华 函数解析式与函数图象是函数的两种重要表示法,图象形象直观,解析式易于研究函数性质,可根据需要,相互转化.二、由图象特征研究函数性质求参数【例2】设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A.(-∞,1] B.[1,4]C.[4,+∞)D.(-∞,1]∪[4,+∞) 答案 D解析 作出函数f (x )的图象如图所示,由图象可知,要使f (x )在(a ,a +1)上单调递增, 需满足a ≥4或a +1≤2. 因此a ≥4或a ≤1.素养升华 1.运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.2.图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.A级基础巩固一、选择题1.(2020·天津卷)函数y=4xx2+1的图象大致为()答案A解析令f(x)=4xx2+1,则f(x)的定义域为R,且f(-x)=-4xx2+1=-f(x),因此,函数为奇函数,排除C,D.当x=1时,f(1)=42=2>0,排除B.故选A.2.(2021·江南十校模拟)函数f(x)=x cos x2x+2-x在⎣⎢⎡⎦⎥⎤-π2,π2上的图象大致为()答案C解析根据题意,有f(-x)=-x cos x2x+2-x=-f(x),且定义域关于原点对称,则在⎣⎢⎡⎦⎥⎤-π2,π2上,f (x )为奇函数,其图象关于原点对称,排除A ,B ; 又在区间⎝ ⎛⎭⎪⎫0,π2上,x >0,cos x >0,2x >0,2-x >0,则f (x )>0,排除D ,只有C 适合.3.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可能是( )答案 D解析 由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到.因此D 正确.4.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln(1-x ) B.y =ln(2-x ) C.y =ln(1+x ) D.y =ln(2+x )答案 B解析 法一 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).法二 由题意知,对称轴上的点(1,0)在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.5.(2021·豫北名校联考)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,则不等式f (x )>0的解集为( )A.⎝ ⎛⎭⎪⎫-32,32B.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32 D.⎝ ⎛⎭⎪⎫-32,0∪⎝ ⎛⎭⎪⎫32,+∞ 答案 C解析 根据题意,f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,可得其图象如图,且f (0)=0,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32=0,则不等式f (x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32.6.若函数f (x )=⎩⎨⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=( ) A.-12 B.-54 C.-1D.-2答案 C解析 由图象知⎩⎪⎨⎪⎧ln (a -1)=0,b -a =3,得⎩⎪⎨⎪⎧a =2,b =5.∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=5-6=-1.7.(多选题)(2021·山东新高考模拟)对于函数f (x )=lg(|x -2|+1),下列说法正确的是( )A.f (x +2)是偶函数B.f (x +2)是奇函数C.f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f (x )没有最小值 答案 AC解析 f (x +2)=lg(|x |+1)为偶函数,A 正确,B 错误.作出f (x )的图象如图所示,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0,C 正确,D 错误.8.若函数y =f (x )的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y =f ⎝ ⎛⎭⎪⎫2x -12B.y =f (2x -1)C.y =f ⎝ ⎛⎭⎪⎫12x -12D.y =f ⎝ ⎛⎭⎪⎫12x -1答案 B解析 函数f (x )的图象先整体往右平移1个单位,得到y =f (x -1)的图象,再将所有点的横坐标变为原来的12,得到y =f (2x -1)的图象. 二、填空题9.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度为(3,1).所以函数y =f (4-x )的图象过定点(3,1).10.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 答案 -12解析 函数y =|x -a |-1的大致图象如图所示,∴若直线y =2a 与函数y =|x -a |-1的图象只有一个交点, 只需2a =-1,可得a =-12.11.使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (-1,0)解析 在同一直角坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).12.已知函数f (x )在R 上单调且其部分图象如图所示,若不等式-2<f (x +t )<4的解集为(-1,2),则实数t 的值为________. 答案 1解析 由图象可知不等式-2<f (x +t )<4, 即f (3)<f (x +t )<f (0).又y =f (x )在R 上单调递减,∴0<x +t <3,不等式解集为(-t ,3-t ). 依题意,得t =1.B 级 能力提升13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图象上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2e x (x ≥0),则f (x )的“和谐点对”有( ) A.1个 B.2个C.3个D.4个答案 B解析 作出函数y =x 2+2x (x <0)的图象关于原点对称的图象(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2020·潍坊质检)已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A.0 B.0或-12 C.-14或12D.0或-14答案 D解析 因为f (x +2)=f (x ),所以函数f (x )的周期为2,如图所示:由图知,直线y =x +a 与函数f (x )的图象在区间[0,2]内恰有两个不同的公共点时,直线y =x +a 经过点(1,1)或与曲线f (x )=x 2(0≤x ≤1)相切于点A ,则1=1+a ,或方程x 2=x +a 只有一个实数根.所以a =0或Δ=1+4a =0,即a =0或a =-14.15.(多选题)(2021·日照模拟)设f (x )是定义在R 上的函数,若存在两个不相等的实数x 1,x 2,使得f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2,则称函数f (x )具有性质P .那么下列函数中,具有性质P 的函数为( ) A.f (x )=⎩⎪⎨⎪⎧1x ,x ≠0,0,x =0B.f (x )=|x 2-1|C.f (x )=x 3+xD.f (x )=2|x |答案 ABC解析 对于A ,在函数f (x )的图象上取A (-1,-1),B (0,0),C (1,1),有f (0)=f (-1)+f (1)2成立,故A 正确; 对于B ,在函数f (x )的图象上取A (-2,1),B (0,1),C (2,1),有f (0)=f (-2)+f (2)2成立,故B 正确; 对于C ,在函数f (x )的图象上取A (1,2),B (0,0),C (-1,-2),有f (0)=f (-1)+f (1)2成立,故C 正确; 对于D ,因为f (x )=2|x |,f (x 1)+f (x 2)2=2|x 1|+2|x 2|2≥2|x 1|·2|x 2|=2|x 1|+|x 2|2≥2|x 1+x 22|=f ⎝ ⎛⎭⎪⎫x 1+x 22,又x 1≠x 2,所以f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,故D 错误.故选ABC.16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m =________.答案 9解析 如图,作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2,∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故n m =9.。

相关文档
最新文档