2020届数学文一轮复习 第八章 第1讲 空间几何体的结构特征及三视图和直观图 作业
高考数学一轮复习第8章立体几何第1节空间几何体的结构特征及三视图与直观图课件理新人教A版

|跟踪训练| (2019 年全国卷Ⅱ)中国有悠久的金石文化, 印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独 孤信的印信形状是“半正多面体”(图 1).半正多 面体是由两种或两种以上的正多边形围成的多面 体.半正多面体体现了数学的对称美.图 2 是一 个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱 长为 1,则该半正多面体共有________个面,其棱长为________.
2.(2019 届安徽“江南十校”综合素质检测)已知在长方体 ABCD-A1B1C1D1 中,AA1 =AB=2AD=2,E,F 分别为棱 BB1,D1C1 的中点,直线 CD1 被四面体 CC1EF 外接球截 得的线段长为________.
解析:由题意可得 EC= 2,EF= 3,CF= 5,则 EC2+EF2=CF2,所以 EF⊥EC,
2.数学运算 述三视图所表示的立体模型,会用斜二测画法 形式出现,1 到 2 个
画出它们的直观图.
小题,占 5 或 10 分,
3.会用平行投影画出简单空间图形的三视图与 属于容易题.
直观图,了解空间图形的不同表达形式.
1
课 前 ·基 础 巩 固
‖知识梳理‖
1.空间几何体的结构特征
(1)多面体的结构特征
复习课件
高考数学一轮复习第8章立体几何第1节空间几何体的结构特征及三视图与直观图课件理新人教A版
2021/4/17
高考数学一轮复习第8章立体几何第1节空间几何体的结构
0
特征及三视图与直观图课件理新人教A版
第八章 立体几何
第一节 空间几何体的结构特 征及三视图与直观图
栏
课 前 ·基 础 巩 固 1
高考数学一轮复习第八章立体几何8.1空间几何体的结构特征、三视图、直观图课件文新人教A

考点 2 空间几何体的三视图
空间几何体的三视图是用_正__投__影___得到,这种投影下与投影 面平行的平面图形留下的影子与平面图形的形状和大小是 _完__全__相__同___的,三视图包括__正__视__图__、__侧_视 __图___、_俯__视__图___.
三视图:注意三个视图之间的长度关系. 若某几何体的三视图如图所示,则此几何体的体积是 ___4_8____.
[点石成金] 解决与空间几何体结构特征有关问题的技巧 (1)关于空间几何体的结构特征辨析关键是紧扣各种空间几 何体的概念,要善于通过举反例对概念进行辨析,要说明一个命 题是错误的,只需举一个反例即可. (2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时 要注意用好轴截面中各元素的关系. (3)棱(圆)台是由棱(圆)锥截得的,所以在解决棱(圆)台问题 时,要注意“还台为锥”的解题策略.
(1)[教材习题改编]一个几何体由 5 个面围成,其中两个面是 互相平行且全等的三角形,其他面都是全等的矩形,则该几何体 是_三__棱__柱___;一个等腰直角三角形绕其斜边所在的直线旋转一周 后形成的封闭曲面所围成的几何体是___两__个__同__底__的__圆__锥_____.
解析:根据多面体和旋转体的概念知,第一个几何体是三棱 柱,第二个几何体是两个同底的圆锥.
(2)[教材习题改编]如图所示,图①②③是图④表示的几何体 的 三 视 图 , 若 图 ① 是 正 视 图 , 则 图 ② 是 _侧__视__图___ , 图 ③ 是 __俯_视__图___.
解析:根据三视图的概念知,图②是侧视图,图③是俯视图.
空间几何体的认识误区. 给出下面四种说法:①有两个面平行,其余各面都是四边形 的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的 几何体叫棱柱;③有一个面是多边形,其余各面都是三角形的几 何体叫棱锥;④棱台各侧棱的延长线交于一点.其中错误说法的 序号为_①__②__③___.
2020年高考文科数学一轮总复习:空间几何体的结构特征及三视图和直观图

2020年高考文科数学一轮总复习:空间几何体的结构特征及三视图和直观图第1讲 空间几何体的结构特征及三视图和直观图1.空间几何体的结构特征 (1)多面体的结构特征互相平行且相等 多边形 互相平行互相平行(1)画法:常用斜二测画法.(2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看到的线画实线,看不到的线画虚线.[注意] (1)画三视图时,能看见的线用实线表示,不能看见的线用虚线表示.(2)同一物体,若放置的位置不同,则所得的三视图可能不同.常用知识拓展 1.特殊的四棱柱四棱柱――→底面为平行四边形平行六面体――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――→底面边长相等正四棱柱――→侧棱与底面边长相等正方体上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形.判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( ) (6)菱形的直观图仍是菱形.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× 关于棱柱的下列说法错误的是( ) A .棱柱的侧棱都相等 B .棱柱的侧棱都平行C .棱柱的两底面是全等的多边形D .棱柱的侧面是全等的平行四边形 解析:选D.根据棱柱的结构特征可知选D.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析:选B.根据选项A、B、C、D中的直观图,画出其三视图,只有B项正确.(教材习题改编)若某几何体的三视图如图所示,则该几何体为________.答案:四棱柱与圆柱组合而成的简单组合体在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy 中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8空间几何体的结构特征(师生共研)(1)下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台(2)以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面.其中正确命题的个数为()A.0 B.1C.2 D.3【解析】(1)底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,D错.(2)命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂直于两底的腰;命题③对.【答案】(1)B(2)B空间几何体概念辨析问题的常用方法1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A.由五个面围成的多面体可以是四棱锥,所以A选项错误.B,C,D说法均正确.2.下列说法正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.如图知,A不正确,两个平行平面与底面不平行时,截得的几何体不是旋转体,故B不正确.侧棱长与底面多边形的边长相等的棱椎一定不是六棱锥,故C错误,由定义知,D正确.空间几何体的三视图(多维探究)角度一由空间几何体的直观图识别三视图(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.【答案】 A角度二由空间几何体的三视图还原直观图(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2【解析】由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.【答案】 B角度三已知几何体的某些视图,判断其他视图已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()【解析】由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线P A形成的投影,应为虚线.故选C.【答案】 C三视图还原的三种方法(1)熟悉常见几何体的三视图,如两个矩形、一个圆形为圆柱,三个三角形为三棱锥等.(2)直接还原.将几何体放在长方体或正方体中,一般从俯视图入手,找几何体顶点的位置,再确定实虚线.(3)将几何体放入柱体或锥体中,通过合理切割得到相应几何体.1.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.球D.四棱柱解析:选B.由已知中的三视图可得该几何体是三棱柱,故选B.2.(2019·唐山市五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A.由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.3.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C.根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B,D;而在三视图中看不见的棱用虚线表示,故排除A.空间几何体的直观图(师生共研)(1)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2 B.38a2C.68a2 D.616a2(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形【解析】(1)如图①②所示的实际图形和直观图,由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a ,所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. (2)如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm.所以OC =OD 2+CD 2=(42)2+22=6(cm),所以OA =OC ,故四边形OABC 是菱形,故选C.【答案】 (1)D (2)C平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算.如图,正方形OABC 的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是________cm.解析:由题意知正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图,所以OB = 2 cm ,对应原图形平行四边形的高为2 2 cm ,所以原图形中,OA =BC =1 cm ,AB =OC =(22)2+12=3 cm ,故原图形的周长为2×(1+3)=8 cm.答案:8[基础题组练]1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④解析:选D.正方体的三视图都是正方形,不符合题意;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆(包含圆心),符合题意;三棱台的正视图、侧视图和俯视图各不相同,不符合题意;正四棱锥的正视图和侧视图都是等腰三角形,俯视图是正方形(含两条对角线),符合题意.故选D.2.下列说法正确的有( )①两个面平行且相似,其余各面都是梯形的多面体是棱台; ②经过球面上不同的两点只能作一个大圆; ③各侧面都是正方形的四棱柱一定是正方体; ④圆锥的轴截面是等腰三角形. A .1个 B .2个 C .3个D .4个解析:选A.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.3.(2019·沈阳市教学质量监测(一))“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B.根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B ,故选B.4.如图所示,在三棱台A ′B ′C ′ABC 中,沿A ′BC 截去三棱锥A ′ABC ,则剩余的部分是( )A .三棱锥B .四棱锥C .三棱柱D .组合体解析:选B.如图所示,在三棱台A ′B ′C ′ABC 中,沿A ′BC 截去三棱锥A ′ABC ,剩余部分是四棱锥A ′BCC ′B ′.5.有一个长为5 cm ,宽为4 cm 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积S =5×4=20(cm 2),所以其直观图的面积S ′=24S =52(cm 2). 答案:5 2 cm 26.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=122+52=13(cm).答案:137.如图1,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A的长.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2 (cm).由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,P A=PD2+AD2=(62)2+62=6 3 (cm).8.如图所示,在侧棱长为23的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF,求△AEF周长的最小值.解:如图,将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,则线段AA1的长即为所求△AEF的周长的最小值.取AA1的中点D,连接VD,则VD⊥AA1,∠AVD=60°.在Rt△VAD中,AD=VA·sin 60°=3,所以AA1=2AD=6,即△AEF周长的最小值为6.[综合题组练]1.(2019·贵阳市适应性考试(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大的是()A.16 B.8C .4 3D .4 2解析:选B.三视图对应的几何体的直观图如图所示,由题意知,AB =4,AB ⊥平面BCD ,所以AB ⊥CD .在△BCD 中,BC =CD =22,BD =4,所以BC ⊥CD ,又AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥AC .所以S △BCD =12BC ·CD =4,S △ABC =12BC ·AB =42,S △ABD =12BD ·AB =8,S △ACD =12AC ·CD =12AB 2+BC 2·CD =4 3.故选B.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示. 易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形,因为P A ⊥平面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22,故△PCD 不是直角三角形,故选C.3.正四棱锥的底面边长为2,侧棱长均为3,其正视图和侧视图是全等的等腰三角形,则正视图的周长为______________________________________________.解析:由题意知,正视图就是如图所示的截面PEF ,其中E ,F 分别是AD ,BC 的中点,连接AO ,易得AO =2,又P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2. 答案:2+2 24.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是________.解析:作出直观图如图所示,通过计算可知AF 、DC 最长且DC =AF =BF 2+AB 2=3 3.答案:3 35.某几何体的三视图如图所示.(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.解:(1)该几何体是一个正方体切掉两个14圆柱后得到的几何体. (2)直观图如图所示.6.(综合型)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积. 解:(1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离, 即BC =3a ,AD 的长是正六棱锥的高,即AD =3a , 所以该平面图形的面积S =12·3a ·3a =32a 2.。
【精品】高考数学一轮复习通用版第一节 空间几何体的结构特征、三视图和直观图

第一节空间几何体的结构特征、三视图和直观图一、基础知识批注——理解深一点1.简单几何体(1)多面体的结构特征名称棱柱棱锥棱台图形底面 互相平行且相等 多边形互相平行且相似 侧棱 互相平行且相等 相交于一点,但不一定相等 延长线交于一点侧面形状 平行四边形三角形梯形①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征 名称圆柱圆锥圆台球▲多面体是一个 “封闭”的几何体.图形母线互相平行且相等,垂直于底面 长度相等且相交于一点 延长线交于一点轴截面 全等的矩形全等的等腰三角形 全等的等腰梯形 圆侧面展开图矩形 扇形扇环▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论汇总——规律多一点1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”三视图的长度特征“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( ) (4)夹在圆柱的两个平行截面间的几何体还是圆柱.( ) (5)上下底面是两个平行的圆面的旋转体是圆台.( ) 答案:(1)× (2)× (3)√ (4)× (5)×(二)选一选1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.2.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A .2,23B .22,2C .4,2D .2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.3.如图所示,在三棱台A ′B ′C ′-ABC 中,沿A ′BC 截去三棱锥A′-ABC,则剩余的部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体解析:选B如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,剩余部分是四棱锥A′-BCC′B′.(三)填一填4.如图是水平放置的正方形ABCO,在直角坐标系xOy中,点B的坐标为(2,2),则由斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.解析:根据斜二测画法规则画出直观图,如图所示.作B′E⊥x′轴于点E,在Rt△B′C′E中,B′C′=1,∠B′C′E=45°,则B′E=2 2.答案:2 25.利用斜二测画法得到的①三角形的直观图一定是三角形;②等腰梯形的直观图可以是平行四边形;③菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,③也错误,故结论正确的个数为1.答案:1考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[解题技法] 空间几何体概念辨析题的常用方法定义法紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定反例法通过反例对结构特征进行辨析,即要说明一个结论是错误的,只要举出一个反例即可1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析] 法一:如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[解题技法] 原图形与直观图面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系: (1)S 直观图=24S 原图形;(2)S 原图形=22S 直观图.[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC的实际图形和直观图.从图②可知,A′B′=AB=2,O′C′=12OC=32,C′D′=O′C′sin 45°=32×22=64.所以S△A′B′C′=12A′B′·C′D′=12×2×64=64.答案:6 4考点三空间几何体的三视图考法(一)由几何体识别三视图[典例](2019·长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()[解析]正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.[答案] A[解题技法] 识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.考法(二)由三视图判断几何体特征[典例](1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12[解题技法]1.由三视图确定几何体的3步骤2.三视图还原长方体口诀三视图,要还原,关键在于找顶点;长方体,三向切,三图相交顶点得;查视图,再检验,实线虚线细甄辨.考法(三)由三视图中的部分视图确定剩余视图[典例](2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()[解析]由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.[答案] A[解题技法]由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C 根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B 、D ;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是( ) A .等腰三角形的直观图仍为等腰三角形 B .梯形的直观图可能不是梯形 C .正方形的直观图为平行四边形 D .正三角形的直观图一定为等腰三角形解析:选C 根据“斜二测画法”的定义可得正方形的直观图为平行四边形. 2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体D .圆柱解析:选D 球、正方体的三视图的形状都相同,大小都相等,首先排除选项A 和C.对于三棱锥,考虑特殊情况,如三棱锥C -OAB ,当三条棱OA ,OB ,OC 两两垂直,且OA =OB =OC 时,正视图方向为AO 方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D ,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( )A .2 3B .2 2C .4 3D .8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7C.6 D.5解析:选C画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A 1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5 (cm).∴AB=122+52=13(cm).答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD-A1B1C1D1,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=2,则该三棱锥的侧视图(投影线平行于BD)的面积为________.解析:因为AB⊥平面BCD,投影线平行于BD,所以三棱锥A-BCD的侧视图是一个以△BCD的BD边上的高为底,棱锥的高为高的三角形,因为BC⊥CD,AB=BC=CD=2,所以△BCD中BD边上的高为2,故该三棱锥的侧视图的面积S=12×2×2= 2.答案: 2。
2020版高考数学一轮总复习第八单元立体几何课时1空间几何体的结构及三视图、直观图课件文新人教A版

轴 ,其余三边旋转形成的面所围成的 柱
几何体
圆 底面是 圆 ;是以直角三角形的一条 直角边 所在的直线为旋转轴,其余两
锥 边旋转形成的面所围成的几何体
图例
名称
结构特征
圆 两底面互相平行;是用一个平行
于圆锥底面的平面去截圆锥,底
台 面和截面之间的部分
球心到球面上各点的距离 相
设 A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2),则 ABCD 即 为满足条件的四面体,得出正视图和俯视图分别为④和②.
答案:D
(2)已知三棱锥的底面是边长为 1 的正三角形,其正视图 与俯视图如图所示,则其侧视图的面积为( )
A.
3 4
3 B. 2
3 C.4 D.1
解:(2)由图可知其侧视图为三角形,根据三视图的“高平
答案:C
空间几何体的结构特征 空间几何体的三视图 由三视图得到空间几何体的直观图
考点一·空间几何体的结构特征
【例 1】 (经典真题)若空间中 n 个不同的点两两距离都
相等,则正整数 n 的取值( )
A.至多等于 3
B.至多等于 4
C.等于 5
D.大于 5
解:根据 n 的取值构造相应的几何图形或几何体求解. n=2 时,可以;n=3 时,为正三角形,可以;n=4 时, 为正四面体,可以;n=5 时,为四棱锥,侧面为正三角形, 底面为菱形且对角线长与边长不可能相等. 答案:B
等 ;是以半圆的直径所在的直 球
线为旋转轴,半圆面旋转一周形
成的几何体
图例
2.三视图 (1)正视图是光线自物体的 前面向后面 正投影所得 的投影图.俯视图是光线自物体的 上面向下面 正投影 所得的投影图.侧视图是光线自物体的 左面向右面 正
高考人教版数学(文)大一轮复习课件:第8章第1讲空间几何体的三视图、表面积和体积6

文科数学 第八章:立体几何
文科数学 第八章:立体几何
考情精解读
命题规律 聚焦核心素养
命题规律 考点内容 1.简单空间几何体 的三视图与直观图
2.柱、锥、台、球 的表面积和体积
考纲要求 理解
了解
考题取样 202X全国Ⅰ,T9 202X全国Ⅲ,T3 202X全国Ⅰ,T5 202X全国Ⅰ,T10 202X全国Ⅲ,T12 202X全国Ⅰ,T16
圆的圆心是BC的中点E,底面△A1B1C1外接圆的圆心是B1C1的中点
E1.…………(圆柱EE1是球的内接圆柱,直棱柱ABC-A1B1C1是圆柱EE1的 内接直棱柱)Biblioteka 文科数学 第八章:立体几何
文科数学 第八章:立体几何
文科数学 第八章:立体几何
解后反思 求解几何体外接球的半径主要从两个方面考虑:
扇环
半圆 直径所在的直线
圆
考点2 空间几何体的三视图与直观图(重点)
文科数学 第八章:立体几何
1.三视图的定义 几何体的正视图、侧视图和俯视图统称为几何体的三视图. 三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正 上方视察几何体画出的轮廓线. 注意 (1)画三视图时,能看见的线用实线表示,不能看见的线用虚线表示.(2) 同一物体,若放置的位置不同,则所得的三视图可能不同. 2.三视图的长度特征 “长对正、宽相等、高平齐”,即正视图和俯视图长对正,侧视图和俯视图 宽相等,正视图和侧视图高平齐.
文科数学 第八章:立体几何
考点3 柱体、锥体、台体、球的表面积与体积
文科数学 第八章:立体几何
空间几何体的表面积与体积
名称 几何体
表面积
柱体 (棱柱和圆柱)
S表面积=S侧+2S底
数学一轮复习第8章立体几何第1讲空间几何体的结构三视图表面积和体积试题2理

第八章立体几何第一讲空间几何体的结构、三视图、表面积和体积1。
[2020全国卷Ⅲ,8,5分][理]如图8-1—1为某几何体的三视图,则该几何体的表面积是()A.6+4√2B.4+4√2C。
6+2√3D。
4+2√32。
[2020浙江,5,4分]某几何体的三视图(单位:cm)如图8—1-2所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.63。
[2021合肥市调研检测]表面积为324π的球,其内接正四棱柱(底面是正方形的直棱柱)的高是14,则这个正四棱柱的表面积等于()A。
567 B.576 C.240 D.49π4.[2021安徽省四校联考]在三棱锥A—BCD中,△ABC和△BCD 都是边长为2的正三角形,当三棱锥A-BCD的表面积最大时,其内切球的半径是()A。
2√2−√6 B。
2-√3 C。
√2D。
√665。
[数学文化题]《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法。
在如图8—1—3所示的羡除中,平面ABDA’是铅垂面,下宽AA'=3 m,上宽BD=4 m,深3 m,平面BCED是水平面,末端宽CE=5 m,无深,长6 m(直线CE到BD的距离),则该羡除的体积为()图8-1—3A.24 m3B.30 m3 C。
36 m3 D。
42 m36.[2020全国卷Ⅱ,10,5分][理]已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上。
若球O的表面积为16π,则O到平面ABC的距离为()A。
√3B。
32C.1 D。
√327.[2021安徽省示范高中联考]蹴鞠(如图8—1—4所示),又名“蹋鞠”“蹴球”“蹴圆"“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球。
2020版高考数学一轮复习第八章立体几何第1讲空间几何体的结构及其三视图和直观图课件理新人教A版

1.斜二测画法中的“三变”与“三不变”
坐标轴的夹角改变,
“三变”与y轴平行的线段的长度变为原来的一半, 图形改变.
平行性不改变,
“三不变”与x,z轴平行的线段的长度不改变, 相对位置不改变.
2.直观图与原图形面积的关系
S
= 直观图
2 4S
原图形(或
S
原图形=2
2S 直观图).
答案 A 解析 正视图和俯视图中棱 AD 和 BD 均看不见,为虚线,故选 A.
答案
解析
5.(2018·北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中, 直角三角形的个数为( )
A.1 答案 C
B.2
C.3
D.4
答案
解析 根据三视图,还原四棱锥,如图.在四棱锥 S-ABCD 中,SD⊥底 面 ABCD,AB∥CD,AD⊥DC.AB=1,AD=DC=SD=2.显然△SDA,△SDC 是直角三角形.另外 SD⊥AB,AB⊥AD,SD∩AD=D,∴AB⊥平面 SAD.又 SA⊂平面 SAD,∴AB⊥SA,即△SAB 是直角三角形.又计算△SBC 的三边长 并由勾股定理知其不是直角三角形.故选 C.
3.三视图
(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的
□18 正前 方、 □19 正左 方、 □20 正上 方观察几何体画出的轮廓线.
说明:正视图也称主视图,侧视图也称左视图.
(2)三视图的画法
①基本要求: □21 长对正 , □22 高平齐 , □23 宽相等 . ②画法规则: □24 正侧 一样高, □25 正俯 一样长,□26 侧俯 一样宽;看不 到的线画 □27 虚 线.
第1讲
空间几何体的结构及 其三视图和直观图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019·沈阳市教学质量监测(一))“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()
解析:选B.根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.
2.已知某空间几何体的俯视图如图所示,则此几何体的正视图不可能为()
解析:选D.选项A,可想象为三个圆柱叠放在一起;选项B,可想象为三个球叠放在一起;选项C,可想象为一个圆台和一个圆柱叠放在一起;选项D,可想象为上面为一个小圆柱,下面为一个空心球,则其俯视图中的中间圆应为虚线.故选D.
3.将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()
解析:选D .根据几何体的结构特征进行分析即可.
4.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )
解析:选D .A ,B 的正视图不符合要求,C 的俯视图显然不符合要求,故选D . 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为8
3
,则该几何体的俯视图可以是( )
解析:选C .由正视图和侧视图及体积易得几何体是四棱锥P -ABCD ,其中ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,此时V P ABCD =13×22×2=8
3,则俯视图为Rt
△P AB ,故选C .
6.
如图,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.
解析:直观图的面积S′=
1
2
×(1+1+2)×
2
2
=
2+1
2.故原平面图形的面积S=
S′
2
4
=2+2.
答案:2+ 2
7.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.
解析:
如图,过点A作AC⊥OB,交OB于点C.
在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).
所以AB=122+52=13(cm).
答案:13
8.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.
解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V-ABCD 的高.因为底面面积为16,
所以AO=22.
因为一条侧棱长为211,
所以VO=VA2AO2=44-8=6.
所以正四棱锥V-ABCD的高为6.
答案:6
9.某几何体的三视图如图所示.
(1)判断该几何体是什么几何体?
(2)画出该几何体的直观图.
解:(1)该几何体是一个正方体切掉两个1
4圆柱后得到的几何体.
(2)直观图如图所示.
10.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图所示(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积.
解:(1)如图.
(2)所求多面体的体积V =V 长方体-V 正三棱锥 =4×4×6-13×(12×2×2)×2=284
3
(cm 3).
1.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边长为2的直角三角形,则该三棱锥的正视图可能为( )
解析:选C .当正视图为等腰三角形时,则高应为2,且应为虚线,排除A ,D ;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线P A 形成的投影,应为虚线,故答案为C .
2.(2019·兰州适应性考试)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是线段A 1C 1上的动点,则三棱锥P -BCD 的俯视图与正视图面积之比的最大值为( )
A .1 B. 2 C . 3
D .2
解析:选D .正视图,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形且点P 在正视图中的位置在边B 1C 1上移动,由此可知,设正方体的棱长为a ,则S 正视图=1
2×a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在
OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近
A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S 俯视图=a 2
,所以S 俯视图S 正视图
的最大值为a 2
12
a 2=2,故选D . 3.(2019·合肥第二次质量检测)如图,在正方体ABCD -A 1B 1C 1D 1中,E 是棱A 1B 1的中点,用过点A ,C ,E 的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为( )
解析:选A.如图,取B 1C 1的中点为F ,连接AC ,CF ,EF ,AE ,截面AEFC 以下部分为所求得的几何体,易知选项A 中的图形为其侧视图,故选A.
4.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是________.
解析:作出直观图如图所示,通过计算可知AF 、DC 最长且DC =AF =BF 2+AB 2=
33.
答案:3 3
5.如图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,如图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.
(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)求P A.
解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.
俯视图
(2)由侧视图可求得PD=PC2+CD2=62+62=6 2 (cm).
由正视图可知AD=6 cm,且AD⊥PD,
所以在Rt△APD中,
P A=PD2+AD2=(62)2+62=6 3 (cm).
6.已知正三棱锥V-ABC的正视图和俯视图如图所示.
(1)画出该三棱锥的直观图和侧视图.
(2)求出侧视图的面积.
解:(1)如图.
(2)侧视图中 VA =
42-
⎝⎛⎭
⎫23×32×232
=12=23.
则S △VBC =1
2×23×23=6.。