管式反应器课程设计报告书
反应器设计课程设计

反应器设计课程设计一、教学目标本课程旨在通过学习反应器设计的基本原理和方法,使学生掌握化学反应器的设计和分析能力。
具体目标如下:1.掌握化学反应器的基本类型及其工作原理。
2.了解反应器设计的主要参数和计算方法。
3.理解反应器操作条件对反应结果的影响。
4.能够运用反应器设计的基本理论解决实际问题。
5.能够独立完成反应器设计的相关计算和分析。
6.能够阅读和理解反应器设计的英文文献。
情感态度价值观目标:1.培养学生的创新意识和科学精神。
2.增强学生对化学工程学科的兴趣和热情。
3.培养学生关注社会发展和环境保护的责任感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.反应器类型的介绍和分析。
包括釜式反应器、管式反应器、固定床反应器、流动床反应器等。
2.反应器设计的基本参数和计算方法。
如反应器的体积、压力、温度、流量等。
3.反应器操作条件对反应结果的影响。
如温度、压力、搅拌速度等。
4.反应器设计的实例分析。
通过具体案例,使学生掌握反应器设计的过程和方法。
三、教学方法本课程将采用多种教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:通过讲解反应器设计的基本原理和概念,使学生掌握相关知识。
2.讨论法:通过分组讨论,引导学生深入思考和理解反应器设计的实际问题。
3.案例分析法:通过分析具体案例,使学生学会运用所学知识解决实际问题。
4.实验法:通过实验操作,使学生了解反应器的工作原理和操作方法。
四、教学资源本课程将采用教材《化学反应器设计》为主要教学资源。
同时,还将利用参考书、多媒体资料、实验设备等辅助教学资源。
这些资源将有助于支持教学内容和教学方法的实施,丰富学生的学习体验。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:通过课堂参与、提问、小组讨论等方式,评估学生的参与度和积极性。
2.作业:布置相关的反应器设计练习题,评估学生对知识的理解和运用能力。
3.考试:定期进行反应器设计相关的考试,评估学生的知识掌握和应用能力。
化工专业实验“管式反应器流动特性”实验报告

化工专业实验预习报告“管式反应器流动特性”实验报告学生姓名:班级:学号:实验组号:同组姓名:实验时间:任课老师:撰写实验报告时间:20 年月日管式反应器流动特性测定实验1 实验目的1.了解连续均相管式循环反应器的返混特性; 2.分析观察连续均相管式循环反应器的流动特征; 3.研究不同循环比下的返混程度,计算模型参数n 。
2 实验原理及要点在工业生产上,对某些反应为了控制反应物的合适浓度,以便控制温度、转化率和收率,同时需要使物料在反应器内由足够的停留时间,并具有一定的线速度,而将反应物的一部分物料返回到反应器进口,使其与新鲜的物料混合再进入反应器进行反应。
在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。
对于这种反应器循环与返混之间的关系,需要通过实验来测定。
在连续均相管式循环反应器中,若循环流量等于零,则反应器的返混程度与平推流反应器相近,由于管内流体的速度分布和扩散,会造成较小的返混。
若有循环操作,则反应器出口的流体被强制返回反应器入口,也就是返混。
返混程度的大小与循环流量有关,通常定义循环比R 为:流量离开反应器物料的体积循环物料的体积流量R (1)其中,离开反应器物料的体积流量就等于进料的体积流量循环比R 是连续均相管式循环反应器的重要特征,可自零变至无穷大。
当R=0时,相当于平推流管式反应器; 当R=∞时,相当于全混流反应器。
因此,对于连续均相管式循环反应器,可以通过调节循环比R ,得到不同返混程度的反应系统。
一般情况下,循环比大于20时,系统的返混特性已经非常接近全混流反应器。
返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。
然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。
第四章管式反应器_反应工程上课简版

4.2 等温管式反应器的设计
平行反应
A P rP k1c A A Q rQ k 2c A
间歇釜
c 1 n A 0 k1 k 2 cA
对各组分作物料衡算
dc (k1 k2 )c A A 0 dt
dcP k1c A 0 dt
ck k2c A
P
t
c A c A0 e[(k1 k2 )t ]
讨论2 活塞流反应器与连续釜式反应器?
X Af Vr dX A PFR c A0 0 Qo [R A ( X A )]
CSTR
c A0 X Af Vr Qo R A ( X Af )
正常动力学
4.2 等温管式反应器的设计
讨论3.间歇釜与活塞流反应器的浓度(转化率) 变化规律?
4.1 活塞流假定
重要的概念
全混流模型:
Q0
Q
基本假定 径向混合和轴向返混都达到最大 符合此假设的反应器,物料的停 留时间参差不齐。
ci 0
ci
Vr
剧烈搅拌的连续釜式反应器 -可按全混流处理
特点
反应物系的所有参数在径向上均一, 轴向上也均一,即:各处物料均一,
均为出口值。
4.1 活塞流假定
--不同位置上的T~XA关系
BR:
--不同时间下的T~XA关系
T T0 CSTR:
c A0 (H r )T0
--在等温下操作,在出口处
c pt
XA
的XA一定、温度T也一定
讨论2.绝热操作温度
等温反 应 XA 吸热反 应 T XA 和 T的关系图 放热反应
wA0 (H r) Tr T T0 XA M A c pt
4 管式反应器

4 管式反应器4.1在常压及800℃等温下在活塞流反应器中进行下列气相均相反应:6532664+→+C H CH H C H CH在反应条件下该反应的速率方程为:0.51.5,/.=T H r C C mol l s式中C T 及C H 分别为甲苯及氢的浓度,mol/l ,原料处理量为2kmol/h ,其中甲苯与氢的摩尔比等于1。
若反应器的直径为50mm ,试计算甲苯最终转化率为95%时的反应器长度。
解:根据题意可知甲苯加氢反应为恒容过程,原料甲苯与氢的摩尔比等于1,即:00=T H C C ,则有:0(1)==-T H T T C C C X 示中下标T 和H 分别代表甲苯与氢,其中:53300330000.5 1.01310 5.6810/8.3141010732/21/0.27810/--⨯⨯===⨯⨯⨯====⨯T T T T p C kmol mRT F Q C kmol h kmol s 所以,所需反应器体积为:00000.5 1.500 2.50.95333 1.5 1.501.5 1.5(10.95)10.278100.4329 3.0061.5(5.6810)(1) 1.51---==--=⨯=⨯=⨯--⎰⎰⎰T T X X T Tr T T T HT T T dX dX V Q C Q C C C C dX mX 所以,反应器的长度为:23.0061531.10.05 3.14/4=⨯m4.2根据习题3.2所规定的条件和给定数据,改用活塞流反应器生产乙二醇,试计算所需的反应体积,并与间歇釜式反应器进行比较。
解:题给条件说明该反应为液相反应,可视为恒容过程,在习题3.2中已算出:0275.8/=Q l h 0 1.231/=A C mol l 所以,所需反应器体积:00000000(1)()275.80.95818.61 5.2 1.23110.95=--===-⨯-⎰A X Ar A A A B A A A A A dX V Q C kC X C C X Q X l kC X 由计算结果可知,活塞流反应器的反应体积小,间歇釜式反应器的反应体积大,这是由于间歇式反应器有辅助时间造成的。
任务5连续管式反应器设计

y A0
nA0 nt 0
为A组分占反应开始时总物
质的摩尔分数
恒温变容管式反应器计算公式
化学反应
速率方程
计算式
A
P(零级) -rA=k
VR xA
FA0
kA
A
P(一级) -rA=kCA
VR (1 A yA0 ) ln(1 xA ) A yA0 xA
换句话说,若反应器体积相同,连续操作管式反应 器所达到的转化率比连续操作釜式反应器更高。
27
1.间歇操作釜式反应器和连续操作管式反应器比较
对间歇操作釜式反应 器,其反应时间为:
对连续操作管式反应 器,其反应时间为:
m
CA0
xAf 0
dxA rA
p
VRp V0
xAf
CA0
特征:同一截面上不同径向位置的流体特性(T,CA) 是一致的。所有物料在反应器中的停留时间相同, 即 无返混.操作时,反应器内的状态只随轴向位置变, 不随时间变
2
一、 基础设计方程式
连续操作管式反应器具有以下特点: 1.在正常情况下,它是连续定态操作,故在反应
器的各处截面上,过程参数不随时间而变化; 2.反应器内浓度、温度等参数随轴向位置变化,
复合反应
反应器 的大小
影响
过程的 经济性
影响
产物分布 (选择性、收率等)
单一反应
复合反应
26
(一)简单反应的反应器生产能力的比较
简单反应是指只有一个反应方向的过程。其优化目 标只需考虑反应速率,而反应速率直接影响反应 器生成能力。
即:对简单反应,单位时间、单位体积反应器所能 得到的产物量,为达到给定生产任务所需反应器 体积最小为最好。
精细化工过程与设备教案第三章管式反应器

学习必备
欢迎下载
管径及排列方式,其工艺特性差异较大(见表)。 SRT 型炉是目前世界上大型乙烯装置中应用最多的炉型。中国的燕山石油化工
公司,扬子石油化工公司和齐鲁石油化工公司的 300kt 乙烯生产装置均采用此种裂 解炉。
超选择性裂解炉 简称 USC炉。每组四根管, 它是美国斯通-韦伯斯特公司在 70年代开发的一种炉 型,炉子的基本结构与 SRT炉大体相同, 但反应管由多组 W型变径管组成 (图 3.12 ), 每组四根管,前两根材质为 HK-40,后两根为 HP-40,全部离心浇铸和内部机械加工 平整,管径由小到大,一般为 50~ 83mm,长为 10~ 20m。按照生产能力的要求,每台 炉可装 16、24或32个管组,裂解产物离开反应管后迅速进入一种专用急冷锅炉 (USX), 每两组反应管配备一个急冷锅炉。 USC 炉的主要技术特性为 : ①采用多组小口径管并双面辐射加热,炉管比表面较 大。加热均匀且热强度高,从而实现了 0.3s 以下的短停留时间。②采用变径管以降 低过程的烃分压。短的停留时间和低的烃分压使裂解反应具有良好的选择性。 USC炉单台炉子乙烯年生产能力可达 40kt 。中国大庆石油化工总厂以及世界上 很多石油化工厂都采用它来生产乙烯及其相关产品。 林德-西拉斯裂解炉 简称 LSCC炉。 是林德公司和西拉斯公司在 70年代初合作研制而成的一种炉型。 炉子的基本结构与 SRT炉相似。可耐 1050℃高温。炉膛中央吊装构形特殊的反应管 (图 3.13 ),一般采用主要成分为含镍 20%、铬25%的 HK-40合金钢作为裂解反应管材料, 每组反应管是由 12根小口径管 (前 8根组成 4对平列管, 后 4根组成两对平列管) 以及 4根中口径管 (由 4根管组成两对平列管) 和一根大口径管组成, 管径为 6~15cm,管 总长 45~ 60m。裂解产物离开反应管后立即进入急冷锅炉骤冷。 急冷锅炉随裂解炉型 而有所不同。 LSCC 炉反应器的特点是原料入口处为小口径管双排双面辐射加热,物料能迅速 升温,缩短停留时间,后继的反应管则为单排双面辐射,管径采取逐管增大方式以 达到降低烃分压的目的。 物料在反应管中的停留时间为 0.2 ~ 0.4s 。短停留时间和低 烃分压使裂解反应具有较高的选择性,乙烯产率高。
管式反应器课程设计

化学化工学院化工专业课程设计设计题目:管式反应器设计化工系化工专业课程设计——设计文档质量评分表(100分)评委签名: 日期:目录绪论 .........................................................错误!未定义书签。
1设计内容与方法介绍..........................................错误!未定义书签。
反应器设计概述............................................错误!未定义书签。
设计内容..................................................错误!未定义书签。
生产方法介绍..............................................错误!未定义书签。
反应器类型特点............................................错误!未定义书签。
反应器选择及操作条件说明..................................错误!未定义书签。
2工艺计算....................................................错误!未定义书签。
主要物性数据..............................................错误!未定义书签。
计算,确定管长,主副反应收率.............................错误!未定义书签。
管数计算..................................................错误!未定义书签。
3压降计算公式................................................错误!未定义书签。
4催化剂用量计算..............................................错误!未定义书签。
管式反应器

2.盘管式反应器
盘管式反应器
盘管式反应器是将管式反应器做成盘管的形式,设备紧凑, 节省空间,但检修和清刷管道比较麻烦。 盘管式反应器由许多水平盘管上下重叠串联而成。每一个 盘管是由许多半径不同的半圆形管子相连接成螺旋形式,螺 旋中央留出φ400 mm的空间,便于安装和检修。
项目二管式反应器的设计和操作
相关知识
一、平推流反应器
连续操作管式反应器可近似看成理想置换反应器,简称 PFR。反应物和产物都处于连续流动的状态,物料在反应器内 没有积累,系统中的浓度、温度、压力等参数在一定位置处是 定值,即不随时间而变。但在反应器中不同位置这些参数是不 同的。
操作过程:
反应器内的浓度变化:
项目二管式反应器的设计和操作
Vt V0 (1 y A0 A x A )
1 xA c A c A0 1 y A0 A x A
Ft F0 (1 y A0 A x A )
p A p A0 1 xA 1 y A0 A x A
1 xA y A y A0 1 y A 0 A x A
得:
xA VR dxA c A0 0 kc2 (1 x ) 2 V0 A0 A
VR xA V0 kcA0 (1 x A )
V0 x A VR V0 kcA0 (1 x A )
项目二管式反应器的设计和操作
求解方法:解析法、图解积分法、数值积分法
平推流反应器图解计算示意图
项目二管式反应器的设计和操作
解:由于 c A0 c B 0 ,并且是等摩尔反应
所以反应速率方程式为
(rA ) kcAcB kc
2 A
反应在理想间歇反应器内所需反应时间为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
管式反应器一种呈管状、长径比很大的连续操作反应器。这种反应器可以很 长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多 管并联,可以是空管,如管式裂解炉,也可以是在管填充颗粒状催化剂的填充管, 以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时, 空管的长径比大于 50,填充段长与粒径之比大于 100(气体)或 200(液体),物 料的流动可近似地视为平推流。管式反应器返混小,因而容积效率(单位容积生 产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。此外,管式反 应器可实现分段温度控制。管式反应器在近 40 年里,由于其体积小,效率高的 特点,在化工中的应用与发展十分迅速。因此,对管式反应器的研究具有深远的 意义。 ;;;;;;;;;;;
1)反应器选型; 2)确定合适的工艺条件; 3)确定实现这些工艺条件所需的技术措施; 4)确定反应器的结构尺寸; 5)确定必要的控制手段。 在反应器设计时,除了通常说的要符合“合理、先进、安全、经济”的原则, 在落实到具体问题时,要考虑到下列的设计要点: 1)保证物料转化率和反应时间; 2)满足物料和反应的热传递要求; 3)设计适当的搅拌器和类似作用的机构; 4)注意材质选用和机械加工要求。
1.1 反应器设计概述.................................................................................................................2 1.2 设计容.................................................................................................................................2 1.3 生产方法介绍....................................................................................................................3 1.4 反应器类型特点................................................................................................................3 1.5 反应器选择及操作条件说明............................................................................................4 2 工艺计算........................................................................................................................................5 2.1 主要物性数据.....................................................................................................................5 2.2MATLAB 计算,确定管长,主副反应收率 ......................................................................5 2.3 管数计算.............................................................................................................................6 3 压降计算公式................................................................................................................................7 4 催化剂用量计算............................................................................................................................7 5 换热面积计算................................................................................................................................7 6 反应器外径计算............................................................................................................................8 7 壁厚计算........................................................................................................................................8 8 筒体封头计算...............................................................................................................................9 9 管板厚度计算................................................................................................................................9 10 设计结果汇总..............................................................................................................................9 11 设计小结 ...................................................................................................................................10
我国自 20 世纪 80 年代引进这一先进技术后,由化工研究院、南华集团和工 业大学在“七五”期间承担了管式反应器的国家攻关项目,大学在“八五”、“九 五”、“十五”期间也承担了管式反应器的国家攻关项目和有关基础研究工作。一 些研究、和高校大力协同,积极开展基础研究工作和承担工程项目,至今取得了 很大的成绩,填补了这一领域的空白。随着现代高科技的发展,我国研制的新型 管式反应器也必将赶上世界先进水平,在化工界占有一席之地。
20 世纪 60 年代美国 TVA 公司将管式反应器用于磷酸铵的气液固三项系统, 省掉了传统的预中和工艺;70 年代以来,许多国家在磷复工业中相继开发了各 种管式反应器以及相应的新流程,如德国 UHDE 公司、西班牙 CROS 公司。目前世 界上生产磷酸铵最简捷、能耗最低的流程是西班牙 Aspindesa 公司开发的生产粉 状 MAP 的管式反应器喷雾流程。如今的管式反应器的开发已扩展到磷酸铵以外的 许多化肥生产领域,如硫基复的中和段采用了短管型管式反应器,并且在扩大段 形成了一个循环反应过程以延长停留时间。然而,随着科技的不断发展,新型的 管式反应器将被不断地被研究出,为化工行业带来方便。
1.3 生产方法介绍
邻二甲苯氧化法
610~640K
主反应如上图,此外,由副反应还生成苯甲酸、顺丁烯二酸酐等。该反应为 强放热反应,因此选择适宜的催化剂(高活性和高选择性)和移出反应热以抑制 深度氧化反应,是工业过程的关键。工业生产方法一般是采用以五氧化二钒为主 的钒系催化剂(见金属氧化物催化剂)进行邻二甲苯的气相氧化。1974 年,开 发了高负荷表面涂层的钒系催化剂,催化剂载体是惰性的无孔瓷球、刚玉球和碳 化硅球等。选用环状载体制备催化剂。这种新型催化剂可以减少因扩散引起的深 度氧化反应,从而提高了苯酐的收率、选择性和催化剂的负荷。反应器多采用列 管式固定床。典型工艺过程是将过滤后的无尘空气经压缩、预热,与气化的邻二 甲苯蒸气混合后进入反应器,反应热由管外循环的熔盐带出。反应产物进入蒸汽 发生器,被冷却的反应气经进一步冷却,回收粗苯酐。尾气经水洗回收顺丁烯二 酸酐后放空,或用催化燃烧法净化后再放空。粗苯酐经减压精馏由塔顶分离出低 沸点的顺丁烯二酸酐、甲基顺丁烯二酸酐及苯甲酸等,塔底物料经真空精馏,得 到苯酐产品。
化学化工学院
化工专业课程设计
设计题目:
管式反应器设计
化工系
化工专业课程设计——设计文档质量评分表(100 分)
指标点 2.2 问题分析能力(25 分)
指标点 3.1 设计解决方案(75 分)
反应规模及方案(3 分)
反应器设计符合标准、规(10 分)
反应器动力学及其来源(3 分)
反应器选型合理性(5 分)
1.2 设计容
在列管反应器中进行邻二甲苯(A)氧化制邻苯二甲酸酐(B),反应为连串 —平行反应。
三个反应的速率方程为
(-△Hr)B= 1285 kJ/kmol; (-△Hr)C=4561 kJ/kmol 其中 C 是归并在一起的最终产物 CO 和 CO2。已知气体混合物的表观质量流 速为 G(5850 kg/m2·h),催化剂堆积密度为 1300kg/m3,反应压力 1.25×105Pa, 气体平均摩尔质量 Mm=29.48 kg/kmol,入口处邻二甲苯的摩尔分数 y ,入 A0(0.00874) 口处氧的摩尔分数 yO2(0.2064),原料温度 T0(628K),比热容 Cp=1.047(kJ/kmol·K)。 反应热量通过管外冷流体强制循环移除,传热系数 U=508kJ/(m2·h·K),且认为 冷流体温度恒定,温度为 Tc(613K)。试对反应器进行设计,并进行床层压降校核。 催化剂粒径,床层空隙率参数自己选择。催化剂耐受的最高温度为 660 K。 产能: 1 万吨邻苯二甲酸酐/年 每年生产周期按 300 天计