几何证明(全等三角形判定)
三角形全等的证明方法

三角形全等的证明方法三角形全等是几何学中一个重要的概念,它表示两个三角形具有完全相同的形状和大小。
证明三角形全等可以使用多种方法,这里我们将介绍几种常用的证明方法。
方法一:SSS(边边边)全等法SSS全等法是三角形全等的基础方法之一,它是通过对应边相等来证明三角形全等的。
首先,对于给定的两个三角形ABC和DEF,假设AB=DE,BC=EF和AC=DF。
我们需要证明∠A=∠D,∠B=∠E和∠C=∠F。
由于AB=DE,BC=EF,所以线段AC=DF。
根据三角形的性质,我们可以得出结论∠BAC=∠EDF,∠ABC=∠DEF和∠ACB=∠DFE。
综上所述,我们可以得出结论,两个三角形ABC和DEF的对应角相等,因此它们全等。
方法二:SAS(边角边)全等法SAS全等法也是证明三角形全等的常用方法,它是通过对应边和夹角相等来证明三角形全等的。
假设给定的两个三角形ABC和DEF,我们需要证明∠A=∠D,∠B=∠E和AB=DE。
首先,我们知道∠A=∠D,即两个三角形的一对夹角相等。
然后,假设AB=DE。
接下来,我们需要证明AC=DF或者CB=FE。
分别考虑两种情况:情况1:假设AC=DF。
那么根据SAS全等法,我们可以得出结论,两个三角形ABC和DEF全等。
情况2:假设CB=FE。
那么我们可以通过将三角形ABC和DEF旋转180度,使得点B重合,然后通过SAS全等法继续证明它们全等。
综上所述,我们可以得出结论,通过SAS全等法,可以证明两个三角形ABC和DEF全等。
方法三:ASA(角边角)全等法ASA全等法是通过对应角和边相等来证明三角形全等的方法。
给定两个三角形ABC和DEF,假设∠A=∠D,∠B=∠E和线段AC=DF。
我们需要证明∠C=∠F和AB=DE。
由于∠A=∠D和∠B=∠E,我们可以得出结论,∠C=∠F。
然后,假设AB=DE。
通过ASA全等法的证明过程,我们可以得出结论,两个三角形ABC和DEF全等。
三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。
证明全等三角形的判定方法

证明全等三角形的判定方法一、SSS 判定法(边边边法)SSS 判定法是判定全等三角形最直接的方法之一。
它指的是如果两个三角形的三条边分别相等,则这两个三角形全等。
例如,对于三角形 ABC 和三角形 DEF,如果 AB = DE,AC = DF,BC = EF,则可以断定三角形 ABC 全等于三角形 DEF。
二、SAS 判定法(边角边法)SAS 判定法是另一种常见的全等三角形判定方法。
它指的是如果两个三角形的两条边和夹角分别相等,则这两个三角形全等。
举例来说,如果在三角形 ABC 和三角形 DEF 中,已知 AB = DE,AC = DF,且角 A = 角 D,则可以得出三角形 ABC 全等于三角形 DEF。
三、ASA 判定法(角边角法)ASA 判定法也是证明三角形全等的有效方法。
它指的是如果两个三角形的两个角和夹在它们之间的边分别相等,则这两个三角形全等。
比如,若在三角形 ABC 和三角形 DEF 中,已知角 A = 角 D,角B = 角 E,且边 AB = 边 DE,则可以推断三角形 ABC 全等于三角形DEF。
四、AAS 判定法(角角边法)AAS 判定法与ASA 判定法类似,也是基于角和边的对应关系来判定全等三角形。
它指的是如果两个三角形的两个角和它们之间的一条非夹边分别相等,则这两个三角形全等。
例如,在三角形 ABC 和三角形 DEF 中,已知角 A = 角 D,角 B = 角 E,且边 AC = 边 DF,则可以得出三角形 ABC 全等于三角形DEF。
五、HL 判定法(斜边直角边法)HL 判定法适用于两个直角三角形的判定。
它指的是如果两个直角三角形的斜边和一个直角边相等,则这两个三角形全等。
举例来说,若在直角三角形 ABC(其中角C = 90°)和直角三角形 DEF(其中角F = 90°)中,已知斜边 AB = 斜边 DE,且直角边AC = 直角边 DF,则可以推断三角形 ABC 全等于三角形 DEF。
全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。
在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。
下面我们将介绍五种判定方法,并给出它们的证明。
一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。
设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。
我们要证明三角形ABC全等于三角形DEF。
【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。
所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。
由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。
我们介绍了五种全等三角形的判定方法以及它们的证明。
这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。
如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。
通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。
【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。
在几何学中,全等三角形之间具有一些特殊的性质和关系。
正确判断两个三角形是否全等是解决几何问题的关键。
全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。
证明全等三角形黄金总结(初中几何)

证明全等三角形黄金总结全等三角形是初中几何的重点学习内容,学习好初中几何有利于将来学习高中立体几何,更有助于日常的几何关系处理。
这里,结合本人经验,给亲爱的初中同学总结了一下比较典型的证明方法,希望可以帮到学子学习上更上一层楼。
全等三角形指两个三角形的三条边及三个角都对应相等,全等三角形共有5种基本的判定方式:1. SSS(只要两个三角形对应的三条边长度一样,即可证明两个三角形全等,简称:边边边)举例:如下图,AC=BD,AD=BC,求证△ACD与△BDC全等。
证明:AC=BD,AD=BC,CD=CD(SSS).∴△ACD≌△BDC.2. SAS(只要两个三角形的两条边对应相等,且两条边的夹角也相等,即可证明两个三角形全等,简称:边角边)举例:如下图,AB平分∠CAD,AC=AD,求证△ACB≌△ADB全等。
证明:∵AB平分∠CAD.∴∠CAB=∠BAD.∵AC=AD,∠CAB=∠BAD,AB=AB(SAS).∴△ACB≌△ADB.3. ASA(只要两个三角形的两个角对应相等,且两个角夹的边也对应相等,即可证明两个三角形全等。
简称:角边角)举例:如下图,AB=AC,∠B=∠C,求证△ABE≌△ACD.证明:∵∠A=∠A,AB=AC,∠B=∠C(ASA).∴△ABE≌△ACD.4. AAS(只要两个三角形的两个角对应相等,且其中一个相等的角的侧边也对应相等,即可证明两个三角形全等。
简称:角角边)。
注意:不要与ASA(角边角)搞混。
举例:如下图,AB=DE,∠A=∠E,求证△ABC≌△EDC。
证明:∵∠A=∠E,∠ACB=∠DCE,AB=DE (AAS).∴△ABC≌△EDC.5. HL(只要两个直角三角形的一条斜边和一条直角边对应相等,即可证明两个三角形全等。
简称:斜边、直角边)(Rt:直角三角形)举例:如下图,Rt△ADC与Rt△BCD,AC=BD,求证△ADC≌t△BCD.证明:AC=BD,CD=CD(HL).∴△ADC≌t△BCD.注意事项:SSS、SAS、ASA、AAS可用于任意三角形;HL只限于直角三角形.注意SSA、AAA不能判定全等三角形.几何题要多加练习,熟练掌握以上5种方法即可破解大部分初中几何难题。
三角形全等的判定

三角形全等的判定一、判定两个三角形全等的方法一般有以下4种:1、三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
2、两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
3、两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
4、两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。
二、判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
三、尺规作图运用尺规作图作相等角、相等线段以及全等三角形。
四、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的隐藏条件有:①公共边,公共角,对顶角;②线段的相加减;③角度的互余,互补,三角形的外角等于与它不相邻的内角和。
证明全等三角形判定定理

证明全等三角形判定定理
全等三角形判定定理是几何学中一种重要的定理。
它表明,如果在一个三角形中,三
个角的大小都相等,那么这三条边引入一定有关系。
全等三角形判定定理是构成数学分析
学中一个重要的定理,它暗示了等边三角形中三角形边长之间存在联系。
全等三角形判定定理如下:设ABC是一个等腰三角形,且∠A = ∠B = ∠C = 60°,
则有:
a2 + b2 = c2
也就是等腰三角形的两条直角边的平方和等于斜边的平方。
证明:画出平行四边形:
该等腰三角形ABC 等腰与其对角线AC分成两个相似的等腰等腰三角形ABD和BCD,
因为∠A = ∠B = ∠C = 60°,则∆ABC和∆ABD相似,同理∆ABC和∆BCD也相似。
根据相似三角形中两个相似三角形的关系,有:
a/c = b/d
由于b = d,所以a = c。
此外,△ABC和平行四边形ABCD内角相等,从而a2 + c2 = b2 + d2,由于上面推导
出来a = c,于是b2 + c2 = b2 + a2,即a2 + b2 = c2,证毕。
由此可知,当满足题目条件的等腰三角形中,两个直角边的平方和大等于斜边的平方,该定理被称为全等三角形判定定理。
该定理既看到全等三角形中对边之间的关系,又注意
到平分角的角之间的关系,使得它特别重要,也为数学分析学提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)题意分析:本题主要考查全等三角形判定2中的对应关系。
2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先证明两边及夹角分别对应相等。
解题后的思考:在判断三角形全等时,一定要根据全等三角形判定2,找准对应边和对应角。
课后练习
(答题时间:60分钟)
3. 如果三角形的一个角的平分线恰好是其对边上的高,那么这个三角形是( )
A. 直角三角形B. 等腰三角形
C. 等边三角形D. 等腰直角三角形
4. 如图,AB=AC,ቤተ መጻሕፍቲ ባይዱE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上,以上结论正确的是( )
思路分析:
1)题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。
2)解题思路:根据全等三角形判定1:三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1)(2)(3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。
随着中考中对与圆有关的证明题要求的降低,对本章内容的考查要求将有所加强,利用图形变换找全等形,利用全等找对应边、对应角,求证线段、角相等是中考中常见的考查方式。本节内容在本学期期末考试中的分值占10分左右。
判定方法
1. 全等三角形判定1:三边对应相等的两个三角形全等。
2. 全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。
重点:(1)使学生理解证明的基本过程,掌握用综合法证明的格式;
(2)三角形全等的性质和判定
难点:(1)掌握用综合法证明的格式;
(2)选用合适的判定定理证明两个三角形全等;
(3)初步理解图形的全等变换,从而学会恰当添加辅助线。
三、考点分析:
三角形是数学中最常见的几何图形之一,三角形全等是证明线段和角相等的重要依据,在数学推理证明中起着重要的作用,因此本章是中考考查的重点内容之一,考查的题型有选择题、填空题、证明题。近几年,在开放性试题中也常会出现。在中考命题时,既会单独命题也会与四边形、相似形、圆等内容综合命题。
A. ①②③B. ①②C. ①③D. ②③
5. 如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点。上述结论中,正确结论的个数有( )
A. 1个B. 2个C. 3个D. 4个
二、填空题:
6. 已知O是△ABC三条角平分线的交点,OD⊥BC于D,若OD=5,△ABC的周长等于20,则△ABC的面积等于S△ABC=。
7.如图,AB∥CD,O是∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD间的距离等于。
8. 在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于E,AB=8cm,则△DBE的周长为____。
几何证明(全等三角形判定)
一、学习目标:
1. 经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
2. 能叙述三角形全等的条件,了解三角形的稳定性。
3. 能灵活地运用三角形全等的条件,进行有条理的思考和简单的推理,并能利用三角形全等的性质解决实际问题,体会数学与实际生活之间的联系。
二、重点、难点:
三、解答题:
9.已知:如图,在△ABC中,AD是∠BAC的角平分线,E、F分别是AB、AC上的点,且∠EDF+∠EAF=180°。求证:DE=DF。
10.已知:如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O。
求证:AE+CD=AC
一、选择题:
1. 三角形中到三边距离相等的点是( )
A. 三条边的垂直平分线的交点
B. 三条高的交点
C. 三条中线的交点
D. 三条角平分线的交点
2. 如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )
A. 5cmB. 3cmC. 2cmD. 不能确定
解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。
小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生的逻辑思维能力,进一步规范了三角形全等证明题的书写。
知识点二:
例2:已知:如图, 是 和 的平分线, 。
求证:(1)△OAB≌△OCD;(2) 。
3. 全等三角形判定3:两角和它们的夹边对应相等的两个三角形全等。
4. 全等三角形判定4:两个角和其中一个角的对边对应相等的两个三角形全等。
5. 全等三角形判定5:斜边和一条直角边对应相等的两个直角三角形全等。
知识点一:
例1:如图,在△AFD和△EBC中,点A,E,F,C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)DF=BE;(4)AD∥BC。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。