《相似多边形》参考课件1

合集下载

1.1相似多边形 课件 青岛版数学九年级上册

1.1相似多边形 课件 青岛版数学九年级上册

(3)求∠D′的大小. 解:由题意知,∠D′=∠D.∵AD∥BC,∠C=60°, ∴∠ D=180°-∠ C=120°. ∴∠ D′=12 0°.
感悟新知
知3-练
4-1. 已知四边形HGFE相似于四边形LMNK,如图所示. (1)求四边形HGFE与四边形LMNK 的相似比;
解:相似比为EKHL =140=25.
2. 表示方法 相似用符号“∽”表示,读作“相似于”,如: 四边形ABCD ∽四边形EFGH,读作“四边形ABCD 相 似于四边形EFGH”.
感悟新知
知2-讲
特别解读:(1)相似多边形的定义可用来判断两个多边 形是否相似.(2)用符号“∽”表示两个图形相似时,要把 表示对应顶点的字母写在对应的位置上.
感悟新知
(1)求梯形ABCD 与梯形A′B′C′D′的相似比k; 解:相似比k =AA′DD =46=23.
知3-练
感悟新知
பைடு நூலகம்
知3-练
(2)求A′B′和BC 的长;
解:∵梯形ABCD 与梯形A′B′C′D′相似,且由(1)知 相似比k =23,∴AA′BB=23, BB′CC= 23.
感悟新知
知3-练
感悟新知
知3-练
解题秘方:根据相似多边形的对应边成比例求解. 解:∵矩形ABCD ∽矩形BFEA, ∴ AB∶BF=AD∶BA.∴ AD·BF=AB·BA.
易知BF=12AD,∴ 12AD2=AB2 .∴AADB= 12= 22.
感悟新知
知3-练
3-1. 如图, 把矩形ABCD 对折, 折痕为EF, 若矩形 ABCD ∽矩形EABF,AB=2.求矩形ABCD 与矩形 EABF 的相似比.
感悟新知
知2-练

4.3《相似多边形》课件

4.3《相似多边形》课件

A 21 D
18
β
78° 83°
B
C
所以它们的对应边成比例,由此可得
x
H
E
EH EF ,即 x 24 .
AD AB
21 18
118° 24
α
解得 x=28.
F
G
23
1.相似多边形及其相关概念 各角分别相等、各边成比例的两个多边形叫做 相似多边形. 相似用符号“∽”表示,读作“相似于”. 相似多边形对应边的比叫做相似比.
7
想一想 下图中的两个多边形分别是计算机显示
屏上的多边形ABCDEF和投射到银幕上的多边形
A1B1C1D1E1F1,它们的形状相同吗? (1)在这两个多边形中,是否有
A F
B C
ED
对应相等的内角?设法验证你的猜想.
A1
B1
(2)在这两个多边形中,夹相等 F1
C1
内角的两边是否成比例?
E1
D1
8
不规则四边形
例如,五边形ABCDE∽五边形A1B1C1D1E1,对应
边的比 AB BC CD DE EA 4 ,因此五边形
A1B1 B1C1 C1D1 D1E1 E1 A1 5
ABCDE与五边形A1B1C1D1E1的相似比为
k1
4 5
,五边
形A1B1C1D1E1与五边形ABCDE的相似比为
k2
5 4

(3)
(4)
很明显,上面两组中的两个图形也不是全等图形,但每
组中的两个图形的形状相同,满足这种关系的两个图形是什么
关系呢?可以用什么名词来表达呢?与全等图形有怎样的联系

6
2.生活中同学们还会看到这样的图片.

相似多边形PPT课件(冀教版)

相似多边形PPT课件(冀教版)

知3-讲
例3 如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩
形ABCD类似,已知AB=4.
(1) 求AD的长;
(2)求矩形DMNC与矩形ABCD的类似比.
导引:类似多边形的对应边的比相等,
A
M
D
其比值就是类似比.
B
E
C
知3-讲
解: (1)设AD=x,则 DM x . 2
∵矩形DMNC与矩形ABCD类似, ∴ AD CD .
∠C1,∠D=∠D1,
AB A1 B1
BC B1C1
CD C1 D1
DA D1 A1
.
因此四边形ABCD和四边形A1B1C1D1类似.
A
BA
B
CD
C
D
归纳
知2-导
类似多边形的性质:类似多边形的对应边的比相等, 对应角相等.
作用:常用来求类似多边形中未知的边的长度和角 的度数.
知2-讲
例 2 如图,五边形ABCDE∽五边形A1B1C1D1E1,求C1D1的 长和∠A的度数.
解: ∵五边形ABCDE∽五边
形A1B1C1D1E1,
∴ AB CD , A1B1 C1D1 ∠E=∠E1=145°.
∴AB=15, A1B1=10, CD=21,
15 21

.
10 C1D1
解得C1D1=14.
知2-讲
又∵∠B=130°,∠C=∠D=90°, ∵∠A=(5-2)×180°-130°-145°-2×90°
知1-讲
解:类似图形有:图(1)和图(9),图(2)和图(4), 图(3)和图(10),图(5)和图(7).
总结
知1-讲
判断两个图形是否是类似图形的方法:看两个图 形的形状是否相同,即看其中一个图形是否是由另一 个图形放大或缩小得到的,如果是,那么它们是类似 图形,否则就不是类似图形.

相似多边形 ppt课件

相似多边形  ppt课件

2

6

80°
五边形A´B´C´D´E´与五边形. ABCDE的相似比为_2:_1


E
2、如图:下面的两个菱形相似吗?为什么?
60°
满足什么条件的两个菱形一定相似?AFra bibliotek120°
H
F
D
B
ppt课件
C
13
G
纸张的大小
见课本《读一读》
请同学们用一张纸实际验证一下﹗
ppt课件
14
各角对应相等,各边对应成比例的两个 多边形叫做相似多边形.
F
A
BC
ppt课件
2
观看动画 A
F E
B C
D
A1 F1
E1
B1 C1
D1
(1)在上图两个多边形中,是否有相等的内角?
∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1,∠E=∠E1,∠F=∠F1
(2)在上图两个多边形中,相等内角的两边是否成比例? AB BC CD DE EF FA A1B1 B1C1 C1D1 D1E1 E1F1 F1 A1
答:如果两个多边形不相似,它们的对应角 可能都相等;如果两个多边形不相似,对应边 也可能成比例。
但如果两个多边形不相似,那么它们不可 能各角对应相等且各边对应成比例.
ppt课件
11
一块长3m、宽1.5m的矩形黑板如下图所
示,镶在其外围的木质边框宽7.5cm。边框的
内外边缘所成的矩形相似吗?为什么?
相似多边形对应边的比叫做相似比。
相似多边形的对应角相等,对应边成比例.
ppt课件
15
习题4.5 第1、2、3题

相似多边形(1)-完整版PPT课件

相似多边形(1)-完整版PPT课件

的比是否相等? 对应角相等
对应边的比相等
对于图(2)中两个相似的四边形,它们的对应角、对应边是否有
同样的结论? 有 对应角相等 对应边的比相等
(1)
(2)
相似多边形
图(1)中的△A1B1C1是由正△ABC放大后得到的,观 察这两个图形,它们的对应角有什么关系?对应边
呢?试说理.
对应角相等 对应边的比相等
Hale Waihona Puke 对于图(2)中的两个相似的正六边形,你是否也能 得到类似的结论? 对应角相等 对应边的比相等
A1
A
B
C B1
C1
(1)
(2)
相似多边形
图(1)是两个相似的三角形,它们的对应角有什么关系?对应边

《相似多边形》图形的相似PPT精品课件

《相似多边形》图形的相似PPT精品课件

∵正三角形的三边都相等,

.
B
C
D
E
F
4.3 相似多边形
例1 下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?
(2) 正方形 ABCD 与正方形 EFGH.
A
B
解:(1)∵正方形的每个角都是直角,

D
C
∵正方形的四边相等,
E
F

H
G
4.3 相似多边形
归纳
相似多边形:各角分别相等、各边对应成比例的两个多边形叫做相似 多边形. 相似比:相似多边形对应边的比叫做相似比 .
教案下载: . /jiaoan/
ppt论坛: . .cn
ppt课件: . /kejian/
语文课件: . /kejian/yuwen/ 数学课件: . /kejian/shuxue/
英语课件: . /kejian/yingyu/ 美术课件: . /kejian/meishu/
科学课件: . /kejian/kexue/ 物理课件: . /kejian/wuli/
4.3 相似多边形
思考 1:任意两个正 n 边形相似吗? 答:任意两个正 n 边形都相似.
思考 2:任意两个菱形相似吗? 答:任意两个菱形不一定相似.
4.3 相似多边形
1. 观察下面两组图形,图中的两个图形相似吗?为什么?
10 正方形
12
菱形
10
12
答:不相似. 因为虽然它们对应边是成比例的,但它们的对应角不相等.
与 F1A1 的比都相等,称为对应边.
A1
B1
A
B
F
C
F1
C1
ED
E1

《相似多边形》图形的相似PPT课件教学课件

《相似多边形》图形的相似PPT课件教学课件

4 J
5I
解:(1)相似比=CD : HI=3 : 5 (2)∵五边形ABCDE相似于五边形FGHIJ ∴ ∠F =∠A=120o, ∠C= ∠H=90o, ∴AB : FG = BC : GH = CD : HI = DE : IJ = EA : JF 即2 : FG = BC : 6 = 3/5 = 2.2 : IJ = AE :4 解得FG =10/3 cm, BC =18/5cm, IJ=11/3cm,AE=12/5cm
C´D´=__4
3A B 1°18 E
C 2 D B´

6

80°
五边形A´B´C´D´E´与五边形 . ABCDE的相似比为_2:_1


E
2、如图:下面的两个菱形相似吗?为什么? 满足什么条件的两个菱形一定相似?
6°0
A H
F
D
1°20 B
C
G
随堂练习
判断:
(1)任意两个矩形都是相似图形( ) (2)任意两个圆形是相似图形( )
对应角相等
AB = BC = AC ,A1B1 = B1C1 = A1C1
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
A 150° B
F 正正八八边边形形 放放大大 B1
E
A1 150°
F1 E1
C
D
C1
∠A =∠A1, ∠B =∠B1, ∠C =∠C1 ∠D =∠D1, ∠E =∠E1, ∠F =∠F1
2、在记两个多边形相似时,要把表示对应角顶点的字母写 在对应的位置上。
A F
E
B C
D

初中八年级下册数学 《相似多边形》相似图形PPT优选课件

初中八年级下册数学 《相似多边形》相似图形PPT优选课件
相似多边形
2021/02/21
1
仔细观察
如图(2)是由(1)缩小得到的,它们是相似的图形.
2021/02/21
(1)
(2)
2
探究 请打开课本83页
量出这两个矩形的边长,它们的对应边成比例吗? 对应角相等吗?
4.4 2.9
3.5
2.3
(1)
(2)
成比例
对应角相等
2021/02/21
3
结论
(1)
(2)
图3-39
15
(2)景山公园的南北向长度有多少米? 答:693m.
(3)景山公园平面图的周长、面积分别是多少? 答:周长为23.2cm, 面积为33.39cm2.
2021/02/21
图3-39
16
(4)景山公园四周长度之和是多少米?景山公园的实 际面积是多少平方米?
答:四周长度和为2552m.实际面积为404019m2.
2021/02/21
18
练习
1. 图3-40是一个户型的平面设计图,比例尺为1:300. 求起居室的实际面积(起居室在平面图的右下方, 阳台的上方).
答:26.5m2(包括墙宽).
2021/02/21
图3-40
19
2. 复印机有缩微的功能,可以把比A4复印纸大的一 张纸缩微复印到A4纸上.如果把比例定为75%(即 把一张纸缩小成原来的75%),那么在原来纸上面 积为48cm2的多边形经缩微复印到A4纸上,复印 出的多边形的面积为多少?
答:因为两个相似多边形的面积之比等于相似比
的平方,
S
75
2
,
S
100
S
75 1007cm2.
2021/02/21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结
各对应角相等、各对应边成比例的两个多边形 叫做相似多边形
相似多边形对应边的比叫做相似比, 相似比与叙述的顺序有关.
相似多边形的对应角相等,对应边成比例.
如果两个多边形不相似,那么它们的各角可能 对应相等,它们的各边可能对应成比例.
达标测评一、(第1~5小题各6分,第6小题10 分,共40分)
八年级数学(下)第四章 相似形
4.4 相似多边形
回顾交流
D
E
F
A B C
学习目标
1经历相似多边概念形成过程,了解相似多边形的 含义。
2认识了解相似多边形的特征
自学提纲一 自学时间(10分钟) • 1阅读课本P120—121页的内容独立完成图4-11后的 两个问题。(时间三分钟) • 2结合图4-11 分别找出图中相等的角比相等的边, 并尝试给对应角,对应边下定义。(时间两分钟) • 3阅读课本例题,并找出两个多边形相似的条件。 结合例题给相似多边形下定义。(时间五分钟) • 4知道并会书写相似多边形的表示方法概念,了解 相似比的概念,会表示。
• • • • • • • • • 1.两个多边形相似的条件是( ) A.对应角相等 B.对应边相等 C.对应角相等,对应边相等 D.对应角相等,对应边成比例 2.下列图形是相似多边形的是( ) A.所有的平行四边形; B.所有的矩形 C.所有的菱形; D.所有的正方形 3.找出两类永远相似的图形_________、_________. 4.在四边形ABCD与四边形A′B′C′D′中,∠A=∠A′,
AB A'B ' BC B 'C ' CD C 'D ' DA D 'A' 2 3
• ∠B=∠B′,∠C=∠C′,∠D=∠D′,且
• 则四边形________∽四边形________,且它们的相似比是________ • 5.有一个角为120°的菱形与有一个角为________的菱形相似. • 6.把一个矩形剪去一个正方形,若剩余的矩形和原矩形相似,求原矩 形的长与宽的比..
作业布置
1、课堂作业: P125 习题4.5 2、家庭作业: 《课时作业》
A' A F B F' C E D
B'
C'
D' E' 结论: 六边形ABCDEF与六边形A1B1C1D1E1F1是 形状相同的图形; 它们的六个角都分别相等,称为对应角; 六条边的比都相等,称为对应边.
例 下列每组图形形状相同,它们的对应角有 怎样的关系?对应边呢? (1)正三角形ABC与正三角形DEF; A (2)正方形ABCD与 正方形EFGH.
由于正方形四边相等,所以
AB EF BC FG CD GH DA HE .
形状相同的图形,它们的对应角有怎样的关系?对应边呢?
各对应角相等、各对应边成比例的两个多边形
叫做相似多边形.
注意:记两个多边形相似时,要把对应顶点的 字母写在对应的位置.
记作如:六边形ABCDEF∽六边形A1B1C1D1E1F1
议一议——反过来会怎样?
如果两个多边形相似,那么它们的对应角有什么 关系?对应边呢?
相似多边形的对应角相等, 对应边成比例.
看一看,议一议
(1)观察下面两组图形,(1)中的两个图形相似吗? 为什么?(2)中的两个图形呢?与同桌交流.
10
10
12
10
10
8
(2) 12
12 (1)
(2)如果两个多边形不相似,那么它们的各角可能 对应相等吗?它们的各边可能对应成比例吗?
相似多边形对应边的比叫做相似比
如:六边形ABCDEF∽六边形A1B1C1D1E1F1
A1 A F E D B C B1
F1
E1 D1
C1
六边形ABCDEF与六边形A1B1C1D1E1F1的相似比为K1=
六边形A1B1C1D1E1F1与六边形ABCDEF的相似比为K2=2
1 2
你注意到没有,相似比与叙述的顺序的关系?
B C E (1)
D
F
解:(1)∵正三角形每个角都等于600,
∴∠A=∠D= 600,∠B=∠E= 600,∠C=∠F= 600;
∵正三角形三边都相等 AB BC CA ∴
DE EF FD
E
H
(2)正方形ABCD与正方形EFGH.
A B
D C F (2) G
解:由于正方形每个角都是直角, 所以∠A=∠E= 900, ∠B=∠F= 900 ∠C=∠G= 900, ∠D=∠H= 900
做一做
一块长3m、宽1.5m 的 矩形黑板.镶在其外围的 木质边框7.5cm。边框的 内外边缘所成的矩形 相似吗?为什么?
学习是件很充实的事!
直观有时候是不可靠的.
它们不相似,因为对应边不成比例.
读一读——纸张你愿意去发现,
其乐无穷。
用你的学习用纸,来实地操作验证一下!
• • • • • • • •
二、提高训练(第1~2小题各6分, 1.下列命题正确的是( ) A.有一个角对应相等的平行四边形相似 B.对应边成比例的两个平行四边形相似 C.有一个角对应相等的两个等腰梯形相似; D.有一个角对应相等的两个菱形相似 2.下列说法中正确的是( ) A.相似形一定是全等形 B.不全等的图形不是相 似形 • C.全等形一定是相似形 D.不相似的图形可能是 全等形 • (中考预测题)把矩形对折后,和原来的矩形相似, 那么这个矩形的长、宽之比为( ) • A.2:1 B.4:1 C.:1 D.:1
相关文档
最新文档