公式法因式分解1

合集下载

公式法因式分解

公式法因式分解

公式法因式分解公式法因式分解是一种有效的数学方法,它可以帮助我们快速找出复杂的表达式的因式分解结果。

它的基本原理是,通过运用因式的定义和性质,将一个复杂的表达式分解成若干个简单的因式,从而得到它的因式分解式。

因式分解是一个十分复杂的概念,它涉及到多个关键概念,如因式、因数、展开式、积式、系数、系数和系数等。

因式分解的过程可以概括为:①将一个表达式分为因式;②将这些因式各自因数分解;③用展开式、积式等简单形式重新构造出因式分解式。

公式法因式分解的基本思想是,将一个复杂的多项式以特定的形式分解成若干个因式,从而使其因式分解式更加清晰明了。

例如,将多项式2x2+7x+6分解成因式,可以先将其分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),再重新构造出它的因式分解式:2x2+7x+6=(2x+3)(x+2),这样就得到了它的因式分解式了。

公式法因式分解的步骤如下:①根据多项式的式子把它分解成若干个简单的因式;②把每个因式因数分解;③用展开式、积式等形式重新构造出因式分解式。

本文将从实例出发,重点介绍公式法因式分解的实践方法。

首先,根据多项式的式子把它分解成若干个简单的因式。

需要特别注意的是,分解时一定要满足因式分解的特殊性质,即每个因式至少有一个非零系数。

例如:将多项式2x2+7x+6分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),即可满足因式分解的特殊性质。

其次,要把每个因式的因数分解出来,以便重新构造出因式分解式。

这一部分最重要的是,要能够分解出每一组因式的因数,具体的方法是,把因式的项的系数分别乘起来,得到它的常数项,再根据它的单项式把它分解出对应的因数,就可以得到完整的因式分解式了。

最后,要把因式按照正确的形式重新构造出因式分解式。

首先,要根据因式分解的特殊性质重新排列因式,使每个因式的非零系数在因式分解式的头部;其次,要把多项式的最高次数项保留,其他项按降幂排序;最后,要对除系数外的各项因数进行乘积运算,把它们组合成因式分解式。

《公式法》因式分解

《公式法》因式分解
《公式法》因式分解
汇报人: 2023-12-26
目录
• 公式法因式分解简介 • 公式法因式分解的基本步骤 • 公式法因式分解的常见类型 • 公式法因式分解的实例解析 • 公式法因式分解的注意事项
01
公式法因式分解简介
因式分解的定义
01
02
03
因式分解的定义
将一个多项式表示为几个 整式的积的形式,这种变 形叫做把这个多项式因式 分解,也叫做分解因式。
在化简过程中,需要注意消除项和合 并同类项。
简化多项式可以使其更容易理解和计 算。
03
公式法因式分解的常见类型
二次多项式的因式分解
01
02
03
04
总结词
利用完全平方公式和平方差公 式进行因式分解
公式法
$ax^2+2abx+b^2=(ax+b) ^2$
公式法
$ax^2-b^2=(ax+b)(ax-b)$
二次多项式的实例解析
总结词
二次多项式是多项式中最简单的一类, 其因式分解方法相对固定,公式法是其 中最常用的方法之一。
VS
详细描述
对于形如ax^2+bx+c的二次多项式,我 们可以使用公式法进行因式分解。首先计 算判别式b^2-4ac的值,然后根据判别式 的值选择合适的公式进行因式分解。当判 别式大于0时,二次多项式有两个实根, 可以使用公式法分解为两个一次多项式的 乘积;当判别式等于0时,二次多项式有 一个重根,可以分解为一个一次多项式的 平方;当判别式小于0时,二次多项式没 有实根,无法使用公式法进行因式分解。
因式分解的步骤
提取公因式、公式法、十 字相乘法、分组分解法等 。
因式分解的作用

公式法因式分解法一元二次方程

公式法因式分解法一元二次方程

公式法解一元二次方程一、【基础知识精讲】知识点一 一元二次方程求根公式:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.知识点二 用公式法解一元二次方程的一般步骤:(1)把方程化成一般形式2ax +bx+c=0,并写出a ,b ,c 的值。

(2)求出2b -4ac 的值。

(3)代入求根公式 :aac b b x 242-±-=( a ≠0,2b -4ac ≥0) (4)写出方程的解: x1=?, x2=?知识点三 一元二次方程根的情况判别一般地,式子b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用希腊字Δ表示它,即Δ= b 2-4ac由求根公式可知,一元二次方程最多有 实数根。

(1)当b 2-4ac >0时,一元二次方程有 的实数根;(2)当b 2-4ac=0时,一元二次方程有 的实数根;(3)当b 2-4ac <0,一元二次方程 实数根。

二、【典型例题】知识点一 求根公式应用例1用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2解下列方程(1) 3x 2+5x -2 = 0 (2) 2x 2+5x -12 = 0(3)03422=-+-x x (4)(2X-1)(X-2)=12+x知识点二 一元二次方程根的判别若已知一个一元二次方程的根的情况,是否能得到的值的符号呢?当一元二次方程有两个不相等的实数根时,b 2-4ac当一元二次方程有两个相等的实数根时, b 2-4ac当一元二次方程没有实数根时,b 2-4ac例2不解方程,判断下列方程根的情况:1、2260x x +-=;2、242x x +=;3、x x 3142-=+例3 当k 为何值时,关于x 的方程k x 2-(2k +1)x +k +3 = 0有两个不相等的实数根?例4已知一元二次方程2-40x x k +=有两个不相等的实数根。

公式法因式分解

公式法因式分解
平方差公式:
即两数和与这两数差的积等于这两个 数的平方差.
两数和(差)的平方公式:
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
语言表述:两数和(差)的平方,等于它们 的平方和加上(减去)它们乘积的两倍。
公式的结构特征:
(1)公式左边是两数和(差)的平方;
(2)公式右边是二次三项式,它是左边两数的平方 和加上(减去)左边两数积的两倍。
正方形空地,则这块空地的边长为多少米?
问题二:把一个边长a=6.6厘米的正方形零件的四角均切去 一个边长b=1.7厘米的小正方形,则剩余面积是多少?
把下列多项式分解因式
5a2 25a
3a2 9ab
解原式=-( 5a2 25a ) 解原式= 3a(a-3b)
=-5a(a-5)
25 x2 16 y2
动手做一做,看谁算得快。
把下列各式因式分解
① 9x2 4y2
9x2 4y2
(3x 2y)(3x 2y) (3x 2y)(3x 2y)
(2y 3x)(2y x)
② 9x2 12 xy 4 y2 9x2 12 xy 4 y2
(3x 2y)2
(3x 2y)2
小游戏
__ x2 ___ xy __ y2
游戏规则:一名同学说出两边的两个平方 数,另一个同学迅速说出中间的数字。
本节所学知识你掌握了吗,练一 练就知道了,思考后认真填写。

x2

1
(x
1)(x
1

4
2
2
② m2 mn _0_._2_5_n_ 2= (m 0.5n)2

《公式法》因式分解PPT(第1课时)

《公式法》因式分解PPT(第1课时)

B.-m ²-n²的两平方项符号相同,不能用平方差公式进行因式分解;
C.-m ²+n ² 符合平方差公式的特点,能用平方差公式进行因式分解;
D. m ²-tn ²不符合平方差公式的特点,不能用平方差公式进行因式分解.
合作探究
探究点三 问题1:把下列各式分解因式: (1)9(m+n)²-(m-n)²; (2)2x³-8x. (3)x 4-1 解:(1)9(m+n)²-(m-n)²
4.3 公式法
第1课时
八年级下册
-.
学习目标 1 掌握用平方差公式分解因式的方法. 2 能综合运用提取公因式法、平方差公式法分解因式.
前置学习
1.填空
①25x²= (__5_x__)²
③0.49b²= (_0_._7_b_)²
⑤1
4
b²=
(__12_b__)²
②36a4 = (__6_a_²_)² ④64x²y²= (__8_x_y_)²
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形 式 2 .公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
课后作业
1.对于任意整数n,多项式(n+7) ²-(n-3) ²的值都能( A )
随堂检测
1.判断正误 (1)x²+y²=(x+y)(x-y); (2)x²-y²= (x+y)(x-y); (3)-x²+y²=(-x+y)(-x-y); (4)-x²-y²=-(x+y)(x-y).
(✘) ( ✔) ( ✘) ( ✘)
随堂检测
2. 某同学粗心大意,分解因式时,把等式x4-■=(x ²+4)(x+2)(x-▲)中的

人教版数学八年级上册《因式分解公式法》(一)课件

人教版数学八年级上册《因式分解公式法》(一)课件

(3)0.16x2-0.09y2z2 (4)16(x-1)2-9(x+2)2
(5)–16x4+81y4 (6)3x3y–12xy
(a+b)(a-b)=a2-b2 (整式乘法)
a2-b2 =(a+b)(a-b)ቤተ መጻሕፍቲ ባይዱ因式分解)
想一想
(1)下列多项式中,他们有什么共同特征?
①x2-25 ②9x2-y2
□2 -△2
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流.
①x2-25=(x+5)(x-5)
②9x2-y2=(3x+y)(3x-y)
□2-△2=(□+△)(□-△)
议一议
平方差公式有哪些特点?
a2−b2= (a+b)(a−b)
左边:有两项;每一项都是平方项;两项符号相反 右边:两数的和与差的积
关键:确定公式中的a和b
火眼金睛
下列多项式可不可以用平方差公式因式分解?
①x2+y2
②-x2+y2
③-x2-y2
④x2-(-y)2
例题讲解
公式法因式分解(1)
回顾与思考
1、把下列各式分解因式:
(1)3a3b2-12ab3 关键:确定公因式 =3ab2(a2-4b)
(2)a(m-2)+b(2-m) =(m-2)(a-b)
一 看系数 二 看字母 三 看指数
最大公约数 相同字母最低次幂
回顾与思考
2、填空: ①25x2=(__5_x__)2
名言警句
严谨性之于数学 犹如道德之于人
自我检测
1、判断正误:
(1)x2+y2=(x+y)(x–y) (2)–x2+y2=–(x+y)(x–y) (3)x2–y2=(x+y)(x–y) (4)–x2–y2=–(x+y)(x–y)

用公式法进行因式分解第一课时课件

用公式法进行因式分解第一课时课件

因式分解
我们把多项式a² +2ab+b²和
a² -2ab+b²叫做完全平方式。
完全平方式有什么特征?
(1)二次三项式。 (2)两数的平方和,两数积的2倍。
a2+2Βιβλιοθήκη b+b2 =(a+b)2. a2−2ab+b2 =(a−b)2.
两数的平方和,加上(或者减去)这两 数的积的2倍,等于这两数和或差的平方. 像 a2+2ab+b2或a2-2ab+b2的式子称为完全平式
当堂达标:
1.选择题:下列各式能用平方差公式分解因式的 是( D ) A. 4X² +y² B. 4 x- (-y)² C. -4 X² -y D. - X² + y² 2. 把下列各式分解因式:
1)18-2b²
2) x4 –1
1)原式=2(3+b)(3-b)
2)原式=(x² +1)(x+1)(x-1)
考考你
除了平方差公式外,还有哪些公式
(a+b)2=a2+2ab+b2 ; (a-b)2=a2-2ab+b2 ;
怎样用语言表述
两数和或差的平方,等于这两数的平方和 加上(或者减去)这两数的积的2倍.
完全平方公式:
完全平方公式 (a+b)2 = a²+2ab+ b² 反过来就是: (a-b)2 = a²-2ab+ b² 两个数的平方 和,加上(或减 整式乘法 去)这两数的积 2 a²+2ab+ b² = (a+b) 的2倍,等于这 a²-2ab+ b² = (a-b)2 两数和(或差)的 平方。
用公式法进行因式分解
教学目标 1.理解运用平方差公式和完全平方公式分 解因式与整式乘法是相反的变形. 2.学会运用平方差公式和完全平方公式分 解因式,并且分解到底. 3.培养观察分析问题的能力. 4.体会“整体”“换元”的数学思想和方 法.

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“首” 平方, “尾” 平方, “首” “尾”两倍中间放.
下列各式是不是完全平方式
1 a2 b2 2ab 是
22xy x2 y 2 是 3 x2 4xy 4 y 2 是 4a2 6abb2 否 5x2 x 1 是
4
6 a2 2ab 4b2 否
a2 2abb2 a2 2abb2
例3、计算
(1)2132 872
(2)1002 2100 99 992
能力提升 因式分解
(1)x3 2x2 x
(2)a2(2a 3) b2(3 2a)
(3)a4 2a 2b2 b4
小结:1.具有的两式(或)两数平方差形式的多项式 可运用平方差公式分解因式。
2.公式a²- b²= (a+b)(a-b)中的字母 a , b可以是数, 也可以是单项式或多项式,应视具体情形灵活运用。 3.若多项式中有公因式,应先提取公因式,然后再
完全平方式的特点:
1、必须是三项式 2、有两个平方的“项” 3、有这两平方“项”底数的2倍或-2倍
首2 2首尾尾2(2)4a2b2 4ab 1 (3) 16 8m m2 (4)25x4 10x2 1 (5)(a b)2 4(a b) 4
进一步分解因式。 4.分解因式要彻底。要注意每一个因式的形式要最简,
直到不能再分解为止。
因式分解
——公式法
平方差公式:(a+b)(a-b) = a²- b²
整式乘法
a²- b²= (a+b)(a-b)
因式分解
平方差公式反过来就是说:两个数的平方差, 等于这两个数的和与这两个数的差的积
例1:
对照平方差公式怎样将下面的多项式分解因式
1) m²- 16
2) 4x²- 9y²
练习
.把下列各式分解因式
( 1 ) 4x²- m²n²
(2) x2 1 9
(3)a4 b4
(4)( x + z )²- ( y + z )²
回忆完全平方公式
ab2 a2 2ab b2
ab2 a2 2ab b2
把这个公式反过来 a2 2abb2 ab2
a2 2abb2 ab2
a2 2ab b2和 a2 2ab b2 这两个式子叫做完全平方式
相关文档
最新文档