变隙电感式压力传感器结构图
合集下载
变隙电感式压力传感器结构图

接头 图5.20 微压传感器
壳体
插头 通孔
图5.21 CPC型差压计
1、测量振动和加速度 差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将 悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动 体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加 速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以 Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。
线圈2 衔铁
P
~
被测压力之间成比例关系, 所以只要用检测仪表测量出
图4-31 变隙式差动电感压力传感器
输出电压, 即可得知被测压
力的大小。
二、 差动变压器式传感器的应用
可直接用于位移测量,也可以测量与位移有关的任何 机械量,如振动、加速度、应变、比重、张力和厚度等。
线路板
差动变压器 衔铁
底座 膜盒
当被测压力进入C形弹簧管时,
线圈 1
C形弹簧管产生变形, 其自 C形弹 簧管
由端发生位移,带动与自由
端连接成一体的衔铁运动,
使线圈1和线圈2中的电感发
输出
生大小相等、符号相反的变
化。即一个电感量增大,另 调机 械 一个电感量减小。电感的这 零点 螺钉 种变化通过电桥电路转换成 电压输出。由于输出电压与
体置于交变磁场中,或在磁场中做切割磁力线运动时,导 体内将产生涡旋状的感应电流,此即电涡流效应。激磁线 圈通交变电流,周围形成交变磁场,导体内产生涡流,电 涡流磁场反抗原磁场,引起线圈等效阻抗发生变化,即可 建立阻抗与变量的单值关系,测量阻抗值,即可求得该被 测量。
工作时,将传感器安装在机器上,在机器振动时, 线圈与磁铁相对运动、切割磁力线,产生感应电压, 该信号正比于被测物体的振动速度值,对该信号进行 积分放大处理即可得到位移信号。
电感式传感器PPT课件

2
LC
2LC
Q2
(1
2LC)2
2LC Q
2
(4-17)
第4章 电感式传感器
当Q>>ω2LC且Ω2lc<<1
Z
R
(1 2LC)2
;
令
L'
L
(1 2LC)2
则
Z R' jL'
从以上分析可以看出,并联电容的存在,使有效串联损耗电阻及 有效电感增加,而有效Q值减小,在有效阻抗不大的情况下,它 会使灵敏度有所提高,从而引起传感器性能的变化。因此在测量 中若更换连接电缆线的长度,在激励频率较高时则应对传感器的 灵敏度重新进行校准。
为了使输出特性能得到有效改善,构成差动的两个变隙 式电感传感器在结构尺寸、材料、电气参数等方面均应完全 一致。
第4章 电感式传感器 图4-3 差动变隙式电感传感器
第4章 电感式传感器 4.1.3 测量电路
电感式传感器的测量电路有交流电桥、变压器式交流电桥 以及谐振式等。
1.
从电路角度看,电感式传感器的线圈并非是纯电感,该电 感由有功分量和无功分量两部分组成。有功分量包括:线圈线 绕电阻和涡流损耗电阻及磁滞损耗电阻,这些都可折合成为有 功电阻,其总电阻可用R来表示;无功分量包含:线圈的自感L, 绕线间分布电容,为简便起见可视为集中参数,用C来表示。 于是可得到电感式传感器的等效电路如图4-4所示。
其自由端发生位移,带动与自由端连接成一体的衔铁运动, 使线圈1和线圈2中的电感发生大小相等、符号相反的变化。 即一个电感量增大,一个电感量减小。电感的这种变化通 过电桥电路转换成电压输出,所以只要用检测仪表测量出 输出电压,即可得知被测压力的大小。
第4章 电感式传感器 4.1.5
工程测试技术_总复习

三角 矩形脉冲 而周期信号、指
脉冲 信号
三角脉冲
数衰减信号、随 机过程等则为时
余弦脉冲 域无限信号
b) 频域有限信号
经过傅立叶变换,在频率区间(f1,f2)内不恒为零, 在其外恒等于零.
正弦波幅值谱
西安工业大学机电学院
时域有限信号与频域有限信号有何关系? 为什么要讨论时域有限信号与频域有限信号?
4.4 电容式传感器的应用
电容式压差传感器
凹玻璃圆片
P1 弹性膜片(动电极)
固定电极
P2
电容式差压传感器
差动型
西安工业大学机电学院
4.4 电容式传感器的应用
电容式称重传感器
弹性体
绝缘材料 定极板
极板支架
动极板
电容式称重传感器
西安工业大学机电学院
西安工业大学机电学院
例: 现欲测量液体压力,拟采用电容式或电阻
电涡流式传感器
电涡流传感器的应用
西安工业大学机电学院
西安工业大学机电学院
互感式应用案例
差动变压器式传感器可直接用于位移测量,也可以用来测 量与位移有关的任何机械量,如振动,加速度,应变等等。
1)压差计
当压差变化时,腔内 膜片位移使差动变压器次 级电压发生变化,输出与 位移成正比,与压差成正 比。
电 桥 总幅与解调
西安工业大学机电学院
(1)调幅过程在时域上是调制信号与载波 信号相乘的运算。
(2)在频域上是调制信号频谱与载波信号 频谱卷积的运算,相当于频谱“搬移”过程。
(3)从调制过程看,载波频率必须高于原 信号中的最高频率才能使已调制波仍能保持原 信号的频谱图形,不致重叠。
测试系统的幅频特性和相频特性的 物理意义又是什么?
第03章电感式传感器

• 图为典型的角位移型电容式传感器 当动板有一转角时,与定板之间相互覆盖的面积
就发生变化,因而导致电容量变化。
4.2.2 变面积型电容式传感器
+ + +
4.2.2 变面积型电容式传感器
• 线位移型电容式传 感器
• 平面线位移型和圆 柱线位移型两种。
4.2.3 变介电常数型电容传感器
• 变介电常数型电容传感器的结构原理如图 所示
零残电压过大带来的影响:
灵敏度下降、非线性误差增大 测量有用的信号被淹没,不再反映被测量变化造成放大电路后级饱和,仪器不能正常 工作。
产生的原因:两电感线圈的等效参数不对称
减小零点残余电压方法:
1. 尽可能保证传感器几何尺寸、线圈电气参数玫磁路的对称。磁性材料要经过处理, 消除内部的残余应力,使其性能均匀稳定。
3.6 压磁式传感器
铁磁材料的压磁效应的具体内容为: ①材料受到压力时,在作用力方向磁导率μ减小,而在作用力相垂直方向,μ略有增 大;作用力是拉力时,其效果相反; ②作用力取消后,磁导率复原; ③铁磁材料的压磁效应还与外磁场强度有关。
右图所示为压磁式压力传感器(又称为 磁弹性传感器)结构简图示例。
测头
测杆
电感 磁芯 线圈
下图是气体压力传感器和加速度计用传感器的结构原理图
气体压力传感器
加速度计用传感器
轴向式差动电感式传感器
总行程: 1.5mm 测量力:0.4~0.7N 示值变动性:0.2µm
总行程: 3mm 测量力:0.45~0.65N 示值变动性:0.03µm
旁向式差动电感式传感器
总行程:1.5mm 测量力:0.12~0.18N 示值变动性:0.05µm
大和检波,这种方法电路简单,主要用 在差动式电涡流传感器中。
就发生变化,因而导致电容量变化。
4.2.2 变面积型电容式传感器
+ + +
4.2.2 变面积型电容式传感器
• 线位移型电容式传 感器
• 平面线位移型和圆 柱线位移型两种。
4.2.3 变介电常数型电容传感器
• 变介电常数型电容传感器的结构原理如图 所示
零残电压过大带来的影响:
灵敏度下降、非线性误差增大 测量有用的信号被淹没,不再反映被测量变化造成放大电路后级饱和,仪器不能正常 工作。
产生的原因:两电感线圈的等效参数不对称
减小零点残余电压方法:
1. 尽可能保证传感器几何尺寸、线圈电气参数玫磁路的对称。磁性材料要经过处理, 消除内部的残余应力,使其性能均匀稳定。
3.6 压磁式传感器
铁磁材料的压磁效应的具体内容为: ①材料受到压力时,在作用力方向磁导率μ减小,而在作用力相垂直方向,μ略有增 大;作用力是拉力时,其效果相反; ②作用力取消后,磁导率复原; ③铁磁材料的压磁效应还与外磁场强度有关。
右图所示为压磁式压力传感器(又称为 磁弹性传感器)结构简图示例。
测头
测杆
电感 磁芯 线圈
下图是气体压力传感器和加速度计用传感器的结构原理图
气体压力传感器
加速度计用传感器
轴向式差动电感式传感器
总行程: 1.5mm 测量力:0.4~0.7N 示值变动性:0.2µm
总行程: 3mm 测量力:0.45~0.65N 示值变动性:0.03µm
旁向式差动电感式传感器
总行程:1.5mm 测量力:0.12~0.18N 示值变动性:0.05µm
大和检波,这种方法电路简单,主要用 在差动式电涡流传感器中。
电感式传感器30295

不足:存在交流零位信号,不宜于高频动态测量。
电感式传感器
第4章 电感式传感器
§4.1 自感式传感器
§4.2 差动式变压器
§4.3 电涡流式传感器
应用实例
4.1 自感式传感器
第4章 电感式传感器
➢ 气隙型电感传感器 ➢ 螺管型电感传感器 ➢ 电感线圈的等效电路 ➢ 测量电路
4.1 自感式传感器
实验:
4.1 自感式传感器
单线圈气隙型电感传感器:
灵敏度:
KL
L l
1 l
1 l
r
线性度: l 1 l 1 l l r
差动式气隙型电感传感器:
2
灵敏度:K L
L 2
l
1 l
1 l
r
线性度:
l l
1 l
1 l
r
2.差动式自感传感器非线性失真小.
当Δlδ/lδ=10%时 (略去l/lδ·μr), 单线圈δ<10%;而差动式的δ<1%。
4.1 自感式传感器
单线圈气隙型电感传感器:
灵敏度:
KL
L l
1 l
1 l
r
线性度: l 1
l 1 l l r
差动式气隙型电感传感器:
2
灵敏度:K L
L 2
l
1 l
1 l
r
线性度:
l l
1 l
1 l
r
1. 差动式自感传感器的灵敏度比单线圈传 感器提高一倍.
差动式气隙型电感传感器
l
r
1 l
l
L L1 l r l
L
l r l l
L1
l
1
l
1
L
电感式传感器PPT课件

符号相反的变化。即一个电感量增大,另一个电感量减小。电
感的这种变化通过电桥电路转换成电压输出。由于输出电压与 被测压力之间成比例关系, 所以只要用检测仪表测量出输出电 压, 即可得知被测压力的大小。
16
互感式传感器
互感式传感器——把被测的非电量变化转换为线圈互
感变化的传感器。 互感式传感器本身是其互感系数可变的变压器,当一次
Φm
Wi Rm
式中,Wi为磁动势;Rm为磁阻。
自感:L W 2 Rm
因为气隙厚度较小,可以认为气隙磁场是均匀的,若忽
略磁路铁损,则总磁阻近似为:
2
Rm 0 A
A :气隙的有效截面积; 0 :真空磁导率; :气隙厚度 4
电感量计算公式 :
W:线圈匝数;A :气隙的有效截面积; 0 :真空磁导率; :气隙厚度。
20
差动变压器的转换电路:
主要采用反串电路和电桥两种。 反串电路:反串电路是直接把两个二次线
圈反向串接。这种情况下空载输出电压等 于二次侧线圈感应电动势之差,即:
U 0 E21 E22
21
桥路:如图所示:其中R1,R2是桥臂电阻,Rw是供调零用的电位 器。设R1=R2,则输出电压:
17
螺管式差动变压器工作原理
1-活动衔铁; 2-导磁外壳; 3-骨架; 4-匝数为W1初级绕组; 5-匝数为W2a的次级绕组; 6-匝数为W2b的次级绕组
18
工作原理
当没有位移时,衔铁C处于初始平衡位置,两线圈互感相等: M1=M2
两个次级绕组的互感电势相等,即e2a=e2b。 由于次级绕组反向串联,因此,差动变压器输出电压
的差动式电感传感器, 有ΔZ1+ΔZ2≈jω(ΔL1+ΔL2), 则
传感器原理及其应用_第3章_电感式传感器

1
2
P
r
x
为简化分析,设螺管线圈的长径 比 l / r 1 ,则可认为螺管线 圈内磁场强度分布均匀,线圈 中心处的磁场强度为:
B
x
2 2 N NBS 0 N r L0 I I l
IN H l 则空心螺管线圈的电感为:
第3章 电感式传感器
当线圈插有铁芯时,由于铁芯是铁磁性材料,使插入部分的磁 阻下降,故磁感强度B增大,电感值增加。
如果铁芯长度 l e 小于线圈长度l,则线圈电感为
L
0N [lr ( r 1)l e re ]
2 2 2
l2
第3章 电感式传感器 当l e增加 l e 时,线圈电感增大ΔL,则
L L
电感变化量为
0N [lr ( r 1)(l e l e )re ]
0 N 2 S N2 N2 线圈自感L为: L 2 Rm 2 0 S
分类:
变气隙厚度δ的电感式传感器; 变气隙面积S的电感式传感器;
变铁芯磁导率μ的电感式传感器;
第3章 电感式传感器
自感式电感传感器常见的形式
变气隙式
变截面式
螺线管式
1—线圈coil ;2—铁芯Magnetic core ;3—衔铁Moving core
,上式展开成泰勒级数: 1
非线性误差为
0
2
0
100%
0
第3章 电感式传感器
①差动式自感传感器的灵敏度 比单线圈传感器提高一倍 ②差动式自感传感器非线性失 真小,如当Δδ/δ=10%时 , 单线圈γ<10%;而差动式的 γ <1% ③采用差动式传感器,还能抵 消温度变化、电源波动、外界 干扰、电磁吸力等因素对传感 器的影响
2
P
r
x
为简化分析,设螺管线圈的长径 比 l / r 1 ,则可认为螺管线 圈内磁场强度分布均匀,线圈 中心处的磁场强度为:
B
x
2 2 N NBS 0 N r L0 I I l
IN H l 则空心螺管线圈的电感为:
第3章 电感式传感器
当线圈插有铁芯时,由于铁芯是铁磁性材料,使插入部分的磁 阻下降,故磁感强度B增大,电感值增加。
如果铁芯长度 l e 小于线圈长度l,则线圈电感为
L
0N [lr ( r 1)l e re ]
2 2 2
l2
第3章 电感式传感器 当l e增加 l e 时,线圈电感增大ΔL,则
L L
电感变化量为
0N [lr ( r 1)(l e l e )re ]
0 N 2 S N2 N2 线圈自感L为: L 2 Rm 2 0 S
分类:
变气隙厚度δ的电感式传感器; 变气隙面积S的电感式传感器;
变铁芯磁导率μ的电感式传感器;
第3章 电感式传感器
自感式电感传感器常见的形式
变气隙式
变截面式
螺线管式
1—线圈coil ;2—铁芯Magnetic core ;3—衔铁Moving core
,上式展开成泰勒级数: 1
非线性误差为
0
2
0
100%
0
第3章 电感式传感器
①差动式自感传感器的灵敏度 比单线圈传感器提高一倍 ②差动式自感传感器非线性失 真小,如当Δδ/δ=10%时 , 单线圈γ<10%;而差动式的 γ <1% ③采用差动式传感器,还能抵 消温度变化、电源波动、外界 干扰、电磁吸力等因素对传感 器的影响
第4章 电感式传感器

(c) 四节式
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/10/3
1
当被测压力进入C形弹簧管时,
线圈1
C形弹簧管产生变形, 其自 C形 弹 簧 管
由端发生位移,带动与自由
端连接成一体的衔铁运动,
使线圈1和线圈2中的电感发
输出
生大小相等、符号相反的变
化。即一个电感量增大,另 一个电感量减小。电感的这 种变化通过电桥电路转换成 电压输出。由于输出电压与
2019/10/3
12
2019/10/3
8
三、 电涡流式传感器的应用
可用于测量压力、力、压差、加速度、振动、应变、流 量、厚度、液位等物理量。
1、位移测量
2019/10/3
9
5.3.4
• 1、位移测量 • 2、振幅测量 • 3、转速测量 • 4、无损探伤
2019/10/3
10
本章小结
• 1、电感式传感器
• 它分变气隙厚度和变气隙面积两种,变气 隙厚度式使用广泛。
螺线管式应用较广。
• 其原理为:当被测物体没有位移时,活动衔铁处于初始平 衡位置,变压器输出电压为零;当被测物体有位移时,变 压器输出电压不为零。
• 3、电涡流式传感器 • 电涡流式传感器是根据电涡流效应制成的。当板块金属导
体置于交变磁场中,或在磁场中做切割磁力线运动时,导 体内将产生涡旋状的感应电流,此即电涡流效应。激磁线 圈通交变电流,周围形成交变磁场,导体内产生涡流,电 涡流磁场反抗原磁场,引起线圈等效阻抗发生变化,即可 建立阻抗与变量的单值关系,测量阻抗值,即可求得该被 测量。
线路板
差动变压器 衔铁
底座 膜盒
接头 图5.20 微压传感器
壳体
插头 通孔
图5.21 CPC型差压计
2019/10/3
3
1、测量振动和加速度 差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将 悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动 体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加 速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以 Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。
调机械 零 点 螺钉
线圈2 衔铁
P
~
被测压力之间成比例关系, 所以只要用检出电压, 即可得知被测压
力的大小。
2019/10/3
2
二、 差动变压器式传感器的应用
可直接用于位移测量,也可以测量与位移有关的任何 机械量,如振动、加速度、应变、比重、张力和厚度等。
第四节 变磁阻式传感器的应用
一、电感式压力传感器的应用
•当压力进入膜盒时,膜盒
的顶端在压力P 的作用下 产生与压力P 大小成正比
的位移,于是衔铁也发生 移动,从而使气隙发生变 化,流过线圈的电流也发 生相应的变化,电流表A的 指示值就反映了被测压力 的大小。
线圈 铁芯
衔铁
U~ A
膜盒
P
图4-30 变隙电感式压力传感器结构图
• 差动变隙式是由两个相同的线圈与磁路组 成。其原理为当被测体带动衔铁移动时, 使两个磁路的磁阻发生大小相等符号相反 的变化,引起两线圈产生大小相等、极性 相反的电感增量。
• 差动式的灵敏度与线性度比单线圈的高。
2019/10/3
11
• 2、差动变压器式传感器 • 差动变压器式传感器分变隙式、变面积和螺线管式三种,
B
1
2
2019/10/3
1—悬 臂 梁 ; 2—差 动 变 压 器 1
A x( t)
图4-32 差动变压器式加速度传感器原理图4
2、 测量位移
2019/10/3
5
例1:板厚的测量
~
2019/10/3
6
例2. 测量力或压力
例:张力测量
2019/10/3
7
例3、 振动检测
其外形如右图,它是利用磁电感
应原理把振动信号变换成电信号。主 要由磁路系统、惯性质量、弹簧阻尼 等部分组成。在传感器壳体中刚性地 固定着磁铁,惯性质量(线圈组件) 用弹簧元件悬挂于壳体上。
工作时,将传感器安装在机器上,在机器振动时,
线圈与磁铁相对运动、切割磁力线,产生感应电压,
该信号正比于被测物体的振动速度值,对该信号进行
积分放大处理即可得到位移信号。