第四章 经典线性回归模型(高级计量经济学清华大学 潘文清)概要

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件

第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件

.
11
• 一些有用的等式
(1) (2) 因为 (3)

且 (4)
X’e=0
b-=(X’X)-1X’
b=(X’X)-1X’Y=(X’X)-1X’(X+)=+(X’X)-1X’
定义nn方阵:
P=X(X’X)-1X’ , M=In-P P=P’ , M=M’
P2=P, M2=M
PX=X, MX=On(k+1) e=MY=M
SSR(b)=e’e=Y’MY=’M
.
12
三、高斯-马尔科夫定理
Gauss-Markov Theorem
•Question: OLS估计量的统计性质如何?
(1)[Unbiaseness] E(b|X)=, E(b)=
E(b|X)=E[(+(X’X)-1X’)|X]=+(X’X)-1X’E(|X)=
注意:
(1) 假设4可写成
E(ij|X)=2ij,
其中, i= j时,ij=1; i≠j时,ij=0
矩阵形式: E(’)=2I
.
7
(2)由假设2,
Var(i|X)=E(i2|X)-E[(i|X)]2=E(i|X)=2
同理, Cov(i,j|X)=E(ij|X)=0
(3) 假设4意味着存在非条件同方差性:
(2) 由于可以有j≤i, 或j>i, 意味着i既不依赖过去的X, 也不依赖于未来的X。因此排除了动态模型。
例:对AR(1)模型: Yi=0+1Yi-1+i=Xi’+i
这里Xi=(1, Yi-1)’,显然E(Xii)=E(Xi)E(i)=0,但
E(Xi+1i)≠0。因此,E(i|X关于严格外生性有其他的定义。 如定义为i独立于X,或X是非随机的。这一定义排 除了条件异方差性。而我们这里的假设2是允许存在 条件异方差性的。

第三章回归模型的估计概论(高级计量经济学清华大学

第三章回归模型的估计概论(高级计量经济学清华大学

3、总体方差的估计
对=2=E(Y- Y)2= 2 (Y未知),类比法得
第三章回归模型的估计概论(高级计 量经济学清华大学
• 则E(S*2)=2,S*2为总体方差2的无偏估计。 • 尽管S2是2的有偏估计,但却是2的一致估计量。
第三章回归模型的估计概论(高级计 量经济学清华大学
4、总体协方差的估计 对=XY=Cov(X,Y)=E[(X-X)(Y- Y)],类比法得
我们可以寻找一个关于的估计量(estimator)T, 它是关于所抽样本Y的函数:T=h(Y)
对于某一样本(Y1,Y2,…,Yn)’,则有一个估计值 (estimate):
t=h(Y1,Y2,…,Yn)
第三章回归模型的估计概论(高级计 量经济学清华大学
一、衡量参数估计量优劣的准则 Criteria for an Estimator
• 而当上述总体回归函数呈现线性形式

E(Y|X)=X’0
•时,则称回归模型 Y=X’+u
•关于E(Y|X)正确设定,这时“真实”参数0等于最
佳线性最小二乘解*:

0=*=[E(XX|X)=0 E(Xu)=0
第三章回归模型的估计概论(高级计 量经济学清华大学
问题是:我们往往不知道总体的p(X,Y)。因此, 只能通过样本来估计总体的相关信息。
第三章回归模型的估计 概论(高级计量经济学清
华大学
2020/12/7
第三章回归模型的估计概论(高级计 量经济学清华大学
第二章指出,当联合概率分布p(X,Y)已知时,在 MSE最小化准则下,E(Y|X)是Y的最佳代表,被称 为是Y关于X的回归函数(regression function),也可 称为总体回归函数(population regression function)。

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

《线性回归方程》课件

《线性回归方程》课件

线性回归方程的假设
线性关系
自变量和因变量之间存在线性关系,即它们 之间的关系可以用一条直线来描述。
无异方差性
误差项的方差在所有观测值中保持恒定,没 有系统的变化。
无多重共线性
自变量之间不存在多重共线性,即它们之间 没有高度的相关性。
无自相关
误差项在不同观测值之间是独立的,没有相 关性。
02
线性回归方程的建立
详细描述
在销售预测中,线性回归方程可以用来分析历史销售数据,并找出影响销售的关键因素。通过建立线性回归模型 ,可以预测未来的销售趋势,为企业的生产和营销策略提供依据。
案例二:股票价格预测
总结词
线性回归方程在股票价格预测中具有一定的 应用价值,通过分析历史股票价ቤተ መጻሕፍቲ ባይዱ和影响股 票价格的因素,可以预测未来的股票价格走 势。
04
线性回归方程的应用
预测新数据
1 2
预测新数据
线性回归方程可以用来预测新数据,通过将自变 量代入方程,可以计算出对应的因变量的预测值 。
预测趋势
通过分析历史数据,线性回归方程可以预测未来 的趋势,帮助决策者制定相应的策略。
3
预测异常值
线性回归方程还可以用于检测异常值,通过观察 偏离预测值的点,可以发现可能的数据错误或异 常情况。
确定自变量和因变量
确定自变量
自变量是影响因变量的因素,通 常在研究问题中是可控制的变量 。在建立线性回归方程时,首先 需要确定自变量。
确定因变量
因变量是受自变量影响的变量, 通常是我们关心的结果或目标。 在建立线性回归方程时,需要明 确因变量的定义和测量方式。
收集数据
数据来源
确定数据来源,包括调查、实验、公开数据等,确保数据质量和可靠性。

《计量经济学》第四章知识

《计量经济学》第四章知识

《计量经济学》第四章知识第四章古典线性回归模型在引论中,我们推出了满足凯恩斯条件的消费函数与收入有关的一个最普通模型:C=α+βX+ε,其中α>0,0<β<1ε是一个随机扰动。

这是一个标准的古典线性回归模型。

假如我们得到如下例1的数据例1 可支配个人收入和个人消费支出年份可支配收入个人消费1970 751.6 672.11971 779.2 696.81972 810.3 737.11973 864.7 767.91974 857.5 762.81975 847.9 779.41976 906.8 823.11977 942.9 864.31978 988.8 903.21979 1015.7 927.6 来源:数据来自总统经济报告,美国政府印刷局,华盛顿特区,1984。

(收入和支出全为1972年的十亿美元)一、线性回归模型及其假定一般地,被估计模型具有如下形式:y i=α+βx i+εi,i=1,…,n,其中y是因变量或称为被解释变量,x是自变量或称为解释变量,i标志n个样本观测值中的一个。

这个形式一般被称作y对x的总体线性回归模型。

在此背景下,y称为被回归量,x称为回归量。

构成古典线性回归模型的一组基本假设为:1. 函数形式:y i=α+βx i+εi,i=1,…,n,2. 干扰项的零均值:对所有i,有:E[εi]=0。

σ是一个常数。

3. 同方差性:对所有i,有:Var[εi]=σ2,且24. 无自相关:对所有i ≠j ,则Cov[εi ,εj ]=0。

5. 回归量和干扰项的非相关:对所有i 和j 有Cov[x i ,εj ]=0。

6. 正态性:对所有i ,εi 满足正态分布N (0,2σ)。

模型假定的几点说明:1、函数形式及其线性模型的转换具有一般形式i i i x g y f εβα++=)()(对任何形式的g(x)都符合我们关于线性模型的定义。

[例] 一个常用的函数形式是对数线性模型:βAx y =。

第三章 回归模型的估计 概论(高级计量经济学-清华大学 潘文清)

第三章  回归模型的估计 概论(高级计量经济学-清华大学 潘文清)

2、极大似然估计
对具有pdf或pmf为f(Y;)的随机变量Y(其参数未知), 随机抽取一容量为n的样本Y=(Y1,Y2,…Yn)’其联合分布为:
gn(Y1,Y2,…Yn;)=if(Yi;) 可将其视为给定Y=(Y1,Y2,…Yn)’时关于的函数,称其为关于 的似然函数(likelihood function),简记为L() : L()= gn(Y1,Y2,…Yn;)=if(Yi;) 对离散型分布,似然函数L()就是实际观测结果的概率。 极大似然估计就是估计参数,以使这一概率最大; 对连续型分布,同样也是通过求解L()的最大化问题,来 寻找的极大似然估计值的。
二、类比估计法(The Analogy Principle)
1、基本原理
• 总体参数是关于总体某特征的描述,估计该参数, 可使用相对应的描述样本特征的统计量。 (1)估计总体矩,使用相应的样本矩
(2)估计总体矩的函数,使用相应的样本矩的函数 对线性回归模型: Y=0+1X+u
上述方法都是通过样本矩估计总体矩,因此,也 称为矩估计法(moment methods, MM)。 (3)类比法还有: • 用样本中位数估计总体中位数; • 用样本最大值估计总体最大值; • 用样本均值函数mY|X估计总体期望函数Y|X,等
可见,总体均值的极大似然估计就是样本均值,总 体方差的极大似然估计就是样本方差。
3、极大似然估计的统计性质
由数理统计学知识: (n-1)s*2/2~2(n-1)
因此, Var[(n-1)s*2/2]=2(n-1)
Var(S*2)=24/(n-1)
§3.2 估计总体关系 Estimating a Population Relation 一、问题的引入(Introduction)

计量经济学中级教程(潘省初清华大学出版社)课后习题答案

计量经济学中级教程(潘省初清华大学出版社)课后习题答案

计量经济学中级教程(潘省初清华大学出版社)课后习题答案计量经济学中级教程习题参考答案第一章绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说)(2)建立计量经济模型(3)收集数据(4)估计参数(5)假设检验(6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YYn==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。

(4)错R 2 =ESS/TSS 。

(5)错。

我们可以说的是,手头的数据不允许我们拒绝原假设。

(6)错。

因为∑=22)?(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。

2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) 计量经济学中,关于严格外生性有其他的定义。 如定义为i独立于X,或X是非随机的。这一定义排 除了条件异方差性。而我们这里的假设2是允许存在 条件异方差性的。 如果X是非随机的,则假设2变成
E(i|X)=E(i)=0
(4)假设2的向量形式:
E(|X)=0
注意: (1)本假设排除了解释变量间的多重共线性 (multicollinearity) (2) 本假设意味着X’X是非奇异的,或者说X必须 满秩于k+1。因此应有k+1≤n。 (3) 由于λ表述了矩阵X’X的相关信息,因此本假 设意味着当n∞时应有新信息进入X,即Xi不能老 是重复相同的值。
注意: (1) 假设4可写成
E(ij|X)=2ij,
其中, i= j时,ij=1; i≠j时,ij=0
矩阵形式: E(’)=2I
(2)由假设2,
Var(i|X)=E(i2|X)-E[(i|X)]2=E(i|X)=2
同理, Cov(i,j|X)=E(ij|X)=0
注意:
(1) 1阶偏导: SSR/b= -2X’(Y-Xb)
2阶偏导: 2SSR/2b=2X’X
由min(X’X)>0 知2X’X>0, 从而b=(X’X)-1(X’Y)是最小值 (2) 由1阶极值条件可以得到所谓正规方程(normal equations): X’(Y-Xb)=X’e=0 正规方程是OLS所特有的,而不论是否有E(i|X)=0
(3) 假设4意味着存在非条件同方差性: var(i)=2 类似地, Cov(i, j)=0 (4) 假设4并不意味着i与X是独立的。它充许i的 条件高阶矩(如:偏度、峰度)可依赖于X。
二、参数的估计 Estimation of
由假设1与假设2知: E(Y|X)=0+1X1+…+kXk=X’ 其中,X=(1, X1, …,Xk)’ 即线性模型Y=X’+关于E(Y|X) 正确设定。 因此,其最佳线性最小二乘近似解(beat linear LS approximation coefficient)*等于参数的真实值0。 即,min E(Y-X’)2 的解为 *=0=[E(XX’)]-1E(XY)
• 一些有用的等式 (1) X’e=0 (2) b-=(X’X)-1X’ 因为 b=(X’X)-1X’Y=(X’X)-1X’(X+)=+(X’X)-1X’ (3) 定义nn方阵: P=X(X’X)-1X’ , M=In-P 则 P=P’ , M=M’ P2=P, M2=M 且 PX=X, MX=On(k+1) (4) e=MY=M SSR(b)=e’e=Y’MY=’M
第四章 经典线性回归模型(I)
Classical Linear Regression Model (I)
§4.1 经典线性回归模型 Classical Linear Regression Models
一、经典回归模型 Classical Regression Model
假设随机抽取一容量为n的样本(Yi, Xi), i=1,…,n, 其中,Yi是标量,Xi=(1,X1i,X2i,…,Xki)’,或
假设4(Spherical error variance) (a) [conditional homoskedasticity]: E(i2|X)=2>0, i=1,2,…,n (b) [conditional serial uncorrelatedness]: E(ij|X)=0, i, j=1,2,…,n
三、高斯-马尔科夫定理 Gauss-Markov Theorem
•Question: OLS估计量的统计性质如何? (1)[Unbiaseness] E(b|X)=, E(b)= E(b|X)=E[(+(X’X)-1X’)|X]=+(X’X)-1X’E(|X)= (2)[Vanishing Variance] Var(b|X)=E[(b-)(b-)’|X] =E[(X’X)-1X’’X(X’X)-1|X] =(X’X)-1E(’|X) =(X’X)-12I =2(X’X)-1 b中第i个元素的方差:Var(bi)= 2cii, cii为(X’X)-1 中主对角线第i个元素。
Y1 Y2 Y Y n
1 X 11 1 X 12 X 1 X 1n X k1 X k2 X kn
Байду номын сангаас
经典回归模型(classical regression model)建立在 如下假设之上:
假设1(linearity): Yi=0+1X1i+…+kXki+i =Xi’+i (i=1,2,…n) 或 Y=X+ 其中,=(0, 1,…,k)’, =(1,2,…,n)’ 注意: 这里的线性性指Y关于参数是线性的。
假设2(strict Exogeneity): E(i|X)=E(i|X1,X2,…Xn)=0, 注意:
(i=1,2,…n)
(1) 由E(i|X)=0 易推出:E()=0, E(Xji)=0 或有: Cov(Xj, i)=0 (i, j=1,2,…n) (2) 由于可以有j≤i, 或j>i, 意味着i既不依赖过去的X, 也不依赖于未来的X。因此排除了动态模型。 例:对AR(1)模型: Yi=0+1Yi-1+i=Xi’+i 这里Xi=(1, Yi-1)’,显然E(Xii)=E(Xi)E(i)=0,但 E(Xi+1i)≠0。因此,E(i|X)≠0
由类比法,对样本回归模型 Yi=Xi’b+ei i=1,2,…,n 其中,Xi=(1, X1i, …,Xki)’, b=(b0, b1, …,bk)’ 需求解极值问题 min (1/n)(ei)2 上述问题相当于求解残差平方和(sum of squared residuals, SSR)的极小值 min SSR(b)=ei2=(Yi-Xi’b)2=e’e=(Y-Xb)’(Y-Xb) 其中,e=(e1,e2,…,en)’ 在假设3下,解为: b=(X’X)-1(X’Y) 该方法称为普通最小二乘法(ordinary Least Squares)
相关文档
最新文档