2021春北师大版八年级数学下册教案:第三章 图形的平移与旋转

合集下载

2021年北师大版数学八年级下册3.2《图形的旋转》教案

2021年北师大版数学八年级下册3.2《图形的旋转》教案

2021年北师大版数学八年级下册3.2《图形的旋转》教案一. 教材分析《图形的旋转》是北师大版数学八年级下册第三章《几何变换》的一部分。

本节课主要让学生掌握图形旋转的性质,了解旋转变换在实际问题中的应用。

通过学习,学生能理解旋转的概念,掌握旋转的性质,能运用旋转变换解决一些简单的问题。

二. 学情分析学生在七年级时已经学习了图形的平移,对图形的变换有一定的认识。

但旋转与平移存在很大的差异,学生需要通过实例对比,进一步理解旋转的性质。

此外,学生需要通过操作活动,体会旋转变换在实际问题中的应用。

三. 教学目标1.知识与技能:理解旋转变换的概念,掌握旋转变换的性质,能运用旋转变换解决一些简单问题。

2.过程与方法:通过观察、操作、讨论,培养学生的空间想象能力和动手操作能力。

3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。

四. 教学重难点1.重点:旋转变换的概念,旋转变换的性质。

2.难点:旋转变换在实际问题中的应用。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立知识体系。

2.操作法:学生通过动手操作,直观地感受旋转变换的性质。

3.讨论法:学生分组讨论,分享彼此的想法,培养合作意识。

六. 教学准备1.教学课件:教师准备课件,展示旋转变换的实例和性质。

2.学生活动材料:学生准备剪刀、纸张等材料,进行旋转变换的操作活动。

七. 教学过程1.导入(5分钟)教师通过提问:“同学们,你们知道什么是图形的旋转吗?”引导学生回顾旋转的概念。

然后,教师展示一些实例,如旋转向量、旋转变换在实际问题中的应用等,让学生初步感受旋转变换的特点。

2.呈现(10分钟)教师引导学生观察、分析旋转变换的性质,如旋转变换不改变图形的大小和形状,只改变图形的位置等。

学生通过观察、操作,总结旋转变换的性质。

3.操练(10分钟)学生分组进行旋转变换的操作活动。

教师提供一些实际问题,如旋转变换在几何作图、物体运动等方面的应用,学生运用旋转变换解决问题。

北师大八年级数学下册第三章平移与旋转教案

北师大八年级数学下册第三章平移与旋转教案

北师大八年级数学下册第三章平移与旋转教案
课题:图形的平移(1)
第二环节自研自探:
请同学们认真看课本65-67 页内容,思考并解决下列问题:
第六环节拓展提升
(4)如图,将字母A按箭头所指的方向平移出平移后的图形。

课题:图形的平移(2)
系?
2、完成想一想,你发现对应点的坐标之间有什么关系?
3、完成做一做,你发现对应点的坐标之间有什么关系?
4、通过议一议,归纳出沿坐标轴方向平移后的图形与原图
解:想一想答案:向上平移3个单位长度,对应点的横坐标不变,纵坐标都加3;向下平移2个单位长度,对应点的横坐标不变,纵坐标都减2
做一做答案:(1)原图向右平移3各单位长度;原图向左平移2个单位长度
(2)原图向上平移3个单位长度;原图向下平移2个单位长度
课题:图形的平移(3)
口答练习:
在坐标系中,将坐标作如下变化时,图形将怎样变化?
课题:图形的旋转(一)
课题:图形的旋转(二)
本题还有没有其他作法,可以作出△后的图形△DEF吗?
课题:3.3 中心对称
(二)自研自探
五、本课小结:
这节课你学到了什么?
六、布置作业:
七、板书设计
课题:3.4简单的图案设计

85到86页内容并解决下列问题:
解:这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同。

转分析这个图案的形成过程。

解:这个图形可以按照以下步骤形成的。

课题:图形的平移与旋转回顾与思考。

北师大版数学八年级下册第三章图形的平移与旋转3.1图形的平移(第3课时)教案设计

北师大版数学八年级下册第三章图形的平移与旋转3.1图形的平移(第3课时)教案设计

3.1图形的平移(第3课时平面直角坐标系中沿x轴和y轴的两次平移)教学目标1.探究图形沿x轴、y轴方向和斜向平移时位置和数量的关系.2.能按要求画出平面图形两次平移后的图形.3.掌握图形两次平移或斜向平移后在平面直角坐标系中的坐标变化规律,认识图形变换与坐标之间的内在联系.教学重点图形沿x轴、y轴方向和斜向平移时位置和数量的关系.教学难点对图形平移在平面直角坐标系中的坐标变化规律的探究.课时安排1课时教学过程复习巩固点的平移与点的坐标变化规律:左、右平移,横变纵不变,“右加左减”;上、下平移,纵变横不变,“上加下减”.导入新课将下图中的“鱼”F向下平移2个单位长度,再向右平移3个单位长度,得到新“鱼”F'.画出新“鱼”F'如图所示(分两步,先向下平移,再向右平移).【思考】(1)能否将新“鱼”F'看成是“鱼”F经过一次平移得到的?如果能,请指出平移的方向和平移的距离,并与同伴交流.能,平移的方向和图中箭头方向一致,平移的距离是线段FF'的长度,也就是13.(2)在新“鱼”F'和“鱼”F中对应点的坐标之间有什么关系?“鱼”F的顶点坐标纵坐标减2,横坐标加3,就能对应得到新“鱼”F'的顶点坐标。

探究新知一、预习新知阅读教材P71~P73的内容,回答下列问题.一个图形依次沿着x轴方向、y轴方向平移后所得到图形,可以看成是由原来的图形经过一次平移得到的.二、合作探究探究1:在平面直角坐标系中,一个点(x,y)沿x轴方向平移a(a>0)个单位长度,再沿y轴方向平移b(b>0)个单位长度,得到点的坐标是什么?【思考】F沿 x 轴方向平移,要分向左或向右平移;沿 y 轴方向平移,要分向上或向下平移.(1)点(x,y)向左平移 a(a>0)个单位长度,再向上平移 b(b>0)个单位长度⇔平移后的坐标为(x-a,y+b);(2)点(x,y)向左平移 a(a>0)个单位长度,再向下平移 b(b>0)个单位长度⇔平移后的坐标为(x-a,y-b);(3)点(x,y)向右平移 a(a>0)个单位长度,再向上平移 b(b>0)个单位长度⇔平移后的坐标为 (x+a,y+b);(4)点(x,y)向右平移 a(a>0)个单位长度,再向下平移 b(b>0)个单位长度⇔平移后的坐标为 (x+a,y-b).探究 2:先将图中“鱼” 的每个“顶点”的横坐标分别加2,纵坐标不变,得到“鱼”G ,再将“鱼”G 的每个“顶点”的纵坐标分别加 3,横坐标不变,得到“鱼”H ,“鱼”H 与原来的“鱼”F 相比,有什么变化?【思考】“鱼”F 的每个“顶点”的横坐标分别加 2,纵坐标不变,得到“鱼”G ,则“鱼”G 是由“鱼”F 向右平移 2 个单位长度得到的;再将“鱼”G 的每个“顶点”的纵坐标分别加 3,横坐标不变,得到“鱼”H ,则“鱼”H 是由“鱼”G 向上平移 3 个单位长度得到的.所以“鱼”H 是由“鱼”F 先向右平移 2 个单位长度,再向上平移 3 个单位长度得到的.【问题 1】如果横坐标分别加 2,纵坐标分别减 3 呢?同样得到“鱼”H 是由“鱼”F 先向右平移 2 个单位长度,再向下平移 3 个单位长度得到的.【问题 2】一个图形依次沿 x 轴方向、y 轴方向平移后所得图形与原来的图形相比, 位置有什么变化?它们对应点的坐标之间有怎样的关系?【总结】一个图形依次沿 x 轴方向、y 轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.例如图,四边形ABCD各顶点的坐标分别为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.【解】(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3;A′(1,8),B′(0,6),C′(3,4),D′(3,7);(2)如图,连接AA′,由图可知,AA′=42+32=5.因此,如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,那么这一平移的平移方向是由A到A′的方向,平移距离是5个单位长度.课堂练习1.如图所示,在10×6的网格中,每个小方格的边长都是1个单位.将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A.先把三角形ABC向左平移5个单位长度,再向下平移2个单位长度B.先把三角形ABC向右平移5个单位长度,再向下平移2个单位长度C.先把三角形ABC向左平移5个单位长度,再向上平移2个单位长度D.先把三角形ABC向右平移5个单位长度,再向上平移2个单位长度2.将点A(-3,-3)向右平移5个单位长度,得到点A,再把A向上平移411个单位长度,得到点A,则点A的坐标为()22A.(-2,-1)C.(-3,1)B.(2,1)D.(3,1)3.已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点B的坐标是.4.如图所示的一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A、B、C、D、E、F、G平移后对应点的坐标,并画出平移后的图形.参考答案1.A2.B3.(-5,-3)4.解:对应点坐标分别为A′(-5,-3)、B′(-3,-4)、C′(-2,-4)、D′(-1,-3)、E′(-3,-3)、F′(-3,-1)、G′(-4,-2).描出这些对应点并按原来的顺序连接起来,可得平移后的图形,如图所示.课堂小结设(x,y)是原图形上的一点,当它沿x轴方向平移a(a>0)个单位长度,沿y 轴方向平移b(b>0)个单位长度后,这个点与其对应点的坐标之间有如下关系:平移方向和平移距离向右平移a个单位长度,向上平移b个单位长度向右平移a个单位长度,向下平移b个单位长度向左平移a个单位长度,向上平移b个单位长度向左平移a个单位长度,向下平移b个单位长度对应点的坐标(x+a,y+b)(x+a,y-b)(x-a,y+b)(x-a,y-b)布置作业完成教材习题3.3板书设计图形的平移1.一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.2.在平面直角坐标系中,一个点(x,y)沿x轴方向平移a(a>0)个单位长度,再沿y轴方向平移b(b>0)个单位长度,这个点与其对应点的坐标之间有如下关系:(1)点(x,y)向左平移a(a>0)个单位长度,再向上平移b(b>0)个单位长度⇔平移后的坐标为(x-a,y+b);(2)点(x,y)向左平移a(a>0)个单位长度,再向下平移b(b>0)个单位长度⇔平移后的坐标为(x-a,y-b);(3)点(x,y)向右平移a(a>0)个单位长度,再向上平移b(b>0)个单位长度⇔平移后的坐标为(x+a,y+b);(4)点(x,y)向右平移a(a>0)个单位长度,再向下平移b(b>0)个单位长度⇔平移后的坐标为(x+a,y-b).。

八年级数学下册第3章图形的平移与旋转第1节图形的平移(第1课时)教案北师大版(2021年整理)

八年级数学下册第3章图形的平移与旋转第1节图形的平移(第1课时)教案北师大版(2021年整理)

河北省邯郸市肥乡县八年级数学下册第3章图形的平移与旋转第1节图形的平移(第1课时)教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省邯郸市肥乡县八年级数学下册第3章图形的平移与旋转第1节图形的平移(第1课时)教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省邯郸市肥乡县八年级数学下册第3章图形的平移与旋转第1节图形的平移(第1课时)教案(新版)北师大版的全部内容。

图形的平移课题 3.1。

1图形的平移课型教学目标1.通过具体实例认识图形的平移变换,探索它的基本性质。

2.能按要求做出简单的平面图形平移后的图形。

3.要明确平面图形的平移变换,即很多平面图案都可以看作是由其中的某一部分,沿着上下或左右的方向,平移若干次而成的。

重点平移的基本性质难点发现原图形与平移后图形间的关系。

教学用具多媒体三角板教学环节二次备课复习新课导入创设问题情景1、回忆游乐园内的一些项目,如:小火车、滑梯,缆车……2、图片欣赏3、观察图片,回答以下问题:(1)手扶电梯上的人做什么运动?行驶的汽车呢?(2)手扶电梯上的人的形状、大小在运动前后是否发生了改变?行驶的汽车呢?(3)手扶电梯上的人,如果某部为向前移动了80cm,那么人的其他部位向什么方向移动?移动了多少距离?(4)如果把推拉前后的一扇窗分别记为四边形ABCD和四边形EFGH,那么四边形ABCD与四边形EFGH的形状、大小是否相同?学生活动:独立思考或组内交流,结合已有的知识,初步让学生将实际问题中的数学知识挖掘出来,建立数学模型,为后边的学习内容奠定基础.设计目的:通过有趣的现实生活中所含有的平移问题激发学生学习和探求解决问题的欲望,同时,也让学生感受到将要学习的平移就在自己的身边。

北师大版八年级数学下册第三章图形的平移与旋转3.3中心对称(教案)

北师大版八年级数学下册第三章图形的平移与旋转3.3中心对称(教案)
3.掌握中心对称在实际问题中的应用,如平面几何图形的对称变换。
4.掌握中心对称与轴对称的区别与联系,能解决相关问题。
5.举例说明中心对称在生活中的应用,培养学生的观察能力和实际操作能力。
本节课我们将结合教材内容,通过实例分析、动手操作、小组讨论等方式,帮助学生深入理解和掌握中心对称的相关知识。
二、核心素养目标
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、旋转等操作,演示中心对称的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中心对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
此外,我在教学过程中也注意到,对于一些理解能力较弱的学生,需要更多地给予个别辅导和鼓励。在讲解难点时,我要更加耐心地解释,尽量用简单易懂的语言和例子,帮助他们克服困难。
在总结回顾环节,我询问了学生们对今天学习内容的掌握情况,他们普遍反映对中心对称有了更深刻的认识。但同时,我也意识到,对于这部分知识点的巩固和应用,还需要在后续的教学中不断加强。
1.培养学生的空间观念和几何直观,通过中心对称的学习,使学生能够观察、分析、描述和创造对称图形,提高对图形变换的理解和操作能力。
2.培养学生的逻辑思维与推理能力,通过探究中心对称的性质与判定方法,让学生学会运用严谨的逻辑推理解决问题。
3.培养学生的数学建模能力,使学生能够将中心对称Байду номын сангаас用于解决实际问题,建立数学模型,提高解决实际问题的能力。
4.培养学生的合作交流能力,通过小组讨论、合作探究,让学生学会倾听、表达、交流与合作,提高团队协作能力。

八年级数学下册第三章图形的平移与旋转2图形的旋转教案(新版)北师大版

八年级数学下册第三章图形的平移与旋转2图形的旋转教案(新版)北师大版

2图形的旋转一、教学目标(1)经历对生活中旋转现象的观察分析过程,引导学生用数学的眼光看待生活中的有关问题;(2)通过具体实例认识旋转,知道旋转的性质;(3)经历对具有旋转现象的图形的观察,操作,画图等过程,掌握好作图的基本技能. 二、教学重点、难点重点:通过具体实例认识旋转的性质.难点:探索旋转的性质,并能应用性质掌握作图技能.三、教具准备课件.四、教学过程(一)情境创设展示一些图片创设情境,让学生说说这些旋转现象有什么共同特征,还能不能再举出一些类似的例子?从学生熟悉的生活现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义,同时引导学生用数学的观点看待生活中的有关问题,发展学生的数学观.(二)探索活动(多媒体出示)活动一:将△ABC绕着点C旋转,记旋转后的三角形为△DEC.(如图2-1)问题1:你能说说BC旋转到了什么位置吗?AC旋转到了什么位置?问题2:点A与哪个点对应?点B与哪个点对应呢?问题3:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?学生小组内交流、讨论,教师巡视、指导.C BECO图2-1 图2-2(多媒体出示)活动二:将△ABC绕着点O旋转,记旋转后有的三角形为△DEF.(如图2-2)问题1:你知道点A旋转到了哪个点的位置吗?点B呢?点C呢?问题2:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?问题3:根据这两个活动,你知道什么叫做旋转吗?问题4:观察边AC的旋转痕迹,你能求出边AC旋转了多少度吗?BC呢?A点旋转到D点,转了多少度?B点转到E点,又转了多少度?问题5:如果继续旋转,你发现了什么?教师多媒体演示旋转,让学生仔细观察.师生共同探究.问题1:观察点C的旋转痕迹,你能测量出C点旋转了多少度吗?点A旋转了多度?点B 呢?问题2:如果取AC的中点M,那么点M会旋转到什么位置?你能画出来吗?那点M旋转了多少度?再继续旋转,你发现了什么?问题3:观察点C的旋转痕迹,你能说说点C是如何运动的吗?根据这个运动特点,你能说说点C与对应点F有什么关系吗?点A与点D,点B与点E是否也具有这种关系?讨论:你能说说旋转前与旋转后的两个之间有哪些会改变?又有哪些无论你怎么旋转,也不会改变?(三)新授通过以上探究活动,得出定义:在平面内,将一个图形绕着一个定点旋转一定的角度,这样的图形运动就叫做图形的旋转.这个定点就叫旋转中心,旋转的角度就叫旋转角.图形的旋转不改变图形大小与形状.性质:旋转前,旋转后的两个图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等.思考:已知图形的旋转,如何测量出旋转角呢?(四)巩固练习1.如图2-3,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转一定的角度得到的.请指出图中的哪一点是旋转中心?测量旋转的角度.( A′ )D′C′图2-32.(1)如图2-4,画出将△ABC绕点A按逆时针方向旋转90°后的对应三角形.CA图2-4(2)如果点D是AC的中点,那么经过上述旋转后,点D旋转到什么位置?请在所画图中将点D的对应点D′表示出来.3.如图2-5,在正方形ABCD中,E是BC上一点,将△AB E旋转后得到△A DF.FDGB图2-5(1)旋转中心是哪一点?旋转了多少度?说说你是怎么测量的.(2)如果G点是AB上的一点,点G应旋转到什么时候位置?请在图中将点G的对应点G′表示出来.(五)操作训练已知A点与点O,画出点A绕着点O旋转30°后的点A′.拓展一:已知线段AB与点O,画出将线段AB绕着点O按逆时针方向旋转80°后得到的图形.拓展二:已知△ABC和点O,画出将△ABC绕着点O按逆时针方向旋转80°后得到的图形. 拓展三:若改成多边形呢?你能总结出旋转作图的方法吗?4.思考:如图2-6,△ABC绕着点O旋转后,点A到达点D的位置,你能画出旋转后的三角形吗?D图2-6(六)课堂小结通过本节课的学习,你知道什么是旋转了吗?你认为旋转有哪些性质?,你能作出符合某一条件旋转后的图形吗?。

八年级数学下册第三章图形的平移与旋转图形的平移 教案北师大版

八年级数学下册第三章图形的平移与旋转图形的平移 教案北师大版

第三章图形的平移与旋转1 图形的平移第2课时【教学目标】知识技能目标:通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系. 过程性目标:在活动过程中,提高学生的探究能力和方法.情感态度目标:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学的美.【重点难点】重点:通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律难点:坐标的变化与点的平移之间的关系【教学过程】一、创设情境图中的“鱼”是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的,将这条“鱼”向右平移5个单位长度.(1)画出平移后的新“鱼”.(2)在图中尽量多选取几组对应点,并将它们的坐标填入下表:原来的“鱼”( , ) ( , ) ( , ) …向右平移5个单位长度后的( , ) ( , ) ( , ) …新“鱼”(3)你发现对应点的坐标之间有什么关系?如果将原来的“鱼”向左平移4个单位长度呢?请你先想一想,然后再具体做一做.二、探究归纳活动一:探求坐标系中的平移变换想一想:如果将图中的“鱼”向上平移3个单位长度,那么平移前后的两条“鱼”中,对应点的坐标之间有什么关系?如果将图中的“鱼”向下平移2个单位长度呢?做一做:(1)将图中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别加3,再将得到的点用线段依次连接起来,从而画出一条新“鱼”,这条新“鱼”与原来的“鱼”相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?(2)将图中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别加3,所得到的新“鱼”与原来的“鱼”相比又有什么变化?如果横坐标保持不变,纵坐标分别减2呢?例题讲解议一议:在平面直角坐标系中,一个图形沿x轴方向平移a(a>0)个单位长度后的图形与原图形对应点的坐标之间有什么关系?如果图形沿y轴方向平移a(a>0)个单位长度呢?与同伴交流.归纳总结如下:1.一个图形沿x轴方向平移a(a>0)个单位长度:(x,y)向右平移a个单位(x+a,y)向左平移a个单位(x-a,y)2.一个图形沿y轴方向平移a(a>0)个单位长度:(x,y)向上平移a个单位(x,y+a)向下平移a个单位(x,y-a)三、交流反思通过一条“鱼”的平移,探究“鱼”横向或纵向平移一次的坐标变化,进一步感受平移的实质,渗透平移的三要素,即“基本图形、方向、距离”.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生掌握得比较好.四、检测反馈1.四边形ABCD的顶点坐标分别是A(0,3),B(-3,0),C(0,-3),D(3,0)(1)将四边形ABCD向右平移6个单位长度,得到四边形A1B1C1D1,写出四边形A1B1C1D1各顶点的坐标;(2)将四边形A1B1C1D1向上平移6个单位长度,得到四边形A2B2C2D2,写出四边形A2B2C2D2各顶点的坐标.2.(1)将第1题中的四边形A2B2C2D2各顶点的纵坐标不变,横坐标分别减4,得到四边形A3B3C3D3,它与四边形A2B2C2D2相比有什么变化?(2)将四边形A3B3C3D3各顶点的横坐标不变,纵坐标分别减4,得到四边形A4B4C4D4,它与四边形A3B3C3D3相比有什么变化?五、布置作业.课本P70 3.2习题六、板书设计七、教学反思1.注意学生活动的指导教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.2.给学生空间最后提出的一个挑战性问题,虽不能解决,让学生更加急迫地要充实新知识解决未解决的问题,从而使自己获得更大的成功,以成良性循环的学习模式.。

北师大八年级数学下册教案:第3章 图形的平移与旋转

北师大八年级数学下册教案:第3章 图形的平移与旋转

北师大八年级数学下册教案:第3章图形的平移与旋转3.1图形的平移第1课时平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是()A. B.C. D.解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】利用平移的性质进行计算如图,将等腰直角△ABC 沿BC 方向平移得到△A1B 1C 1,若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1等于()A .1 B.2 C.3D .2解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴12×x ×2x =2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C =2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有()①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图第2课时坐标系中的点沿x轴、y轴的平移2.能够根据平移的性质解决点的坐标平移变化问题.(重点,难点)一、情境导入在如图所示的坐标系中标注出点A0(-2,-3),并按下列要求作图.(1)将A0向上平移3个单位长度,向右平移6个单位长度得到A1;(2)将A0向右平移6个单位长度,向上平移3个单位长度得到A2;(3)将A0向下平移2个单位长度,向左平移4个单位长度得到A3;(4)将A0向左平移4个单位长度,向下平移2个单位长度得到A4.观察每一次平移后得到的点的坐标,你能从中发现什么规律?二、合作探究探究点一:图形沿x轴或y轴方向的平移与点的坐标变化【类型一】沿x轴方向的平移的坐标变化在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A()A.向右平移2个单位B.向左平移2个单位C.向右平移4个单位D.向左平移4个单位解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,那么向右平移两个横坐标差的绝对值即可.∵点A(-2,3)平移后能与原来的位置关于y轴对称,∴平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.方法总结:本题考查了平移中点的变化规律及点关于坐标轴对称的知识,用到的知识点为:两点关于y轴对称,纵坐标相同,横坐标互为相反数;点的左右移动只改变点的横坐标.【类型二】沿y轴方向的平移的坐标变化点P(-2,1)向下平移2个单位长度后,在x轴反射下的点P′的坐标为()C.(-2,1)D.(2,1)解析:把点P(-2,1)向下平移2个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标(-2,-1),在x轴反射下的点P′与P关于x轴对称.点P(-2,1)向下平移2个单位长度后的坐标为(-2,-1),则在x轴反射下的点P′的坐标为(-2,1),故选C.方法总结:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).【类型三】根据平移判断点所在的位置将点M(-1,-5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.点M(-1,-5)向右平移3个单位长度,得到点N的坐标为(2,-5),故点N在第四象限.故选D.方法总结:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.探究点二:图形依次沿着x轴方向、y轴方向的平移与坐标变化【类型一】根据点的坐标变化判断平移方式将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC()A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的解析:平移与点的变化规律:横坐标加上3,应向右移动;纵坐标不变.根据点的坐标变化与平移规律可知,当△ABC各顶点的横坐标加上3,纵坐标不变,相当于△ABC向右平移3个单位长度.故选B.方法总结:本题考查图形的平移变换,关键是要懂得左右平移时点的纵坐标不变,而上下平移时点的横坐标不变.【类型二】根据平移判断点所在的位置在平面直角坐标系上,点(4,6)先向左平移6个单位,再将得到的点的坐标关于x轴对称,得到的点位于()A.x轴上B.y轴上C.第三象限D.第四象限解析:首先根据图形平移点的坐标的变化规律可得点(4,6)先向左平移6个单位后点的坐标,再写出关于x轴对称的点的坐标,然后根据平面直角坐标系中各象限内点的坐标特征即可求解.∵将点(4,6)先向左平移6个单位后点的坐标为(-2,6),∴(-2,6)关于x轴对称的点的坐标(-2,-6),在第三象限.故选C.方法总结:此题主要考查了坐标与图形变化-平移,关于x轴对称的点的坐标规律,以及平面直角坐标系中各象限内点的坐标特征,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.【类型三】平移的综合应用如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为________.解析:(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.解:(1)A′为(4,0)、B′为(1,3)、C′为(2,-2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.方法总结:熟练掌握平移的规律是解题的关键,上下平移,横坐标不变,纵坐标上加下减;左右平移,纵坐标不变,横坐标左加右减.三、板书设计1.图形沿x轴的平移的坐标变化在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴的平移的坐标变化在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.3.图形依次沿着x轴方向、y轴方向的平移与坐标变化一个图形依次沿着x轴方向、y轴方向的平移后所得到的图形,可以看成是由原来的图形经过一次平移得到的.本课时的教学主要以学生为主体,鼓励学生主动参与到课堂互动中来,在学生讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性,体会数形结合思想的应用,增强应用数学的意识,提高数学建模的能力,让学生学会探究,学会学习.3.2图形的旋转第1课时旋转的定义和性质1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题.(重点,难点)一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:旋转的定义【类型一】旋转的认识如图,将左边叶片图案旋转180°后,得到的图形是()解析:将叶片图案旋转任何角度和A、B中的图案均不重合;不旋转或旋转360°后和C 中的图案重合,不合要求;顺时针或逆时针旋转180°后只和D中的图案重合,故选D.【类型二】旋转图形的识别下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解析:由旋转对称图形的定义逐一判断求解.解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.方法总结:判断一个图形是否是旋转对称图形,其关键是要看这个图形能否找到一个旋转中心,且图形能绕着这个旋转中心旋转一定角度与自身重合.【类型三】旋转角的判断如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°解析:对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角∠BOD=90°.故选C.探究点二:旋转的性质【类型一】旋转性质的理解如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点,又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E 的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=2 2.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,体会图形变换思想.第2课时旋转作图1.复习旋转及旋转图形的概念与性质;2.能够根据旋转的性质进行简单的旋转作图.一、情境导入在钟面上,从1点到1点6分,分针转了多少度角?时针转了多少度角?1点6分时针与分针的夹角是多少度?二、合作探究探究点:简单的旋转作图【类型一】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC向下平移5格后的△A1B1C1.(2)再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A2B2C2.解:(1)如图,△A1B1C1即为△ABC向下平移5格后的图形.(2)△A2B2C2即为△ABC以点O为旋转中心,沿顺时针方向旋转90°后的图形.【类型二】作旋转图形如图,画出△ABC绕点O逆时针旋转90°后的△A′B′C′.解:(1)如图,连接OA,OB,OC.(2)分别以OA,OB,OC为一边作∠AOA′=∠BOB′=∠COC′=90°.(3)分别在射线OA′,OB′,OC′上截取OA′=OA,OB′=OB,OC′=OC.(4)依次连接A′B′,B′C′,C′A′.则△A′B′C′就是△ABC绕点O顺时针旋转90°后的图形.【类型三】图形旋转的应用如图①,分别以正方形ABCD的边AD和DC为直径画两个半圆交于点O.若正方形的边长为10cm,求阴影部分的面积.解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD 、AC ,由正方形的对称性可知,AC 与BD 必交于点O ,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O 逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O 顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O 逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O 顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm 2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.3.3中心对称1.理解并掌握中心对称及中心对称图形的概念及性质;(重点)2.能够根据中心对称及中心对称图形的性质进行作图.一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称和中心对称图形的概念【类型一】中心对称的识别如下图所示的四组图形中,左边图形与右边图形成中心对称的有()A.1组B.2组C.3组D.4组解析:将选项中左边图形沿着某一点旋转180°能与右边图形重合的是(1)(2)(3),所以(1)(2)(3)中左边图形与右边图形成中心对称.共3组,故选C.【类型二】中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是()解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.探究点二:中心对称和中心对称图形的性质【类型一】确定对称中心如图,已知△ABC和△A′B′C′成中心对称,画出它们的对称中心.解析:由于△ABC和△A′B′C′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.解法一:根据观察,B、B′及C、C′应是两组对应点,连接BB′、CC′,BB′、CC′相交于点O,则O为对称中心.如图.解法二:B、B′是一对对应点,连接BB′,找出BB′的中点O,则点O即为对称中心.如图.方法总结:利用中心对称的特征,找正确对应点.当两个图形成中心对称时,通过直接观察的方法找对应点;如果直观体现不明显,可采用测量方法找对应点.【类型二】利用中心对称图形的性质求面积如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE关于点O成中心对称,此图中阴影部分的三个三角形可以转化到直角△ADC中,于是此面积即可求得.解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC中.又因为AB=2,BC=3,所以Rt△ADC的面积为12×3×2=3,即图中阴影部分的面积为3.方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.3.4简单的图案设计1.利用旋转、轴对称或平移进行简单的图案设计.2.认识和欣赏平移、旋转在现实生活中的应用,并灵活运用平移与旋转组合的方式进行一些图案设计.一、情境导入2016年里约热内卢奥运会会徽是由三人牵手相连的标志,代表巴西的著名景点“面包山”作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力.在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.二、合作探究探究点一:分析图案的形成过程【类型一】分析构成图案的基本图形分析下列图形的形成过程.解析:仔细观察图案,分析构成的基本图形,再分析图形变换的过程和方式.是通过平移、轴对称、旋转中的一种变换还是其中的几种变换的组合,另外要注意图形形成不是唯一的,即基本图形也不唯一,要全面思考,认真分析.解:仔细观察会发现这四个图形分别是由以下的基本图形构成的.第一个是由基本图形旋转十次后得到的,第二个是由基本图形平移两次后得到的,第三个是由基本图形旋转五次后得到的,第四个是由基本图形旋转五次后得到的.因为图形的变换不唯一还可以有其他的变换方式,如(1)、(4)可以由图2(a)、2(b)通过轴对称变换得到.方法总结:对于这四种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.【类型二】分析图案的形成过程分析左边的树形图案,经过怎样的图形变换就可得到右边的树形图案.解析:根据左右两图形的位置关系可知,若要由左图得到右图,可以通过以下两种途径:(1)把左图绕点A沿顺时针方向旋转一个角度,使左边的树形图案与直线垂直,然后再作轴对称变换(要注意对称轴的正确选择),即可得到右边的树形图案.(2)把左图先做轴对称变换(要注意对称轴的正确选择),使左边的树形图案与直线垂直,然后再作平移变换,即可得到右边的树形图案.方法总结:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案.探究点二:利用平移、旋转、轴对称等方式设计图案用四块如图①所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图②、图③、图④中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).解:解法不唯一.例如:方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.三、板书设计1.分析图案的形成过程(1)分析构成图案的基本图形;(2)分析图案的形成过程.2.利用平移、旋转、轴对称等方式设计图案教学过程中,强调学生自主探索和合作交流,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图案的欣赏与设计过程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章图形的平移与旋转1 图形的平移第1课时平移的概念与性质【知识与技能】1.认识平移、理解平移定义;2.理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质;3.能画出简单图形的平移图.【过程与方法】通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等.对应线段和对应角分别相等的性质.【情感态度】通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣.【教学重点】理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等.对应线段和对应角分别相等的性质.【教学难点】理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.一.情景导入,初步认知1.引入问题,出现课题.请你判断:小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?2.接触平移现象.教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程;(2)手扶电梯上人的移动的过程.教师提问:①你能发现传送带上的箱子、手扶电梯上的人在平移前后什么没有改变,什么发生了改变吗?②在传送带上,如果箱子的某一按键向前移动了80cm,那么电视机的其它部位(如屏幕左上角的图标)向什么方向移动?移动了多少距离?③如果把移动前后的同一箱子看成长方体(多媒体演示书上的图3-2),那么四边形与四边形的形状、大小是否相同?【教学说明】通过实际问题引入新课,提高学生学习兴趣.二.思考探究,获取新知探究1:探求平移的定义.根据上述分析,你能说明什么样的图形运动称为平移?【归纳结论】在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.【教学说明】教师引导学生从语句的主谓分析来看待以上几个句子,让学生自己总结平移的概念.探究2:平移的性质.学生结合P65图3-1的内容和P66图3-2的内容自主学习.【归纳结论】经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.运用新知,深化理解1.见教材P66例1.2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )答案:D3.在平移过程中,对应线段( )A.互相平行且相等B.互相垂直且相等C.互相平行(或在同一条直线上)且相等答案:A4.如图所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=_____度,∠EDF=_____度,∠F=_____度,∠DOB=_____度.答案:70 50 60 605.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.24cm2B.36cm2C.48cm2D.无法确定答案:B.6.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余, 将AB,CD分别平移到EF和EG的位置,则△EFG为______三角形,若AD=2cm,BC=8cm,则FG=______.答案:直角 6 cm【教学说明】通过练习,进一步了解平移的概念和性质.四.师生互动,课堂小结组织学生小结这节课所学的内容,并作适当的补充.五.教学板书布置作业:教材“习题3.1”中第1、3题.通过本节课的学习,学生都能了解并掌握平移的概念和性质,且能灵活应用.学生学得较轻松,效果较好.第2课时平移的坐标变换【知识与技能】能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移的实质是点坐标的对应变换.【过程与方法】经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程,进一步发展数形结合思想与空间观念,培养合作交流能力.【情感态度】进一步发展数形结合思想与空间观念,培养合作交流能力.【教学重点】理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.【教学难点】理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.一.情景导入,初步认知图中的“鱼”是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段一次连接而成的,将这条“鱼”向右平移5个单位长度.(1)画出平移后的新“鱼”.(2)在图中尽量多选取几组对应点,并将它们的坐标填入下表:(3)你发现对应点的坐标之间有什么关系?如果将原来的“鱼”向左平移4个单位长度呢?请你先想一想,然后再具体做一做.【教学说明】通过画鱼,提高学生动手操作能力.二.思考探究,获取新知探究:坐标系中的图形平移变换学生自主学习P69、P72想一想、做一做【教学说明】探索平移的坐标特征,对学生来讲比较容易,可以放手让学生来做.【归纳结论】一个图形一次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.三.运用新知,深化理解1.见教材P72例22.①在图中标出△ABC各顶点的坐标;②△ABC向右平移_______个单位得到△A1B1C1的,在图中标出△A1B1C1各点的坐标,观察各点坐标都发生怎样的变化?③△ABC是怎样平移到△A2B2C2的?3.如图,将三角形ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1,并写出点A1.B1.C1的坐标.【教学说明】对坐标系中的平移有进一步的认识,灵活运用解决相关问题.四.师生互动,课堂小结1.纵坐标不变,横坐标分别增加(减少)a个单位时,图形_________________平移a个单位;2.横坐标不变,纵坐标分别增加(减少)a个单位时,图形_________________平移a个单位;五.教学板书布置作业:教材“习题3.3”中第2、4题.本节课学生在画图的基础上,了解图形在平面直角坐标系中坐标的变化情况,既便于记忆,又锻炼了学生的动手能力.2 图形的旋转【知识与技能】了解图形的旋转的有关概念并理解它的基本性质以及简单平面图形旋转后的图形的作法.【过程与方法】1.通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.2.通过画图,培养学生旋转作图的动手操作能力.【情感态度】通过具体实例认识旋转,理解旋转前后两个图形对应点到旋转中心距离相等,对应点与旋转中心的连线所成的角彼此相等的性质,对具有旋转特征的图形进行观察、分析、画图过程中,发展初步的审美能力.【教学重点】1.了解图形的旋转的有关概念并理解它的基本性质.2.了解旋转作图的一般步骤.【教学难点】简单平面图形旋转后的图形的作法.一.情景导入,初步认知1. 向学生展示有关的图片:(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器;(5)由平面图形转动而产生的奇妙图案.2.演示俄罗斯方块游戏.【教学说明】通过观察图片、演示俄罗斯方块游戏,我们发现构成游戏的模块均是由一个小正方形平移变换而来;学生通过玩游戏,发现除了平移运动之外还有旋转运动;通过引导学生列举出一些具有旋转现象的生活实例,我们可以引出课题:“生活中的旋转”.3.下列一组图形变换属于旋转变换的是()4.大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点O旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?这节课我们就来研究:简单的旋转作图.【教学说明】通过作图,为本节课的教学作准备.二.思考探究,获取新知探究1:旋转的有关概念试一试,请同学们尝试用自己的语言来描述以下旋转.图1:在同一平面内,点A绕着定点O旋转某一角度得到点B;图2:在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;图3:在同一平面内,三角形ABC绕着定点O旋转某一角度得到三角形DEF【教学说明】观察了上面图形的运动,引导学生归纳图形旋转的概念.【归纳结论】把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角.探究2:旋转的性质.如图,在硬纸板上,挖出一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板.问题:请指出旋转中心和各对应点,哪一个角是旋转角?1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?猜想线段OA与线段OD是什么关系(这里包括数量关系和位置关系)?线段OB和OE,OC和OF呢?AB与DE呢?3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?【归纳结论】1.旋转前后的图形全等;2.对应点到旋转中心的距离相等;3.对应点与旋转中心连线段的夹角等于旋转角.探究3:旋转作图.如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B,C 对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.【教学说明】本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF.【归纳结论】确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置;(2)旋转中心;(3)旋转角.三.运用新知,深化理解1.如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A,B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?解:(1)O; (2)D、E(3)∠BOE和∠AOD (4)相等(5)相等2.下列关于旋转和平移的说法正确的是()A.旋转使图形的形状发生改变B.由旋转得到的图形一定可以通过平移得到C.平移与旋转的共同之处是改变图形的位置和大小D.对应点到旋转中心距离相等答案:D.3.如图把正方形绕着点O旋转,至少要旋转度后与原来的图形重合.答案:90.4.已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O 按逆时针方向旋转90°得OA1,则点A1的坐标为().A.(-a,b)B.(a,-b)C.(-b,a)D.(b,-a)答案:C.5.如图所示,在平面直角坐标系中,点A.B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)答案:B.6.如图,直线443y x=-+与x轴、y轴分别交于A、B两点,把△ABC绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是__________.答案:(7,3).7.已知点O是△ABC边AC的中点,试画出△ABC绕点O旋转180度后的图形,得到的图形和原来的图形组成什么图形?8.在五边形ABCDE中,AB=AE.BC+DE=CD,∠ABC+∠AED=180°.求证:AD平分∠CDE.证明:连接AC,将△ABC绕点A旋转∠BAE的度数到△AEF的位置,因为AB=AE,所以AB与AE重合.因为∠ABC+∠AED=180°,且∠AEF=∠ABC,所以∠AEF+∠AED=180°.所以D,E,F三点在一直线上,AC=AF,BC=EF.在△ADC与△ADF中,DF=DE+EF=DE+BC=CD,AF=AC,AD=AD所以,△ADC≌△ADF(SSS),因此,∠ADC=∠ADF,即:AD平分∠CDE.【教学说明】让学生通过观察图形的特点,发现图形的旋转关系,巩固旋转的性质.学生独立完成,教师作适当提示.四.师生互动,课堂小结本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有三个条件:①此三角形原来的位置;②旋转中心;③旋转角.在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形;要注意语言的表达.五.师生互动,课堂小结布置作业:教材“习题3.4”中第2、4、5 题.在教学的全过程中,通过提问、指导学生操作等方式引导学生发现规律,通过让学生回顾自己的作画过程和观察自己的画图作品体会、归纳出特征,有效地培养了学生的合作交流、独立思考问题、解决问题的能力.练习的设计,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用旋转特征,解决生活与实际问题,从而体现数学的价值;同时,不同难度的习题可以满足不同层次学生的需要,让“不同的人在数学上得到不同的发展”.3 中心对称【知识与技能】1.认识中心对称的概念;2.能综合运用变换解决有关问题.【过程与方法】通过观察、探索等过程,使学生更深刻地理解轴对称、平移、旋转及组合等几何变换的规律和特征,并体会图形之间的变换关系.【情感态度】运用讨论交流等方式,让学生自己探索出图形变化的过程,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力.【教学重点】中心对称图形及轴对称图形的区别与联系.【教学难点】综合运用变换解决有关问题.一.情景导入,初步认知阅读并完成P81引例,【教学说明】通过观察发现两幅图形的内在关系,这个活动为课堂提供了极好的素材,也将极大地激发了学生学习的积极性与主动性.二.思考探究,获取新知1.观察下图,它们是什么图形?【归纳结论】把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.在成中心对称的那个图形中,对应点所连线段经过对称中心,并被对称中心平分.2.中心对称与轴对称的联系与区别3.作图(1)选择点O为对称中心,画出已知点A关于点O的对称点A′;(2)选择点O为对称中心,画出与已知△ABC关于点O对称的△A′B′C′.【教学说明】通过以上作图、观察,理解中心对称的概念、性质.三.运用新知,深化理解1.见教材P82例题.2.下面的图案中,是中心对称图形的个数有()个A.1 B.2 C.3 D.4答案:D.3.下列图形中,是中心对称图形的是().答案:A4.下列多边形中,是中心对称图形而不是轴对称图形的是().A.平行四边形B.矩形C.菱形D.正方形答案:A5.已知下列命题:①中心对称图形一定是轴对称图形;②关于中心对称的两个图形是全等形;③两个全等的图形一定关于中心对称;其中真命题的个数是().A.0 B.1 C.2 D.3答案:B6.如图,在正方形ABCD中,作出关于B点对称的图形.7.如图,△ABC与△A′B′C′关于某一点成中心对称,画出对称中心.【教学说明】通过对中心对称图形的认识,并做相应的练习,可以更容易掌握本节知识点.四.师生互动,课堂小结先小组内分享收获感想然后以小组为单位派代表进行总结,最后教师作以补充.五.师生互动,课堂小结布置作业:教材“习题3.6”中第1、4题.八下的学生已经掌握旋转变换和轴对称变换,并且在七下就已经学过旋转变换的作图,而中心对称本身就是旋转变换的一种特殊情况,因此只要让学生通过类比就可以得到画一个已知图形的中心对称图形的画法,不足以成为本节课的难点,而探索中心对称图形的性质是根据特殊到一般的认识方法,探索过程非常重要,特别是性质的掌握也有助于学生应用性质作图、证明、解释生活当中的一些现象.4 简单的图案设计【知识与技能】能够灵活运用平移、旋转与轴对称的组合进行一定的图案设计.【过程与方法】通过观察图形,发展空间观念.【情感态度】知道平移、旋转在现实生活中的应用,进一步发展空间观念,增强审判意识.【教学重点】能灵活运用平移、旋转与轴对称的组合进行一定的图案设计.【教学难点】能灵活运用平移、旋转与轴对称的组合进行一定的图案设计.一.情景导入,初步认知P85引例(用平移、旋转或轴对称分析图案的形成)【教学说明】对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向.其中图(1)、(2)、(3)、(4)、(5)、(6)都可以看作是由“基本图案”通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以看作是由“基本图案”通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),图(2)还可以看作是由“基本图案”通过平移形成.二.思考探究,获取新知提问:1.基本图案是什么?有几个?2.分析同色“爬虫”、异色“爬虫”之间的关系.【教学说明】教师引导学生发现:这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同.在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角度为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.三.运用新知,深化理解1.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转答案:D2.起重机将重物垂直提起,这可以看作为数学上的()A.轴对称B.平移C.旋转D.变形答案:B3.下图是由12个全等三角形组成的,利用平移、轴对称或旋转分析这个图案的形成过程.这个图形可以按照以下步骤形成的.①以一个三角形的一条边为对称轴作与它对称的图形.②将得到的这组图形以一条边的中点为旋转中心旋转180 °.③分别以这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形.4.如图,在△ABC中,AB=AC,∠BAC=40°,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,请你用对称和旋转的知识回答下列问题:(1)△ADE和△DFA关于直线AD对称吗?为什么?(2)把△BDE绕点D顺时针旋转160°后能否与△CDF重合?为什么?(3)把△BDE绕点D旋转多少度后,此时的△BDE和△CDF关于直线BC对称?【教学说明】对本节知识进行巩固练习、使学生具有在发展空间观念的同时能够灵活运用平移旋转轴对称的组合进行一定的图案设计的能力.四.师生互动,课堂小结先小组内交流,收获感想后以小组为单位派代表进行总结,教师作以补充.五.教学板书布置作业:教材“习题3.7”中第2、3 题.学生经过学习对轴对称、平移、旋转等图形变换的特点有了全面的认识.通过练习,进一步完善对合理选择变换方式的把握,是对这一章的学习由理论上的探求迈向实际应用的第一步.通过问题的解答,利用图形不同的变化,学生了解生活中丰富多彩、千变万化的图形世界,形成初步思路,对本节课的内容有一个整体的感受,通过图形间的变换关系,学生认识到一切事物的变化可以通过一系列基本变化的组合得到,体会事物从量变到质变的过程,培养学生创新思维能力.章末复习【知识与技能】1.平移的基本涵义及其性质;2.旋转的基本涵义及其性质;3.能按要求作出简单平面图形平移后或旋转后的图形;4.图形之间的变换关系;5.运用轴对称、平移和旋转的组合进行图案设计.【过程与方法】通过回顾进一步理解平移、旋转的基本性质,并能准确作出简单平面图形平移、旋转后的图形.【情感态度】通过回顾与思考,进一步发展学生的空间观念,培养其操作技能,增强审美意识.【教学重点】理解平移、旋转与中心对称的概念和性质.掌握坐标系中平移、对称的坐标特征【教学难点】灵活运用平移、旋转与中心对称的概念和性质解决相关图形问题一.知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二.释疑解惑,加深理解1.平移平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移.平移的性质:平移不改变图形的形状和大小;图形经过平移,连接各组对应点所得的线段互相平行且相等.2.旋转旋转的概念:把一个图形绕一个定点转动一定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角.旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等.3.轴对称如果一个图形沿一条直线折叠后,直线两旁的部分能够重合,那么这个图形叫做轴对称图形.4.中心对称与中心对称图形中心对称与中心对称图形的联系与区别:区别: 中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.【教学说明】我们通过分组讨论,解决了具有能反映本章内容的一串问题.加深学生的了解.三.典例精析,复习新知1.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A'B'C,A'B'交AC于点D,若∠A'DC=90°,则∠A的度数是__________.答案:55°2.下列图案中,含有旋转变换的有( ) .A.4个B.3个C.2个D.1个答案:A3.下列图形中,绕某个点旋转180°能与自身重合的有()①正方形②长方形③等边三角形④线段⑤角⑥平行四边形A. 5个B. 2个C. 3个D. 4个答案:D4.△DEF是△ABC先向左平移3㎝,再绕左边的顶点逆时针旋转30°得到的,画出△ABC.5.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5㎝,求四边形AECF的面积.解:(1)A点(2)90°(3)25cm2【教学说明】学生在思考问题的过程中体会平移与旋转的特点和性质,有助于加深对旧知识的理解,让掌握知识和熟练技能有机结合四.复习训练,巩固提高1.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°答案:B2.△ABC和△A'B'C'关于点O对称,下列结论不正确的是().A.OA=A'O B.AB∥A'B'C.CO=BO D.∠BAC=∠B'A'C'答案:C3.下列的说法中,正确的是()A.会重合的图形一定是轴对称图形B.中心对称图形一定是会重合的图形C.两个成中心对称的图形的对称点连线必过对称中心D.两个会重合的三角形一定关于某一点成中心对称答案:C4.已知点O是△ABC边AC的中点,试画出△ABC绕点O旋转180度后的图形,得到的图形和原来的图形组成什么图形?5.如图,∠BAC=120°,以BC边作等边△BCD,把△ABD 绕着D点按顺时针方向旋转60°后到△ECD的位置.若AB=3,AC=2,求∠BAD的度数和AD 的长.答案:∠BAD=60°,AD=56.如图,你能说明△ABC通过怎样的移动可以得到△BAD吗?答案:先将△ABC沿直线AB向左平移,使点B与点A重合,然后再以过A点且垂直于AB的直线为对称轴翻折.。

相关文档
最新文档