组合数学 第一章 排列组合5全排列的生成算法合

合集下载

组合数学 第一章 排列组合6

组合数学 第一章 排列组合6

习题
5, 10 ,19 , 22
得.
nn
n k
n-k k
k=0
1.7若干等式及其组合意义
证2 在[1,n]的所有组合中,
含1的组合←→不含1的组合.有1—1对应
关系。在任一含1组合及与之对应的不含
1组合中,必有一奇数个元的组合与一偶
数个元的组合。将含奇数个元的组合做
成集,将含偶数阁元的组合做成另一集。
此二集的元数相等。
∑(
)i奇=∑ni(
证1(x+y) =∑( )x y ,令x=y=1,得(1.7.5)
组合证1 [m1,mm]mk的所k 有m-方k 案.每一子集都可 取k[1,m]或k不=0 取.这样有2m个方案.另可有
0-子集(空集),1-子集,…,m-子集.
组合证2 从(0,0)走m步有2m种走法,都落
在直线x+y=m上,而到(m,0),(m-1,1),(m-
1.8应用举例
通过基因将它的遗传信息传递给RNA,然 后再传给蛋白质来表现其功能。
(1)蛋白质分子中有20种氨基酸,在RNA 中以一定顺序相连的3个核苷酸决定1种 氨基酸,三联体遗传密码有43=64个排列 方式。它保证了20种氨基酸密码的需要。
(2)例如RNA链:CCGGUCCGAAAG 酶将它分解成为G片断(即利用G将
1.5.2字典序法
一般而言,设P是[1,n]的一个全排列。 P=P1P2…Pn=P1P2…Pj-1PjPj+1…Pk-1PkPk+1…Pn
I) j=max{i|Pi<Pi+1}, II) k=max{i|Pi>Pj} III) 对换Pj,Pk, IV) 将Pj+1…Pk-1PjPk+1…Pn翻转,

排列组合的生成

排列组合的生成

感谢您的观看
THANKS
详细描述
该算法从第一个位置开始,将元素逐个插入到已排序的序列中,每次插入后都重新对整个序列进行排序,直到所 有元素都插入完毕。这种方法简单易懂,但效率较低,时间复杂度为O(n^2)。
递归法
总结词
通过递归调用自身来生成所有可能的排列。
详细描述
该算法的基本思想是,对于给定的n个元素,先考虑第一个元素,将其与其他元素进行全排列,然后 再考虑第二个元素,将其与剩余的元素进行全排列,以此类推,直到所有元素都被考虑完毕。这种方 法思路简单,但实现起来较为复杂,需要处理递归终止条件和回溯。
密钥管理
在密钥管理中,排列组合可用于生成唯一的密钥, 确保通信双方的安全通信。
加密算法
排列。
数据加密
数据加密标准
排列组合可用于实现数据加密标 准(DES),通过对数据进行一 系列的置换和组合操作,确保数
据的机密性和完整性。
排列组合的生成
目录
• 排列组合的基本概念 • 排列的生成算法 • 组合的生成算法 • 排列组合的应用场景 • 排列组合的优化策略
01
排列组合的基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素 (0≤m≤n),按照一定的顺序排成 一列,称为从n个不同元素中取出m个 元素的一个排列。
排列的表示
迭代法
总结词
通过迭代的方式生成所有可能的排列。
详细描述
该算法的基本思想是,从第一个元素开始,依次将每个元素放到当前位置,然后对剩余 的元素进行全排列,直到所有元素都被考虑完毕。这种方法需要使用额外的数据结构来
保存中间结果,但时间复杂度较低,为O(n!)。
03
组合的生成算法

组合数学--组合数学第一章

组合数学--组合数学第一章

1.2排列与组合
定义:从n个不同元素中取r个不重复的元 素组成一个子集,而不考虑其元素的顺序, 称为从n个中取r个的无重组合。 组合的个数用C(n,r)表示。
1.2排列与组合
从n个中取r个的排列的典型例子是从n 个不同的球中,取出r个,放入r个不同的 盒子里,每盒1个。第1个盒子有n种选择, 第2个有n-1种选择,······,第r个有nr+1种选择。
例:长度为n的0,1符号串的数目为多少?
一一对应原理
• “一一对应”概念是一个在计数中极为 基本的概念。一一对应既是单射又是满 射。
• 如我们说A集合有n个元素 |A|=n,无非 是建立了将A中元与[1,n]元一一对应的 关系。
• 在组合计数时往往借助于一一对应实现 模型转换。
• 比如要对A集合计数,但直接计数有困难, 于是可设法构造一易于计数的B,使得A 与B一一对应。
1.2排列与组合
例 有5本不同的日文书,7本不同 的英文书,10本不同的中文书。 1)取2本不同文字的书; 2)取2本相同文字的书; 3)任取两本书
1.2排列与组合
解 1) 5×7+5×10+7×10=155; 2) C(5,2)+C(7,2)+C(10,2) =10+21+45=76; 3) 155+76=231=( 5+27+10)
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
• 证2 从n个元素中取偶数个数的组合数
(包含0),等于取奇数个数的组合数。
• r为偶数的组合和r为级数的组合之间建 立一一对应即可。
• 举例说明
1.7 若干等式及其组合意义

排列组合的生成算法

排列组合的生成算法

2.组合的生成: 递归 由上一个组合生成下一个组合
program zuhe; const n=6;m=4; var a:array[0..m] of integer; i,j:integer; procedure print; var i:integer; begin for i:=1 to m do write(a[i]); writeln; end; procedure try(dep:integer); var i:integer; begin for i:=a[dep-1]+1 to n-(m-dep) do begin a[dep]:=i; if dep=m then print else try(dep+1); end end; begin a[0]:=0; try(1); end.
字典序法 按照字典序求下一个排列的算法 例字符集{1,2,3},较小的数字较先,这样按字典序生成的 全排列是:123,132,213,231,312,321。 生成给定全排列的下一个排列 所谓一个全排ห้องสมุดไป่ตู้的下一个排列就是这一个排列与下一个排列之间没有其他的排列。 这就要求这一个排列与下一个排列有尽可能长的共同前缀,也即变化限制在尽可能短的后 缀上。 (1)求满足关系式pj-1<pj的j的最大值,设为i,即 i=max{j| pj-1<pj} (2)求满足关系式pi-1<pk的k的最大值,设为j,即 j=max{k| pi-1<pk} (3)将pi-1与pj互换 (4)将互换后的排列,从i开始到n之间的数逆转。
下一个组合的概念 给定集合S={1,2,…,n},如何找出S的所有k—组合? 因为组合无顺序,所以对S的任何一个k—组合{a1a2…ak},我们恒假定a1<a2<…<ak. 在这个假定下恒有ai≤n-k+i,并称n-k+i为ai的最大值. 设{a1a2…ak} 和{b1b2…bk}是S的两个不同的k—组合.如果(a1a2…ak)(b1b2…bk), 并且不存在异于{a1a2…ak}和{b1b2…bk}的k—组合{c1c2…ck},使得 (a1a2…ak) (c1c2…ck) (b1b2…bk) 则称{b1b2…bk}为{a1a2…ak} 的下一个组合. 组合生成算法: 步骤1 置{a1a2…ak}={1,2,…,k}; 步骤2 设已有一个k—组合{a1a2…ak}. 置i:=k: ① 若ai<n-k+i,则令 bi=ai+1 bj+1=bj+1,j=i, i+1, …,k-1 并置 {a1a2…ak}:={a1a2…ai-1bibi+1…bk} 返回步骤2; ② 若ai=n-k+i: 如果i>1,置i:=I-1,返回①; 如果i=1,终止. 这样,所有k—组合即可数遍.

全排列生成算法

全排列生成算法

全排列的生成算法对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

字典序法按照字典序求下一个排列的算法 /*例字符集{1,2,3},较小的数字较先,这样按字典序生成的全排列是:123,132,213,231,312,321。

注意一个全排列可看做一个字符串,字符串可有前缀、后缀。

*/生成给定全排列的下一个排列所谓一个全排列的下一个排列就是这一个排列与下一个排列之间没有其他的排列。

这就要求这一个排列与下一个排列有尽可能长的共同前缀,也即变化限制在尽可能短的后缀上。

/*例 839647521是1—9的排列。

1—9的排列最前面的是123456789,最后面的是987654321,从右向左扫描若都是增的,就到了987654321,也就没有下一个了。

否则找出第一次出现下降的位置。

算法: 由P1P2…Pn 生成的下一个排列的算法如下:1. 求i=max{j| Pj-1<Pj}2. 求l=max{k| Pi-1<Pk }3. 交换Pi-1 与Pl得到P1P2…Pi-1 (P i....Pn ) , 将红色部分顺序逆转,得到结果. 例求839647521的下一个排列1. 确定i,从左到右两两比较找出后一个数比前一个大的组合,在这里有39 47,然后i 取这些组中最到的位置号(不是最大的数)在这两组数中7的位置号最大为6,所以i=62.确定l,找出在i(包括i)后面的所有比i前面那一位大的数的最大的位置号,在此例中7,5 都满足要求,则选5,5的位置号为7,所以 l=73. 先将4和5交换,然后将5后的四位数倒转得到结果839657421à 839651247以上算法是在数论课上老师给出的关于字典序全排列的生成算法,以前也经常要用到全排列生成算法来生成一个全排列对所有的情况进行测试,每次都是现到网上找一个算法,然后直接copy代码,修改一下和自己的程序兼容就行了,也不看是怎么来的,不是我不想看,实在是说的很抽象,那一大堆公式来吓人,一个实例都不给,更有甚者连算法都没有,只是在那里说,想看都看不懂,也没那个耐心取理解那些人写出来的那种让人无法忍受的解释。

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

组合数学第四版卢开澄标准答案-第一章

组合数学第四版卢开澄标准答案-第一章

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学 第一章课件

组合数学 第一章课件
2、f(0,0)=0,f(0,1)=0,f(1,0)=0,f(1,1)=1。 ………… 对应着长度为22的字符串,每一位都可以取0或1;
乘法:2^22
自变量数为n个时:2^2n
*8
1.2 一一对应
1、从n个数中找出最大值问题 2、n个人参加单淘汰赛,最后产生冠军的 过程。
9
1.2 一一对应 例1.6:求n2个人站成一排和站成n排(方阵) 的方案数,并比较两种方案数的大小? 解:9个人站成一排的方案数是9!, 设a1a2a3a4a5a6a7a8a9是9个人的一排, 可构成一个方阵 给定一个方阵 a 1a 2a 3 b 1b 2b 3 a 4a 5a 6 b 4b 5b 6 a 7a 8a 9 b 7b 8b 9 也唯一确定一排b1b2b3b4b5b6b7b8b9
1.5 排列的生成算法
1.6 允许重复的组合与不相邻的组合
1.7 组合意义的解释
1.8 应用举例 1.9 *Stirling公式
2
1.1基本计数法则
1、加法法则:
如果具有性质A的事件有m个,性质B的事件有 n个,则具有性质A或B的事件有m+n个。
A和B是性质无关的两个事件。
3
1.1基本计数法则
2、乘法法则: 若具有性质A的事件有m个,具有性质B的事件 有n个,则具有性质A及B的事件有mn个
n! n1!n2 !...nk !
26
练习题
1、求1040和2030的公因数的数目。
解:1040=240540,2030=260530
C(41,1)*C(31,1)
27
练习题
2、试证n2的整除数的数目是奇数。
n p1 p2 ... pm
2 2 a1 2 a2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5.2字典序法
[例] 求839647521的下一个排列
找出比右边数字小的标号最大的数4
8397655 72124124517
44><<2157
大小为于于后44的的缀用用橙绿色 色表 表示 示
在 找接后出上即缀其前87中后3缀59比2将861缀4344中此97大、变65找后52的1得5出为缀的标到比对翻7下号84换转一3大2最916个的大5。1数的24数77 5
1.5.2字典序法
对给定的字符集中的字符 规定了一个先后关系,在此基 础上规定两个全排列的先后是 从左到右逐个比较对应的字符 的先后。
1.5.2字典序法
[例]字符集{1,2,3},较小的数字较 先,这样按字典序生成的全排列是: 123,132,213,231,312,321。
※※ 一个全排列可看做一个字符串,字
规则:令n个元素为1,2,…,n. p p1 p2 pn 是 这n个数的任意一个排列,我们可以找到一 个序列和它对应,其中ai 可以看作是排列P中 数i+1所在位置右边比i+1小的数的个数。
例 排列3214,它是元素1,2,3,4的一个 排列, 它对应的序列是什么?
例 序列311对应的排列是什么?
练习
求839763ห้องสมุดไป่ตู้421的下一个排列
1.5.3邻位对换法
序数法和字典排序法,求下一个排列在 不进位的情况下很容易。这就启发我们, 能不能设计一种算法,下一个排列总是 上一个排列某相邻两位对换得到的。
活动状态
以1←2←3←4←为初始排列,箭头所指一侧,相邻 的数比它小时,则称该数组处在活动状态, 1 2 3←4←的←2←,3,4都处于的活动状态。
符串可有前缀、后缀。
1.5.2字典序法
生成给定全排列的下一个排列
所谓一个的下一个就是这一个与
下一个之间没有其他的。这就要 求这一个与下一个有尽可能长的 共同前缀,也即变化限制在尽可 能短的后缀上。
1.5.2字典序法
一般而言,设P是[1,n]的一个全排列。 P=P1P2…Pn=P1P2…Pj-1PjPj+1…Pk-1PkPk+1…Pn
算法步骤
(1)若P=P←1P←2…P→n 没有处于活动则结束 (2)将处于活动状态的各数中值最大者设
为m,则m和它的箭头所指一侧相邻的数互换 位置,而且比m大的所有数的箭头改变方向, 即 →改成←或←改成→,转向(1)。
求 ←8→3→9→64→7→5→2←1←下一个排列 求 ←9→3→8→64→7→5→2←1←下一个排列
I) j=max{i|Pi<Pi+1}, II) k=max{i|Pi>Pj} III) 对换Pj,Pk, IV) 将Pj+1…Pk-1PjPk+1…Pn翻转,
P’= P1P2…Pj-1PkPn…Pk+1PjPk-1…Pj+1即P的下一个
1.5.2字典序法
[例] 839647521是1--9的排列。1—9 的排列最前面的是123456789,最后面 的是987654321,从右向左扫描若都是 增的,就到了987654321,也就没有下 一个了。否则找出第一次出现下降的 位置。
1.5全排列的生成算法
全排列的生成算法 就是对于给 定的字符集,用有效的方法将所 有可能的全排列无重复无遗漏地 枚举出来。
1.5全排列的生成算法
这里介绍全排列算法三种:
(A)序数法 (B)字典序法 (C) 邻位对换法
1.5.1 序数法
自然数都可以用十进制表示方法表示出来,
例如小于 的1正0l 整数n可以用下列形式表示
也0就 a是i 说i, 可以证明从0到n!-1的n!个正整数

一一对 应
其中 (an1, an2 , , a2 , a1)
.
0 ai i,1 i n 1
1.5.1 序数法
例1 已知m=4000, 6! <4000<7!求m对应的 序列
1.5.1 序数法
把n-1个元素的序列 (an1, an2, , a2, a1) 和n个元 素的排列建立一一对应关系,从而得到一种 生成排列的算法--序数法。
习题
5, 10 ,19 , 22
出来
l 1
n ak10k k 0
0 ak 9
推广到p进制数,即
m
n ak pk k 0
0 ak p 1
例如计算机常常用二进制表示法
1.5.1 序数法
用1!, 2!, …,(n-1)!的组合表示小于n!的整数的方法。 可以证明:从0到n!-1的任何整数m可唯一的表示为
其中m an1(n 1)! an2 (n 2)! a2 2! a11!
相关文档
最新文档